JPS628528Y2 - - Google Patents
Info
- Publication number
- JPS628528Y2 JPS628528Y2 JP15660281U JP15660281U JPS628528Y2 JP S628528 Y2 JPS628528 Y2 JP S628528Y2 JP 15660281 U JP15660281 U JP 15660281U JP 15660281 U JP15660281 U JP 15660281U JP S628528 Y2 JPS628528 Y2 JP S628528Y2
- Authority
- JP
- Japan
- Prior art keywords
- conduit
- pressure
- sample
- tube
- external
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005070 sampling Methods 0.000 claims description 14
- 239000007789 gas Substances 0.000 claims description 8
- 239000012159 carrier gas Substances 0.000 claims description 7
- 238000001514 detection method Methods 0.000 claims description 6
- 238000000926 separation method Methods 0.000 claims description 5
- 230000032258 transport Effects 0.000 claims 1
- 239000011347 resin Substances 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 239000000463 material Substances 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 230000000274 adsorptive effect Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Sampling And Sample Adjustment (AREA)
Description
【考案の詳細な説明】
この考案はサンプリングバルブにより一定量採
取したサンプルをキヤリアガスにより、サンプリ
ングバルブから離れて設けられた分離(カラム)
検出部へ移送するためのガスクロマトグラフの採
取サンプル移送導管に関する。[Detailed explanation of the invention] This invention uses a carrier gas to separate a certain amount of sample collected by a sampling valve (column) installed away from the sampling valve.
The present invention relates to a collection sample transfer conduit for a gas chromatograph for transfer to a detection section.
第1図にガスクロマトグラフの一般的な構成例
を示す。サンプルSはサンプリングバルブ1及び
これに取付けられた計量管1aを通じて流され、
サンプリングバルブ1を切替えると計量管1aに
採取された一定量(例えば1ml)のサンプルはキ
ヤリアガスCにより導管5を通じて分離部(カラ
ム)2へ移送され、この分離部でサンプルは各成
分に分離され、その各成分は検出部、例えば熱伝
導度式検出器3にてその各成分の量が順次検出さ
れる。 FIG. 1 shows a typical configuration example of a gas chromatograph. The sample S is flowed through a sampling valve 1 and a measuring tube 1a attached to the sampling valve 1,
When the sampling valve 1 is switched, a fixed amount (for example, 1 ml) of the sample collected in the measuring tube 1a is transferred by the carrier gas C through the conduit 5 to the separation section (column) 2, where the sample is separated into each component. The amount of each component is sequentially detected by a detection unit, for example, a thermal conductivity type detector 3.
サンプリングバルブ1を分離部2から離してサ
ンプル取出口近くに設置するため、第2図に示す
ように恒温槽4とは別に恒温槽4aをサンプル取
出口近くに設け、その恒温槽4aにサンプリング
バルブ1を収納する。これはいわゆるリモートサ
ンプリング方式として知られている。この方式で
はサンプリングバルブ1で一定量採取されたサン
プルはキヤリアガスCにより導管5を通して恒温
槽4に収納された分離部2、検出部3に送られ
る。導管5は通常ステンレススチール製の細管、
例えば外径2mm内径1mmのものが用いられる。こ
の導管5の長さは通常10〜30mに達する。 In order to install the sampling valve 1 away from the separation section 2 and near the sample outlet, as shown in FIG. Store 1. This is known as a so-called remote sampling method. In this system, a certain amount of sample is collected by a sampling valve 1 and sent by a carrier gas C through a conduit 5 to a separating section 2 and a detecting section 3 housed in a constant temperature bath 4. The conduit 5 is usually a thin tube made of stainless steel,
For example, one with an outer diameter of 2 mm and an inner diameter of 1 mm is used. The length of this conduit 5 typically amounts to 10 to 30 m.
このリモートサンプリング方式においてサンプ
ル中の水分などの吸着性成分を測定する場合は、
導管5であるステンレススチール管の内壁に水分
が吸着し、そのため水分ピークの幅が広がり、ピ
ークの計測精度が悪くなる。また導管5としての
ステンレススチール管の内壁への水分の吸着程度
は管の温度に著しく影響されるので、管の温度を
精密に例えば±0.1℃の精度で一定値に制御しな
い限り、水分ピークの流出時間(リテンシヨンタ
イム)が安定しない。ちなみに通常は導管5とし
てのステンレススチール管部分はスチームで加熱
保温されるが、その温度の変動幅は20℃以上と考
えられる。 When measuring adsorbent components such as moisture in a sample using this remote sampling method,
Moisture is adsorbed on the inner wall of the stainless steel tube that is the conduit 5, which widens the width of the moisture peak and degrades peak measurement accuracy. In addition, the degree of moisture adsorption on the inner wall of the stainless steel tube that serves as the conduit 5 is significantly affected by the temperature of the tube, so unless the tube temperature is precisely controlled to a constant value with an accuracy of, for example, ±0.1℃, the moisture peak Outflow time (retention time) is unstable. Incidentally, the stainless steel pipe portion that serves as the conduit 5 is normally heated and kept warm with steam, but the temperature fluctuation range is thought to be 20°C or more.
一方導管5への水分の吸着を防止するために、
四弗化エチレン、六弗化プロピレンなどの非吸着
性の樹脂のチユーブを導管5として用いることが
知られている。しかしこの樹脂性チユーブは管壁
を通してガスが透過する性状を有するので、導管
5の長さが長く、従つて表面積が大きい場合はそ
のチユーブの外壁に接する空気が管内に浸透し、
キヤリアガスに混入する。その結果空気混入量に
より測定感度の変化や検出出力のベースラインの
変動が生ずる。 On the other hand, in order to prevent moisture from being adsorbed to the conduit 5,
It is known to use a tube of non-adsorptive resin such as tetrafluoroethylene or hexafluoropropylene as the conduit 5. However, this resin tube has a property that allows gas to permeate through the tube wall, so if the conduit 5 is long and has a large surface area, the air in contact with the outer wall of the tube will penetrate into the tube.
Mixed with carrier gas. As a result, the measurement sensitivity changes and the detection output baseline fluctuates depending on the amount of air mixed in.
この考案の目的は検出すべき成分を正しく測定
することを可能とする採取サンプル移送導管を提
供することにある。 The purpose of this invention is to provide a collection sample transfer conduit that makes it possible to accurately measure the components to be detected.
この考案によれば移送導管を二重管とし、その
内部導管としてはサンプル中の測定対象成分と反
応したり、その成分が吸着したりし難い樹脂材で
構成される。一方外部導管は金属或は内部導管と
同種の樹脂材で構成される。この内部導管及び外
部導管間は減圧手段により大気圧よりも低い圧力
に減圧される。 According to this invention, the transfer conduit is a double pipe, and the inner conduit is made of a resin material that does not easily react with or adsorb the component to be measured in the sample. On the other hand, the external conduit is made of metal or the same type of resin material as the internal conduit. The pressure between the internal conduit and the external conduit is reduced to a pressure lower than atmospheric pressure by a pressure reducing means.
第3図はこの考案による採取サンプル移送導管
の実施例を示し、第2図と対応する部分に同一符
号を付けてある。この考案においては導管5を内
部導管とし、その外側に同軸心的に外部導管が設
けられて二重導管とされる。内部導管5はサンプ
ル中の検出しようとする成分と反応したり、この
成分を吸着したりし難い樹脂材、例えば四弗化エ
チレン、六弗化ポリプロピレンなどの弗素系樹脂
やポリエチレン、ポリプロピレンなどの化学的に
不活性な樹脂により構成される。外部導管6はス
テンレススチールや銅などの金属製管或は内部導
管5と同種の樹脂材、その他どのような材料のも
のでもよいが、一般には移送導管は加熱保護され
る必要があるため、その温度に耐える耐熱性のも
のが用いられる。 FIG. 3 shows an embodiment of the collected sample transfer conduit according to this invention, in which parts corresponding to those in FIG. 2 are given the same reference numerals. In this invention, the conduit 5 is an internal conduit, and an external conduit is coaxially provided on the outside thereof to form a double conduit. The internal conduit 5 is made of a resin material that does not easily react with or adsorb the component to be detected in the sample, such as a fluorine-based resin such as tetrafluoroethylene or hexafluoropolypropylene, or a chemical material such as polyethylene or polypropylene. Constructed from a physically inert resin. The external conduit 6 may be made of a metal such as stainless steel or copper, or the same type of resin as the internal conduit 5, or any other material, but in general, the transfer conduit needs to be protected by heat, so A heat-resistant material that can withstand temperature is used.
内部導管5と外部導管6との間の空間は外部の
大気圧よりも低い圧力に減圧される。外部導管6
の一端、例えば分離部2側の端は密閉具7で塞が
れ、他端、この例ではサンプリングバルブ1側の
端部は減圧装置8に連結される。減圧装置8はア
スピレータやポンプなどであり、導管5及び6間
の空間内の気体を外部に排出させ、少なくとも大
気圧よりも減少させる。 The space between the inner conduit 5 and the outer conduit 6 is evacuated to a pressure lower than the external atmospheric pressure. External conduit 6
One end, for example, the end on the separation section 2 side, is closed with a sealing member 7, and the other end, in this example, the end on the sampling valve 1 side, is connected to a pressure reducing device 8. The pressure reducing device 8 is an aspirator, a pump, or the like, and discharges the gas in the space between the conduits 5 and 6 to the outside, reducing the pressure to at least below atmospheric pressure.
この構成によればサンプル中の水分を測定する
場合、採取サンプルが内部導管5内を送られる際
に導管5と反応したり吸着したりすることはほと
んどないため、検出される水分のピークの形状は
乱されることなく、ピークの測定を正しく行なう
ことができる。また導管5及び6間は大気圧より
も減圧されているため、導管5の外周と直接接し
ている空気の圧力は大気圧より小さく、この空気
が導管5の壁を浸透して導管5内に入る量は導管
5が直接外気と接している場合と比較して小さく
なり、充分減圧すれば導管5の壁を浸透してキヤ
リアガスに混入する量を無視できる程度にするこ
とができ、キヤリアガスの純度の変化による検出
成分の感度の変化やベースラインの変動を防止す
ることができ、それだけ測定精度を高くすること
ができる。なお、水分の検出のみならず、硫化水
素、アンモニアその他の成分の検出にもこの考案
は適用できる。 According to this configuration, when measuring moisture in a sample, the collected sample hardly reacts or adsorbs with the conduit 5 when it is sent through the internal conduit 5, so the shape of the detected moisture peak peak measurements can be made correctly without being disturbed. Furthermore, since the pressure between the conduits 5 and 6 is lower than atmospheric pressure, the pressure of the air that is in direct contact with the outer periphery of the conduit 5 is lower than atmospheric pressure, and this air penetrates the wall of the conduit 5 and enters the inside of the conduit 5. The amount entering the conduit 5 is smaller than when the conduit 5 is in direct contact with the outside air, and if the pressure is sufficiently reduced, the amount that penetrates the wall of the conduit 5 and mixed into the carrier gas can be reduced to a negligible level, and the purity of the carrier gas can be reduced. It is possible to prevent changes in the sensitivity of the detected component and fluctuations in the baseline due to changes in the detection component, and the measurement accuracy can be increased accordingly. Note that this invention can be applied not only to detecting moisture but also to detecting hydrogen sulfide, ammonia, and other components.
第1図は従来のガスクロマトグラフの一般的構
成を示す図、第2図は従来のリモートサンプリン
グ方式のガスクロマトグラフの構成を示す図、第
3図はこの考案による採取サンプル移送導管の一
例を適用したリモートサンプリング式ガスクロマ
トグラフの構成を示す図である。
1:サンプリングバルブ、2:分離部、3:検
出部、4,4a:恒温槽、5:内部導管、6:外
部導管、7:密閉具、8:減圧装置。
Figure 1 is a diagram showing the general configuration of a conventional gas chromatograph, Figure 2 is a diagram showing the configuration of a conventional remote sampling type gas chromatograph, and Figure 3 is an example of a sample transfer conduit based on this invention. 1 is a diagram showing the configuration of a remote sampling type gas chromatograph. 1: Sampling valve, 2: Separation section, 3: Detection section, 4, 4a: Constant temperature chamber, 5: Internal conduit, 6: External conduit, 7: Sealing device, 8: Pressure reducing device.
Claims (1)
プルを、キヤリアガスにより分離検出部に移送す
る導管であつて、この導管は上記サンプル中に含
まれる目的とする成分との反応や吸着が起り難い
樹脂で構成された内部導管と、その内部導管を収
納するように設けられた外部導管と、これら内部
導管及び外部導管間を大気圧よりも低い圧力に減
圧する手段とを具備するガスクロマトグラフの採
取サンプル移送導管。 A conduit that transports a certain amount of sample collected by a sampling valve to a separation detection section using a carrier gas. A collection sample transfer conduit for a gas chromatograph, comprising a conduit, an external conduit provided to accommodate the internal conduit, and means for reducing the pressure between the internal conduit and the external conduit to a pressure lower than atmospheric pressure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15660281U JPS5862266U (en) | 1981-10-21 | 1981-10-21 | Gas chromatograph collection sample transfer conduit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15660281U JPS5862266U (en) | 1981-10-21 | 1981-10-21 | Gas chromatograph collection sample transfer conduit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5862266U JPS5862266U (en) | 1983-04-26 |
JPS628528Y2 true JPS628528Y2 (en) | 1987-02-27 |
Family
ID=29949137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15660281U Granted JPS5862266U (en) | 1981-10-21 | 1981-10-21 | Gas chromatograph collection sample transfer conduit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5862266U (en) |
-
1981
- 1981-10-21 JP JP15660281U patent/JPS5862266U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5862266U (en) | 1983-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7520159B2 (en) | Gas chromatograph | |
US5361625A (en) | Method and device for the measurement of barrier properties of films against gases | |
US3926561A (en) | Gas analysis employing semi-permeable membrane | |
US4148211A (en) | Sampling system for engine exhaust gas analysis apparatus | |
US4467038A (en) | Predetector reservoir for chromatographic analysis instrument | |
JP2000509487A (en) | Recirculating filtration device for use with a portable ion mobility analyzer | |
JPS5812545B2 (en) | How to drain argon gas | |
JPH08240578A (en) | Correcting method for flow-rate sensor in gaschromatography and correcting method for pressure sensor | |
JPS628528Y2 (en) | ||
EP0091928B1 (en) | Method and device for continuous, automatic air analysis | |
US5070024A (en) | Hydrocarbon detector utilizing catalytic cracking | |
JPS6230587B2 (en) | ||
US3435678A (en) | Apparatus for flow monitoring | |
GB2103806A (en) | Improvements relating to gas detectors | |
JPS6217707Y2 (en) | ||
Forsythe et al. | The volume adsorption capacity of activated carbon for selected trace contaminants | |
CN219302370U (en) | Expiration detection device based on gas chromatography principle | |
JPH05126812A (en) | Gas chromatograph | |
CA1191721A (en) | Method and device for continuous, automatic air analysis | |
Chrenko | Infrared Microcell. | |
SU575566A1 (en) | Device for detecting liquids and gases | |
US6368559B1 (en) | Device for analyzing organic compounds particularly in aqueous and gaseous samples | |
Ivanova et al. | A measuring setup with a differential generator photoionization detector for determining biomarkers in exhaled gas | |
JPS6342362Y2 (en) | ||
JPS618658A (en) | Ion chromatograph |