JPS6285143A - Vibration reducing device for cylinder number control engine - Google Patents
Vibration reducing device for cylinder number control engineInfo
- Publication number
- JPS6285143A JPS6285143A JP22538185A JP22538185A JPS6285143A JP S6285143 A JPS6285143 A JP S6285143A JP 22538185 A JP22538185 A JP 22538185A JP 22538185 A JP22538185 A JP 22538185A JP S6285143 A JPS6285143 A JP S6285143A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- cylinder
- cylinders
- valve
- idle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D17/00—Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
- F02D17/02—Cutting-out
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野)
本発明は、エンジン低ni’i!i運転域又゛一部気筒
の作動を休止させて部分気筒運転を(jうようにした気
筒数制御エンジンにおいて、その部分気筒運転時にトル
ク変動に起因しで発生する振動を低減するための撮動低
減装置の改良に関するものである。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Fields> The present invention provides low engine ni'i! In an engine with cylinder number control in which the operation of some cylinders is stopped and partial cylinder operation is performed (j) in the i operating range or ``partial cylinder operation (j), this photographic method is used to reduce vibrations that occur due to torque fluctuations during partial cylinder operation. This invention relates to improvements to dynamic reduction devices.
(従来の技術)
一般に、エンジンを高いΩ荷状態で運転7すると燃料消
vR率が向上する傾向がある。このことから、多気筒エ
ンジンにおいて、高!A荷運転域では全気筒を作動させ
る全気筒運転を行つC高山/)を確保する一方、低負荷
運転域では一部気筒の作動を休止させる部分気筒運転を
行うことにより、稼動側気筒のΩ荷を相対的に高めて、
全体として低負荷運転域での燃費を改善づるようにした
気筒数制御エンジンは公知ぐあるっ
ところで、このような気に)数1】す■エンジンにおい
て、その部分気筒運転時には、稼動側気筒の燃焼圧わと
休止側気筒の圧縮1F力との間(c人、!な差が生じて
トルク変動が生じ、しかしこの差は部分気筒運転の継続
に伴い休止側気筒内に閉じ込められたガスがクランクケ
ース側ヘブローバイしてその圧縮圧力が徐々に減少する
ので、−留増大してトルク変動が増加する。このことか
ら、全気筒運転時には問題とならない低周波の(辰動が
増大するという問題がある。(Prior Art) Generally, when an engine is operated under a high Ω load state, the fuel consumption rate tends to improve. From this, in a multi-cylinder engine, high! In the A load operating range, all cylinders are operated to ensure C Takayama/), while in the low load operating range, partial cylinder operation is performed in which some cylinders are stopped, thereby reducing the number of active cylinders. By relatively increasing the Ω load,
There are well-known engines that control the number of cylinders to improve overall fuel efficiency in the low-load operating range. There is a large difference between the combustion pressure and the compression 1F force in the cylinder on the idle side, which causes torque fluctuations. However, this difference is due to the gas trapped in the cylinder on the idle side due to continued partial cylinder operation. As the compression pressure gradually decreases due to blow-by on the crankcase side, the -resistance increases and torque fluctuation increases.This causes the problem of increased low-frequency (dynamic), which is not a problem when operating all cylinders. be.
このため、このような振動を低減する技術として、従来
、実開昭58−156134号公報に例示されるように
、部分気筒運転に伴う休止側気筒のブローバイガスに相
当する分をエンジンのサイクル毎に休止側気筒に補給す
るとともに、吸気通路を稼動側気筒と休止側気筒とに対
応して仕切って、休止側気筒の圧縮圧力が稼動側気筒の
燃焼圧力に近づくようにエンジンの負荷状態に応じて休
止側吸気)m路内の圧力(つまり休止側気筒に導入する
ガス圧力)を稼動側吸気通路内の圧力に対して一定倍率
で調圧することにより、部分気筒運転時のトルク変動を
抑制するようにしたものが提案されている。For this reason, as a technique for reducing such vibrations, as exemplified in Japanese Utility Model Application Publication No. 156134/1983, conventional techniques have been developed to reduce blow-by gas from the cylinders on the idle side during partial cylinder operation every engine cycle. At the same time, the intake passage is divided into active and inactive cylinders so that the compression pressure in the inactive cylinder approaches the combustion pressure in the active cylinder, depending on the engine load condition. Torque fluctuations during partial cylinder operation are suppressed by regulating the pressure in the intake passage (in other words, the gas pressure introduced into the cylinder on the idle side) at a constant ratio to the pressure in the active side intake passage. Something like this has been proposed.
(発明が解決しようとする問題点)
しかるに、稼動側気筒の最高燃焼圧力は、各稼動側気筒
相互間で必ずしも等しくなくて、各稼動側気筒に導入さ
れる混合気の空燃比のバラツキやスワール強さ等の運転
状態の変化に伴う要因、および着火性やガス洩れ等の経
時変化する要因に影響を受tプでバラツキを生じるもの
である。このため、上記従来の如く休止側の吸気圧力を
稼動側の吸気圧力に対してエンジン負荷に応じて一定倍
率で調圧させても、サイクル間での最高圧力にはト記稼
動側気筒相互間の燃焼のバラツキに応じた差が生じてい
て、振動を有効に低減できないという憾みがある。(Problem to be Solved by the Invention) However, the maximum combustion pressure of the working cylinders is not necessarily the same among the working cylinders, and variations in the air-fuel ratio of the air-fuel mixture introduced into the working cylinders and swirls may occur. It is affected by factors associated with changes in operating conditions, such as strength, and factors that change over time, such as ignitability and gas leakage, and this causes variations. For this reason, even if the intake pressure on the idle side is regulated at a fixed rate according to the engine load compared to the intake pressure on the operating side as in the conventional method, the maximum pressure between cycles is There is a problem in that vibrations cannot be effectively reduced due to differences in combustion.
本発明は斯かる点に鑑みて/Rされたものであり、その
目的とするところは、各稼動側気筒相互間の燃焼のバラ
ツキは仕方がないものとして、その稼動側気筒の平均燃
焼圧力をC)出し、この平均燃焼圧力に休止側気筒の圧
縮圧力を近づけることにより、エンジン運転状態の変化
や着火性等の経時変化に拘らず常にケイクル間での最高
圧力の差を可及的に小さく抑えて、トルク変動をより一
1有効に抑制することにある。The present invention has been developed in view of the above, and its purpose is to calculate the average combustion pressure of the operating cylinders, assuming that combustion variations among the operating cylinders are unavoidable. C), and by bringing the compression pressure of the cylinder on the idle side close to this average combustion pressure, the difference in maximum pressure between the cylinders is always kept as small as possible, regardless of changes in engine operating conditions or changes in ignition performance over time. The objective is to suppress torque fluctuations more effectively.
(問題点を解決するための手段)
上記の目的を達成するため、本発明の解決手段は、低負
荷運転域で作動を休止する休止側気筒と、帛′時作動す
る稼動側気筒とを備え、部分気筒運転時に休止側気筒に
導入するガス圧力を制御して稼動側気筒の燃焼圧力に休
止側気筒の圧縮圧力を近づけるようにした気筒数制御−
[ンジンの振動低減装置を館提とする。そして、部分気
IX)運転時に休止側気筒に導入するガス圧力を調圧す
る調圧手段を設(プる。さらに、各稼動側気筒の員高燃
焼圧力ないしこれに関連する信号を検出する検出手段と
、該各検出f段の信号を受けて稼動側気筒の平均燃焼圧
力を算出する算出手段と、該算出手段の出力を受け、休
止側気筒の圧縮行程終了時点におけるイホ止剛気局全体
としての圧縮圧力が稼動側気筒の平均燃焼圧力と等しく
なるように上記調圧手段を制御す−る市1j御5r82
とを備える構成としたものである。(Means for Solving the Problems) In order to achieve the above object, the solving means of the present invention includes a cylinder on the inactive side that stops operating in a low-load operating range and a cylinder on the active side that operates all the time. , cylinder number control that controls the gas pressure introduced into the idle cylinder during partial cylinder operation so that the compression pressure of the idle cylinder approaches the combustion pressure of the active cylinder.
[Includes engine vibration reduction equipment] Then, a pressure regulating means is provided to regulate the gas pressure introduced into the idle cylinder during partial gas IX operation.Furthermore, a detection means is provided to detect high combustion pressure of each operating cylinder or a signal related thereto. , a calculating means for calculating the average combustion pressure of the operating cylinder in response to the signal of each detection f-stage; Ichi 1j control 5r82 which controls the pressure regulating means so that the compression pressure of the cylinder becomes equal to the average combustion pressure of the operating cylinder.
The configuration includes the following.
(作用)
上記の構成により、本発明では、制(卸手段により調圧
手段が制御されて、該調圧手段により休止側気筒のガス
圧力は、該休止側気筒の圧縮(j程終了時点における休
止側気筒全体としての圧縮圧力が粋出手段で尊重した稼
動側気筒の平均燃焼圧力と等しくなるように調圧される
ので、部分気筒運転時、エンジン運転状態の変化やガス
漏れ等の経時変化に応じて稼動側気筒での燃焼状態のバ
ラツキが変化しても、サイクル間rの最高圧力の差を常
に可及的に小さく抑えることができ、よってトルク変動
の抑制、低減を有効に行うことかぐきる。(Function) With the above configuration, in the present invention, the pressure regulating means is controlled by the regulating means, and the gas pressure in the idle cylinder is controlled by the pressure regulating means, so that the gas pressure in the idle cylinder is compressed (at the end of the j period). Since the compression pressure of the entire cylinder on the idle side is regulated to be equal to the average combustion pressure of the cylinder on the active side, which is respected by the extraction means, it is possible to prevent changes over time such as changes in engine operating conditions and gas leaks during partial cylinder operation. Even if the variation in the combustion state in the operating cylinder changes depending on the engine speed, the difference in maximum pressure between cycles can always be kept as small as possible, thereby effectively suppressing and reducing torque fluctuations. Kagukiru.
(実施例)
以下、本発明の実施例を図面に基づいて詳細に説明する
。(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings.
第1図は本発明の実施例に係る撮動低減&置を備えた気
筒数制御エンジンの全体概略構成を示し、4サイクル4
気筒エンジンで点火順序が1−→3→4→2の気筒類に
行われるものについて例示する。FIG. 1 shows an overall schematic configuration of a cylinder number control engine equipped with an imaging reduction and setting according to an embodiment of the present invention, and shows a 4-cycle 4-cycle engine.
An example will be given of a cylinder engine in which the ignition order is 1-→3→4→2 cylinders.
同図おいて、1Aは低負荷運転域で作動を体止ずる第1
および第4気筒に相当する休止側気筒、1Bは低偵荷お
よび高0荷の全運転14c常時作動づる第2および第3
気筒に相当する稼動側気筒であって、各気筒IA、1B
はピストン2の往復動により容積可変となる燃焼室3を
有している。4は、上流端がエアクリーナ5を介して大
気に開口して各気筒1A、1Bに吸気を供給するための
主吸気通路であって、該主吸気通路4の途中には吸入空
気量を制御するスロットル弁6が配設されており、主吸
気通路4の下流側は一ヒ記各気筒1A、1Bに対応して
休止側吸気通路4aと稼動側吸気通路4bとに分岐され
ていて、それぞれ対応する気筒1A、1Bの燃焼室3に
連通されている。また、7aおよび7bはそれぞれ休止
側および稼動側気筒1A、1Bの燃焼室3からの排気ガ
スを排出するための休止側および稼動側排気通路、8は
各吸気通路4a、4bに配設され燃料を噴射供給する燃
料噴射弁、9は主吸気通路4のスロットル弁6上流に配
設され吸入空気量を検出するエアフローメータである。In the same figure, 1A is the first one that stops operating in the low load operating range.
1B is a cylinder on the idle side corresponding to the 4th cylinder;
Operating side cylinders corresponding to cylinders, each cylinder IA, 1B
has a combustion chamber 3 whose volume can be varied by the reciprocating movement of a piston 2. 4 is a main intake passage whose upstream end opens to the atmosphere via an air cleaner 5 to supply intake air to each cylinder 1A, 1B, and a main intake passage 4 has a section in the middle that controls the amount of intake air. A throttle valve 6 is disposed, and the downstream side of the main intake passage 4 is branched into a rest-side intake passage 4a and an active-side intake passage 4b corresponding to each cylinder 1A, 1B, respectively. The combustion chambers 3 of the cylinders 1A and 1B communicate with each other. Further, 7a and 7b are exhaust passages on the idle side and the active side for discharging exhaust gas from the combustion chambers 3 of the cylinders 1A and 1B on the idle side and the active side, respectively, and 8 is disposed in each intake passage 4a and 4b for fuel. The fuel injection valve 9 is an air flow meter that is disposed upstream of the throttle valve 6 in the main intake passage 4 and detects the amount of intake air.
よた、10は各吸気通路4a。4bl17)燃焼室3へ
の開口」部に配設された吸気弁、11は各1!ト気通路
7a、7L+の燃焼室3への間口部【こ配置没された排
気弁である。そして、上記各吸気弁10および各排気弁
11は、図示しない動弁機構により所定のタイミングで
開閉作動して全気筒1△、113が作vJする全気筒運
転を行う一方、休止側気筒1Δの吸気弁10J5よび排
気弁11にはそれぞtl、上記動fr機構の駆動力の各
村10.11への伝達を遮断して各村10.11の開閉
作動を停止さ1!各弁10.11を閉弁状態に維持4−
る吸気弁1♀庄用アクチコJ−夕12J3よび排気弁停
止用j′り−1−1−エータ13が連係されていて、該
各アクf″−1−1−タ12,13の作動により休止側
気筒1Δの作動を休止させて、稼動側気筒113のみが
作動対−る部分気筒運転を行うように構成されている、
。10 is each intake passage 4a. 4bl17) The intake valves arranged at the opening to the combustion chamber 3, 11 are each 1! The exhaust valve is located at the frontage of the air passages 7a, 7L+ to the combustion chamber 3. Each of the intake valves 10 and each exhaust valve 11 is opened and closed at predetermined timing by a valve mechanism (not shown) to perform an all-cylinder operation in which all cylinders 1Δ and 113 operate vJ, while the cylinder 1Δ on the idle side The intake valve 10J5 and the exhaust valve 11 each have tl, and the transmission of the driving force of the dynamic fr mechanism to each village 10.11 is cut off to stop the opening/closing operation of each village 10.11.1! Keep each valve 10.11 closed 4-
The actuator J-12J3 for the intake valve 1♀ and the actuator 12J3 for stopping the exhaust valve are linked, and by the operation of each actuator f''-1-1-1-12, 13, It is configured to perform a partial cylinder operation in which the operation of the inactive cylinder 1Δ is suspended and only the active cylinder 113 is activated.
.
ここで、上記吸気弁停止用および排気弁停止F用7クチ
ユエータ12.13の具体内構)Δの一例について第2
図および第3図により詳述するに、両アクチュエータ1
2.13は共に同じ構成の弁停止機構に組込まれており
、第2図および第3図には吸気弁10用の弁停止機構5
0を示す。すなわち、吸気弁10に対応してカム51を
有するカムシャフト52に並行にロッカーシャフト53
が配設され、該]」ツカ−シャフト53にロッカーアー
ム54が支承されていて、該ロッカーアーム54は、上
記カム51に当接するカム側アーム55と、吸気弁10
に当接するバルブ側アーム56とに分割されている。こ
の両アーム55.56は、ロッカーシャフト53回りに
相対運動可能に支承されているとともに、プランジャ5
7およびレバ一部材58等で構成されたセレクタ5つに
より接続状態と非接続状態とに切換可能に構成されてお
り、該セレクタ5つにはセレクタ59を切換作動させる
アクチュエータ12が連結されている。しかして、アク
チュエータ12の非作動時には、セレクタ5つによりカ
ム側アーム55とバルブ側アーム56とが接′続状態と
なり、カム51の回転に伴うカム側アーム55の揺動が
バルブ側アーム56に伝達されて吸気弁10が開閉作動
する一方、アクチュエータ12の作動時には、セレクタ
59により両アームが非接続状態と%す、カム51の回
転に伴うカム側アーム55の揺動がバルブ側アーム56
に伝達されず、吸気弁10の開閉作動が停止されて吸気
弁10がバルブスプリング60 Lこよ(コ閉評状態に
保持されるようになっている。尚、排気弁11用の?停
止機構ら同様の構成である。Here, regarding an example of the specific internal structure) Δ of the 7 cutout units 12 and 13 for intake valve stop and exhaust valve stop F,
As detailed in FIG. 3, both actuators 1
2.13 are both incorporated in a valve stop mechanism with the same configuration, and FIGS. 2 and 3 show the valve stop mechanism 5 for the intake valve 10.
Indicates 0. That is, a rocker shaft 53 is parallel to a camshaft 52 having a cam 51 corresponding to the intake valve 10.
A rocker arm 54 is supported on the lever shaft 53, and the rocker arm 54 includes a cam-side arm 55 that contacts the cam 51, and a cam-side arm 55 that contacts the cam 51, and
and a valve side arm 56 that comes into contact with the valve side arm 56. Both arms 55 and 56 are supported around the rocker shaft 53 so as to be able to move relative to each other, and the plunger 5
It is configured to be switchable between a connected state and a non-connected state by five selectors composed of a lever member 58, a lever member 58, etc., and an actuator 12 for switching the selector 59 is connected to the five selectors. . Therefore, when the actuator 12 is inactive, the five selectors connect the cam-side arm 55 and the valve-side arm 56, and the swinging of the cam-side arm 55 due to the rotation of the cam 51 is applied to the valve-side arm 56. While the intake valve 10 opens and closes as a result of the transmission, when the actuator 12 is operated, both arms are disconnected by the selector 59.
, the opening/closing operation of the intake valve 10 is stopped, and the intake valve 10 is held in the closed state by the valve spring 60L. It has a similar configuration.
このような気筒数制御エンジンにおいCl2Oは部分気
筒運転時に休止開気@1△に導入するガス圧力を貯える
調圧タンクであって、該謂11ニタシク20は、休止側
吸気通路4aどは別に独立して設けられていて、ガス圧
導入通路21を介し2て体止側気筒1Aの燃焼室3に連
通されている。該ガス圧導入通路21の燃焼室3への間
口部にはガス圧導入通路21を開閉するガス圧導入弁2
2が配設されてJ3す、該ガス圧導入弁22には、部分
気筒運転時にガス圧導入弁22を吸気行frT!+i開
に開弁さぜる)fス圧導入弁用アイ7ヂコエータ2(3
が)唄結されていて、部分気筒運転時、ガス圧導入弁用
アクチュエータ23の作動によるガスI−E 4人弁2
2の開弁により調Ftタンク20内のガス圧力を休止側
気筒1Aの燃焼室3に導入するよ−うに構成されでいる
。ここ石゛、上記ガス圧導入弁22の開弁周期は、4サ
イクル4気筒エンジンで点火順序が1→3→4→2の気
筒類の場合、第1および第4気筒の各休止側気筒1△の
ガス圧導入弁22を360’毎に開弁するように設定さ
れていて、侵述の如く各休止側気筒1Aの最大圧縮圧力
を合暉したトータルどしての最高圧縮EE ツノが各稼
動側気筒1Bの@高煤煙圧力の平均埴に等しくなるよう
にしている。In such a cylinder number control engine, Cl2O is a pressure regulating tank that stores the gas pressure introduced into the pause open air @1△ during partial cylinder operation, and the so-called 11 nitrogen tank 20 is independent from the pause side intake passage 4a etc. The combustion chamber 2 is connected to the combustion chamber 3 of the stop cylinder 1A via a gas pressure introduction passage 21. A gas pressure introduction valve 2 for opening and closing the gas pressure introduction passage 21 is provided at the frontage of the gas pressure introduction passage 21 to the combustion chamber 3.
2 is disposed in the gas pressure introduction valve 22, and the gas pressure introduction valve 22 is connected to the intake line frT! during partial cylinder operation. +i Open) f Pressure introduction valve eye 7 Dicoator 2 (3)
), and during partial cylinder operation, the gas I-E 4-person valve 2 is activated by the actuator 23 for the gas pressure introduction valve.
When the valve 2 is opened, the gas pressure in the control Ft tank 20 is introduced into the combustion chamber 3 of the idle cylinder 1A. Here, in the case of a 4-cycle, 4-cylinder engine with cylinders in which the firing order is 1→3→4→2, the opening period of the gas pressure introduction valve 22 is as follows: The gas pressure introduction valve 22 of △ is set to open every 360', and as mentioned above, the maximum compression pressure of each cylinder 1A on the idle side is combined to give the maximum compression EE. It is made to be equal to the average value of the high soot smoke pressure of the operating cylinder 1B.
また、24は、一端が主吸気通路4のス【]ットル弁6
上流に開口し他端が調圧タンク20に開口して調圧タン
ク20に大気圧を導入する大気圧導入通路、25は、一
端が主吸気通路4のスロットル弁6下流に間口し他端が
調L[タンク20に開口して調圧タンク20に吸気負圧
を導入する負圧導入通路であって、上記大気圧導入通路
24の調圧タンク20への開口部には大気圧導入通路2
4を開閉する大気圧導入弁26が配設されているどとも
に、上記負圧導入通路25の調圧タンク20への間口部
にはf1圧導入通路25を開閉するで〕即導入弁27が
配設されている。さらに、両樽人弁26.27にはぞれ
ぞれ各導入弁26.27を開閉作動きせるアクチュエー
タ28.29が連結さねていて、該各アクチュエータ2
8.29の作動により各導入弁26.27を開閉させで
、調圧タンク20への大気圧又は負圧の導入を制御し、
調圧タンク20のガス圧力つまり部分気筒運転時に休止
側気筒1Aに導入するガス圧力を調圧するようにした調
圧手段30を構成している。Further, 24 is a throttle valve 6 whose one end is connected to the main intake passage 4.
An atmospheric pressure introduction passage 25 opens upstream and opens at the other end into the pressure regulating tank 20 to introduce atmospheric pressure into the pressure regulating tank 20. One end opens downstream of the throttle valve 6 of the main intake passage 4, and the other end opens downstream of the throttle valve 6 of the main intake passage 4. Regulation L [A negative pressure introduction passage that opens into the tank 20 and introduces negative intake pressure into the pressure regulation tank 20, and the atmospheric pressure introduction passage 2 is connected to the opening of the atmospheric pressure introduction passage 24 to the pressure regulation tank 20.
An atmospheric pressure introduction valve 26 for opening and closing f1 pressure introduction passage 25 is disposed, and an immediate introduction valve 27 for opening and closing f1 pressure introduction passage 25 is disposed at the frontage of the negative pressure introduction passage 25 to pressure regulating tank 20. It is arranged. Furthermore, actuators 28 and 29 for opening and closing each inlet valve 26 and 27 are connected to both barrel valves 26 and 27, respectively.
8.29 opens and closes each introduction valve 26.27 to control the introduction of atmospheric pressure or negative pressure into the pressure regulating tank 20,
A pressure regulating means 30 is configured to regulate the gas pressure in the pressure regulating tank 20, that is, the gas pressure introduced into the idle cylinder 1A during partial cylinder operation.
一方、40はイグニッションコイル14からの点火口故
によりエンジン回転数NEを検出づる回転数センサ、4
丁は稼動側吸気通路4bに配設されて稼動開気1i1i
ff1Bの吸気圧力PAを検出する吸気圧センサ、42
はクランクプーリ15に近接して配置されクランク角を
検出する電磁ピックアップ等よりなるクランク角センサ
、43はフライホイールのリングギr16に近接して配
置されクランク軸の角速度変動を検出する[4ピツクア
ツプ等よりなる角速度センサである。ここに、稼動剛気
筒1Bの煤煙圧力および体重側気筒1△の圧縮圧力はそ
れぞれクランク軸にモーメントとして作用し、これによ
りクランク軸に角速度変動を惹起するとともに、稼動側
気筒113と休止側気筒1Aとがそれぞれ角速度変動を
大きく生じる時期つまり最高圧力発生時期は経時的なズ
レがあり、4気筒の場合クランク角で180’Inに交
qとなることから、上記クランク角センサ42J5よび
角速度センサ43により、各稼動側気筒1Bの最高燃焼
圧力に相当するクランク軸の角速度変aj(つまり各稼
動側気筒1Bの最高燃焼圧力に関jルする(=号)を検
出するようにした検出手段46を溝穴している。そして
、上記各センサ40〜43の出力は、上記吸気弁停止用
、排気弁停止用、ガス圧導入弁用、大気圧導入弁用およ
び負圧導入通路の各アクチュエータ12.13,23.
26.27を作動制しロする制御手段としてのCP U
′37J、すhるコントロールユニッ1−45に入力
可能にくτっでいる。On the other hand, 40 is a rotational speed sensor that detects the engine rotational speed NE due to the ignition port from the ignition coil 14;
The valve is disposed in the working side intake passage 4b to open the working air 1i1i.
Intake pressure sensor for detecting intake pressure PA of ff1B, 42
A crank angle sensor 43 is arranged close to the crank pulley 15 and consists of an electromagnetic pickup or the like to detect the crank angle, and 43 is arranged close to the ring gear r16 of the flywheel and detects fluctuations in the angular velocity of the crankshaft. This is an angular velocity sensor. Here, the soot pressure of the working rigid cylinder 1B and the compression pressure of the weight side cylinder 1A act on the crankshaft as a moment, thereby causing angular velocity fluctuations in the crankshaft, and the working cylinder 113 and the rest cylinder 1A. There is a time difference in the timing at which large angular velocity fluctuations occur, that is, the timing at which the maximum pressure is generated, and in the case of a 4-cylinder engine, the crank angle crosses 180'In, so the crank angle sensor 42J5 and the angular velocity sensor 43 , a detecting means 46 configured to detect the angular velocity change aj of the crankshaft corresponding to the maximum combustion pressure of each operating cylinder 1B (that is, the (= symbol) related to the maximum combustion pressure of each operating cylinder 1B) is installed in the groove. The outputs of the sensors 40 to 43 are transmitted to the intake valve stop, exhaust valve stop, gas pressure introduction valve, atmospheric pressure introduction valve, and negative pressure introduction passage actuators 12 and 13. , 23.
26. CPU as a control means to control the operation of 27
'37J, it can be input to the control unit 1-45.
次に、上記−コント〜[コール−1ニソ(〜45の作動
を第4図のフローヂャートにより説明するに、スタート
シて、先ずステップSIに+13いて回転数センサ40
からのエンジン回転数NEおよび吸気圧センサ41から
の稼動側気筒113の吸気圧力PAの信号を入力すると
ともに、部分気筒運転中のフラグiの信号およびエンジ
ン冷月1水温Tw(,1−ンジン温度)の信号などを入
力したのら、ステップ$2でこれらの信号ハエろ部分気
筒運転条件が成立しているか否かを判別する。この判別
がN OT’あるときには、ステップ83″c全気筒運
転中であるか否かをギリ別し、全気筒運転中でないNo
のときには部分気筒運転から全気筒運転への切換時であ
ると判断しで、ステップS4で休止側気筒1Aの吸気弁
10および排気弁′11を開閉作動させるよう吸気弁停
止用および排気弁停止用アクチュエータ12.13に復
帰信シ]を出力するとともに、ガス圧導入弁22を開弁
状態に維持するようガス圧導入弁用アクヂコ、L−夕2
3に停止信号を出力して終了する。−b、全気筒運転中
である)/[Sの場合にはそのまま終了する。Next, the operation of the above-mentioned control ~[call-1 niso (~45) will be explained with reference to the flowchart in FIG.
In addition to inputting the signals of the engine speed NE and the intake pressure PA of the operating cylinder 113 from the intake pressure sensor 41, the signal of the flag i during partial cylinder operation and the engine cold month 1 water temperature Tw (, 1 - engine temperature ), etc., it is determined in step $2 whether or not these signal fly filter partial cylinder operating conditions are satisfied. When this determination is N OT', step 83''c determines whether or not all cylinders are operating, and if NO all cylinders are operating
When this happens, it is determined that it is time to switch from partial cylinder operation to all cylinder operation, and in step S4, the intake valve stop and exhaust valve stop operations are performed to open and close the intake valve 10 and exhaust valve '11 of the inactive cylinder 1A. The gas pressure introduction valve actuator L-2 outputs a return signal to the actuator 12.13 and maintains the gas pressure introduction valve 22 in an open state.
3, outputs a stop signal and ends the process. -b, all cylinders are in operation)/[S, the process ends immediately.
これに対し、上記ステップS2のセ1別が部分気筒運転
条件の成立しているYESの場合には、次のステップS
5で部分気筒運転中か否かを判別し、部分気筒運転中で
ないNOのときには全気筒運転から部分気筒運転への切
換時であると判断して、ステップ86で休止側気筒1△
の吸気弁10および排気弁11の開閉作動を停+hさせ
るよう吸気弁停止用および排気弁停止用アクチュエータ
12゜13に停止信号を出力するとともに、ガス圧導入
弁22を一定周期毎(4気筒の場合360°毎)に開弁
作動させるようガス圧導入弁用アクチュエータ23に作
動信号を出力したのら、上記ステップS5の判別が部分
気IF!5運転中であるYESの場合と共に次のステッ
プS7に進む。On the other hand, if the answer to step S1 in step S2 is YES, indicating that the partial cylinder operating condition is met, the next step S
In Step 5, it is determined whether or not partial cylinder operation is in progress, and if NO indicating that partial cylinder operation is not in progress, it is determined that it is time to switch from all cylinder operation to partial cylinder operation, and in step 86, the idle side cylinder 1△
A stop signal is output to the intake valve stop and exhaust valve stop actuators 12 and 13 to stop the opening/closing operation of the intake valve 10 and exhaust valve 11, and the gas pressure introduction valve 22 is turned on at regular intervals (for 4 cylinders). After outputting an operation signal to the gas pressure introduction valve actuator 23 to open the valve every 360°, the determination in step S5 is partial IF! 5, if the answer is YES, the process advances to the next step S7.
次いで、ステップ$7にd′3いて、クランク角センサ
42からのクランク角の信号および角速度センサ43か
らのクランク軸の角速を斐変動の信号を入力して、ステ
ップS8でこのクランク角と角速度変動とに基づいて各
稼動側気筒1B(第2および第3気筒〉の最高燃焼圧力
時でのトルク変動値Tf + 、Tf 2を口出′?J
−るとともに、スナップ$9で各休止側気筒1 A (
第1.43よび第11気in>cl)最高圧縮圧力時r
の1−ルウ変動ff1T+、+、丁C2を惇出しで、ス
テップSIって上記稼動側気筒1(3のトルク変動値T
f + 、 Tr 、!の平均1ぬ丁「を算出するとと
もに、ステップSl+で上記体止気筒1△の1〜ルク変
動(直TCI、TC2の平均値1− cをi出する。Next, in step d'3, the crank angle signal from the crank angle sensor 42 and the signal for varying the angular velocity of the crankshaft from the angular velocity sensor 43 are input, and in step S8, the crank angle and angular velocity are input. Based on the fluctuation, the torque fluctuation values Tf + and Tf 2 at the maximum combustion pressure of each operating cylinder 1B (second and third cylinders) are determined.
At the same time, each cylinder on the idle side 1A (
1.43 and 11th air in > cl) at maximum compression pressure r
Step SI is the torque fluctuation value T of the operating cylinder 1 (3).
f+, Tr,! At the same time, in step Sl+, the average value 1-c of the stop cylinder 1△ is calculated.
そして、次のステップS+2r上記両トルク変動整誤差
ΔT内にあるか否かを判別し、31合′A整誤差ΔT内
であるYESの場合にはサージング防止の観点から直ち
に制御を終了する。−万、51容調整誤差ΔTを越える
Noの場合には、さらにステップS 13で上記平均値
FfとTCとの大小を比較判別し、l”f>TcのYE
SのときにはステップS14で大気圧導入弁26を微小
期間聞くよう大気圧導入弁用アクチュエータ28に開弁
信号を出力する一方、Tf≦TcのNOのときにはステ
ップS +sで負圧導入弁27を微小期間開くよう負圧
導入弁用アクチュエータ29に開弁信号を出力して、そ
れぞれステップS7に戻ることを繰返し7、調圧タンク
20のガス圧力を両トルク変動の甲均値王f、Tcの差
1′丁f−”lclが工乍容調整誤差ΔT内に収まるよ
うフィードバック1ill Iffにより調圧する。Then, in the next step S+2r, it is determined whether or not both torque fluctuations are within the above-mentioned torque fluctuation adjustment error ΔT, and if YES, which is within the 31/'A adjustment error ΔT, the control is immediately terminated from the viewpoint of surging prevention. - 10,000, in the case of No exceeding the 51 volume adjustment error ΔT, the magnitude of the above average value Ff and TC is further compared and determined in step S13, and Y of l"f>Tc is determined.
When S, a valve opening signal is output to the atmospheric pressure introduction valve actuator 28 to listen to the atmospheric pressure introduction valve 26 for a minute period in step S14, while when Tf≦Tc (NO), the negative pressure introduction valve 27 is opened minutely in step S+s. A valve opening signal is output to the negative pressure introduction valve actuator 29 to open it for a period of time, and the process returns to step S7 repeatedly7. The pressure is regulated by feedback 1ill If so that 1'f-''lcl is within the manufacturing adjustment error ΔT.
以上のフローにおいて、ステップS7 、 Sa 。In the above flow, steps S7 and Sa.
S +oにより、クランク角センサ42および角速度セ
ンサ43(検出手段46)からの(=8を受けて稼動側
気筒1B<第2および第3気筒)の平均トルク変動(直
Tf、つまり平均煤煙圧力を算出するようにしたの出手
段47を構成している。また、ステップ812〜S +
sにより、上記締出手段47の出力を受け、部分気筒運
転時、調圧タンク20のガス圧力を稼動側気筒1Bと休
止側気筒1へとの平均トルク変動の差ITf−Tc:に
らじて増減制御することにより、休止側気筒1△の圧縮
行程終了時点における休止側気筒’1A全体としての圧
縮圧力(第1気筒と第4気筒との最高圧縮圧力を合算し
た圧力)が稼動側気筒1B(第24′3よび第3気@)
の最高燃焼圧力の平均1f1と′!4(−・く?ヱるよ
うに上記調圧手段30をフィードバック1L制御する制
御手段48を構成している。By S+o, the average torque fluctuation (direct Tf, that is, the average soot pressure) of the working cylinder 1B < 2nd and 3rd cylinders in response to = 8 from the crank angle sensor 42 and angular velocity sensor 43 (detection means 46). It constitutes the output means 47 for calculating.
s receives the output of the shut-off means 47 and changes the gas pressure in the pressure regulating tank 20 during partial cylinder operation to the difference in average torque fluctuation between the operating cylinder 1B and the idle cylinder 1 ITf-Tc: Niraji By increasing and decreasing the compression pressure of the deactivated cylinder 1A at the end of the compression stroke of the deactivated cylinder 1Δ (the sum of the maximum compression pressures of the first and fourth cylinders), 1B (24th'3 and 3rd Qi@)
The average maximum combustion pressure of 1f1 and '! A control means 48 is configured to perform feedback control of the pressure regulating means 30 so as to increase the pressure by 1L.
したがって、上記実施例に43いては、部分−〜商運戦
時には、二コントロールコニ・ソ(〜45(、−よす調
圧手段30が制御されて、調圧タンク20のガス圧力P
sが、クランク色とクランク軸の角速叶斐肋とに基づい
て算出した稼動剛気筒113の゛F均1−ルク変肋値T
[ど休止側気筒1Aの平均1ヘルク変afllllTc
ト(D差i 1−f Tc l ニl1i5U
Ti6[調圧されることにより、各休止側気筒1へ(第
1気筒と第4気筒)の360’lυの圧縮行程終」”時
点における最高圧縮圧力が第15図(a )及び((1
)に示す如く稼動側気筒1B(第2気筒J3゜4、び第
3気筒)の最高燃焼圧力(同IA(b)及び(C)参照
〉の118i 、/ 2の圧力値とな−)−(、これら
各休止+l1lI気筒1Aの@高圧縮圧力を合efft
yた360’1aの仝休の最高圧縮L1−力が同図(0
)に示づ如く稼動側気筒113の最高圧縮圧力に等しく
なるように゛ノイードバック制卯されること1.″なる
。その鯖甲、」−記の如く調圧された調圧タンク20の
ガス圧力が休止側気筒1Aに導入されると、同図(f)
に示′1j如く各サイクルでの稼動開気i1Bと休止開
気1h1△との最高圧力が略一致することになり、トル
ク変動を抑制して低周波の振動の低減化を図ることがで
きる。Therefore, in the above embodiment, in the case of a commercial operation, the pressure regulating means 30 is controlled and the gas pressure P in the pressure regulating tank 20 is controlled.
s is the ゛F uniform 1-luke variable value T of the operating rigid cylinder 113 calculated based on the crank color and the angular velocity brake of the crankshaft.
[Average 1 herk change of cylinder 1A on the idle side afllllTc
(D difference i 1-f Tc l ni1i5U
Ti6 [By pressure regulation, the maximum compression pressure at the end of the 360'lυ compression stroke to each cylinder 1 on the idle side (1st cylinder and 4th cylinder) is shown in Fig. 15 (a) and ((1
), the maximum combustion pressure of the working cylinder 1B (second cylinder J3゜4 and third cylinder) (see IA (b) and (C)) is the pressure value of 118i, /2). (, the effect of each of these pauses + @high compression pressure of l1lI cylinder 1A
The maximum compression L1-force of the rest of 360'1a is the same figure (0
), the noise back is controlled so that it is equal to the maximum compression pressure of the working cylinder 113.1. When the gas pressure in the pressure regulating tank 20, which has been regulated as shown in the figure, is introduced into the cylinder 1A on the idle side, as shown in FIG.
As shown in '1j, the maximum pressures of the operating open air i1B and the rest open air 1h1Δ in each cycle are approximately the same, so that torque fluctuations can be suppressed and low frequency vibrations can be reduced.
その場合、各稼動側気筒1B(第2気筒と第3気筒)の
lil高燃焼圧力の平均値が算出され、この最高燃焼圧
力の平均値に対して休止気筒1A全体としての最高圧縮
圧力が等しくなるようにフィードバック制御されるので
、稼動側気筒1Bでの燃焼のバラツキがエンジン運転状
態の変化やガス漏れ等の経時変化に応じて変化しても、
第5図(「)に示す如く、サイクル間での最高圧力の差
が常に可及的に小さく抑えられて、トルク変動を十分に
抑制することができる。よって、エンジン運転状態の変
化やガス漏れ等の経時変化に対しても撮動増大を防止し
て、振動の低減化を図ることができる。In that case, the average value of the lil high combustion pressure of each active cylinder 1B (second cylinder and third cylinder) is calculated, and the maximum compression pressure of the rest cylinder 1A as a whole is equal to the average value of the maximum combustion pressure. Feedback control is performed to ensure that even if the combustion variation in the active cylinder 1B changes in response to changes in engine operating conditions or changes over time such as gas leaks,
As shown in Figure 5 ( ), the difference in maximum pressure between cycles is always kept as small as possible, and torque fluctuations can be sufficiently suppressed. It is also possible to prevent an increase in imaging due to changes over time such as the above, and to reduce vibration.
また、上記実施例では、調圧タンク20は休止側吸気通
路4aとは別に独立して説けられていて、上述の如く調
圧されたガス圧力が貯えられているので、全気筒運転か
ら部分気筒運転への切換V′i後においても、調圧タン
ク20の調圧されたガス圧力を休止側気筒1△に直ちに
応答性良く導入することができて、休止側気筒1Aと稼
動開気ON 1 Bとの最高圧力を一致さけることがで
き、よって部分気筒運転全域に亘って−F記トルク変動
の抑制へ有効に行うことができる。Further, in the above embodiment, the pressure regulating tank 20 is provided independently from the idle-side intake passage 4a, and the gas pressure regulated as described above is stored, so that the pressure regulating tank 20 can be changed from full cylinder operation to partial cylinder operation. Even after switching to operation V′i, the regulated gas pressure in the pressure regulating tank 20 can be immediately introduced into the idle cylinder 1Δ with good responsiveness, and the idle cylinder 1A and the operating open air ON 1 can be immediately introduced into the idle cylinder 1Δ. It is possible to avoid the same maximum pressure as B, and therefore, it is possible to effectively suppress the -F torque fluctuation over the entire partial cylinder operation.
さらに、部分気筒運転時に休止側気筒1Aに導入される
ガス圧力の調圧は、クランク角とクランク軸の角速度変
動とに基づいてf′!勤測気筒1Bの最高燃焼圧力を把
握し、この把握した最高燃焼圧力に休−正側気筒1A全
体としての最高圧縮圧力が等しくなるようにフィードバ
ック制御されるので、燃焼圧力を決定するエンジン9]
点火時期、空燃比、EGR率などの要因に影響されるこ
とがなく、かつガス洩れや着火性などの杼年変化する要
因に影響されることがなく、最高燃焼圧力に基づく調圧
制御により稼動側気筒1Bと休止側気筒1Aとの最高圧
力の一致制御を精酊良く行うことができ、トルク変動を
より一台抑制できて撮動の低減化を一層図ることができ
る。Furthermore, the pressure adjustment of the gas pressure introduced into the idle cylinder 1A during partial cylinder operation is based on the crank angle and the angular velocity fluctuation of the crankshaft, f'! The engine 9 determines the combustion pressure because the maximum combustion pressure of the working cylinder 1B is determined and feedback control is performed so that the maximum compression pressure of the idle and active cylinders 1A as a whole is equal to the determined maximum combustion pressure.]
It is not affected by factors such as ignition timing, air-fuel ratio, EGR rate, etc., and is not affected by factors that change during the year of the shuttle such as gas leakage or ignitability, and operates by pressure regulation control based on the maximum combustion pressure. The maximum pressures of the side cylinder 1B and the idle side cylinder 1A can be precisely controlled to match each other, and torque fluctuations can be further suppressed, thereby further reducing the number of images taken.
また、上記実施例では、第1気筒と第4気筒との各休止
側気筒1Aの360°亀の最高圧縮圧力を合暉した全体
としての最高圧縮圧力が稼動側気筒1Bの最高燃焼圧力
に等しくなるようにしたので、1つの休出側気筒1Aで
720′毎に賄う場合に比べて調圧タンク20で調圧す
るガス圧力がほぼ1/′2の低い圧力値′C済み、その
結束、エンジンに生成する吸気負圧と大気圧との導入調
整によって調圧でき、エアポンプが不要であるなど、構
造を簡略なものとすることがrぎる。In addition, in the above embodiment, the maximum compression pressure as a whole obtained by combining the maximum compression pressures of the first cylinder and the fourth cylinder in a 360° angle of each deactivated cylinder 1A is equal to the maximum combustion pressure of the active cylinder 1B. As a result, the gas pressure regulated in the pressure regulating tank 20 is approximately 1/2 lower than that in the case where one shut-off side cylinder 1A supplies every 720'C, and the pressure value 'C' is lower than that of the case where the gas pressure is regulated in the pressure regulating tank 20 every 720'C. The pressure can be regulated by introducing and adjusting the intake negative pressure generated at the same time and the atmospheric pressure, and an air pump is not required, so it is difficult to simplify the structure.
(変形例)
本発明は上記の如き実施例のほかに、以下のような変形
例をも包含するものである。(Modifications) In addition to the embodiments described above, the present invention also includes the following modifications.
■ 休止側気筒1Aに33いて調圧のためのガス圧導入
弁22の開弁周+llを′4気筒の場合720°毎に設
定して、休止側気筒1Δ全体としてではなく各々の最高
圧縮圧ノ〕が稼動側気筒1Bの最高燃焼圧力と等しくな
るように見込みajll 111により調圧してもよい
。この場合、調圧タンク20の調圧すべきガス圧力が上
記実施例と比べて約2倍に高くなるので、大気圧導入通
路24の途中にエアポンプを介設して、該人気f■導大
人通路4から大気圧よりも高い圧ノコを調圧タンク20
に導くことにより、調圧の応答性等を高めるようにする
ことが好ましい。■ The valve opening circumference +ll of the gas pressure introduction valve 22 for pressure regulation in the idle cylinder 1A is set every 720 degrees in the case of 4 cylinders, and the maximum compression pressure is determined not for the entire idle cylinder 1Δ but for each maximum compression pressure. The pressure may be regulated using the estimated ajll 111 so that the maximum combustion pressure of the active cylinder 1B is equal to the maximum combustion pressure of the active cylinder 1B. In this case, since the gas pressure to be regulated in the pressure regulating tank 20 is about twice as high as that in the above embodiment, an air pump is interposed in the middle of the atmospheric pressure introduction passage 24 to 4 to a pressure saw higher than atmospheric pressure in the pressure regulating tank 20
It is preferable to improve the responsiveness of pressure regulation by guiding the pressure.
■ 休止開気1ffi1Aにおけるガス圧導入弁22を
不要にしてその吸気弁10で兼用させるようにしてもよ
い。この場合、一端が調圧タンク20に連通ずるガス圧
導入通路の他端を、休止側吸気通路48に連通接続し、
この接続部上流の休止側吸気通路4aに第1切換弁を、
ガス圧導入通路に第2切換弁をそれぞれ設け、全気筒運
転時には第1切換弁を閉作動させるとともに第2切換弁
を閉作動させて、通常どJ5り休止側吸気通路4aから
吸気を供給する一方、部分気筒運転時には第1切換弁を
閉作動させるととしに第2切換弁をItj)作動させで
、調tXタンク20のガス圧力をガス圧導入通路および
休止側吸気通路4aの一部を利用して、休止側気筒1Δ
に導入する。さらに、休止側気筒1Δの吸気弁10を、
そのアクチュエータにより、全気筒運転時には吸気行程
にて開弁作動し、部分気筒運転時には吸気行程後期のみ
にて調圧のために開弁作動するように可変制御するよう
にすればよい。(2) The gas pressure introduction valve 22 in the pause open air 1ffi1A may be omitted and the intake valve 10 may be used for the same purpose. In this case, one end of the gas pressure introduction passage communicates with the pressure regulating tank 20, and the other end of the gas pressure introduction passage communicates with the idle side intake passage 48,
A first switching valve is installed in the idle side intake passage 4a upstream of this connection part,
A second switching valve is provided in each of the gas pressure introduction passages, and when all cylinders are in operation, the first switching valve is closed and the second switching valve is closed, so that intake air is normally supplied from the idle side intake passage 4a. On the other hand, during partial cylinder operation, the first switching valve is operated to close, and the second switching valve is operated (Itj) to control the gas pressure in the regulating tX tank 20 through the gas pressure introduction passage and a part of the idle side intake passage 4a. Using this, the idle side cylinder 1Δ
to be introduced. Furthermore, the intake valve 10 of the idle side cylinder 1Δ,
The actuator may be variably controlled to open the valve during the intake stroke during full cylinder operation, and to open the valve only in the latter half of the intake stroke during partial cylinder operation for pressure regulation.
■ 上記実施例ではクランク角センサ42および角速麿
センサ43を用いて検出手段46を構成したが、その他
、稼動側気筒1Bの燃焼圧力および休止側気筒1Aの圧
縮圧力をそれぞれ直接検出する圧力センサにより検出手
段を構成して、これらから稼動側気筒1Bの最高燃焼圧
力の平均値および休止側気筒1A全体としての最高圧縮
圧力の平均値を降出し、両者が一致するようフィードバ
ック制御により調圧を行うようにしてもよい。■ In the above embodiment, the detection means 46 is configured using the crank angle sensor 42 and the angular velocity sensor 43, but other pressure sensors are also provided that directly detect the combustion pressure of the active cylinder 1B and the compression pressure of the idle cylinder 1A. The detection means is configured to calculate the average value of the maximum combustion pressure of the active cylinder 1B and the average value of the maximum compression pressure of the entire dormant cylinder 1A from these, and adjust the pressure by feedback control so that the two coincide. You may also do so.
■ 上記実施例では、調圧タンク20を休止側吸気通路
4aとは別個に独立して設けたが、上述の従来技術の如
く、該休止側吸気通路4aを、部分気筒運転時に体仕側
気筒1Δに導入するガス圧力を調圧するための調圧室と
して用いるようにしてもよい。(2) In the above embodiment, the pressure regulating tank 20 is provided separately and independently from the inactive side intake passage 4a, but as in the above-mentioned prior art, the inactive side intake passage 4a is connected to the inactive side intake passage 4a during partial cylinder operation. It may also be used as a pressure regulating chamber for regulating the gas pressure introduced at 1Δ.
(5)上記実施例では4気筒Lンジンの場合について述
べたが、その他の多気筒エンジンにムに11様に適用可
能である。また、吸・排気弁の数も上述の2バルブタイ
プの他、4バルブタイプ等、公知の各種タイプのものに
も適用可能であり、吸気系、排気系の構造は特に限定さ
れ<(い。(5) In the above embodiment, the case of a four-cylinder L engine has been described, but the present invention can be applied to other multi-cylinder engines in eleven different ways. In addition, the number of intake and exhaust valves can be applied to various known types such as the 4-valve type in addition to the 2-valve type described above, and the structures of the intake system and exhaust system are not particularly limited.
(発明の効果)
以上説明したように、本発明の気筒数るり御1ニンジン
の振動低減装置によれば、部分気筒運転時、休止側気筒
全体としての圧縮圧力を稼動側気筒の平均燃焼圧力に等
しく制御して、各稼動側気筒相互間の燃焼バラツキに対
してサイクル間石゛の最高圧力の差を可及的に小さく抑
えたので、運転状態の変化やエンジンの経時変化による
各稼動側気筒相互間の燃焼パラツギの変化によってもト
ルク変動を十分に抑制して撮動増大を防止することがで
き、撮動の低減化を図ることができる。(Effects of the Invention) As explained above, according to the vibration reduction device for controlling the number of cylinders of the present invention, during partial cylinder operation, the compression pressure of the entire cylinder on the idle side is adjusted to the average combustion pressure of the cylinder on the active side. By controlling the cylinders equally, the difference in maximum pressure between cycles was kept as small as possible due to combustion variations among the operating cylinders. It is also possible to sufficiently suppress torque fluctuations due to mutual changes in combustion variation, thereby preventing an increase in image pickup, and thereby reducing the amount of image pickup.
図面は本発明の実施例を例示するしので、第1図はその
全体概略構成図、第2図は弁停止機構の平面図、第3図
は第2図のIII−III線断面図、第4図はコントロ
ールユニットの作動を説明するフローヂャート図、第5
図(a )〜(f)はそれぞれ第1〜第4気筒、休止側
気筒全体および金気筒の圧力変化を示す説明図である。
1A・・・休止開気i+5.1B・・・稼動側気筒、4
a・・・休止側吸気通路、4b・・・稼動側吸気通路、
6・・・スロットル弁、10・・・吸気弁、11・・・
排気弁、20・・・調圧タンク、21・・・ガス圧導入
通路、22・・・ガス圧導入弁、27・・・口圧導入弁
、30・・・調圧手段、42・・・クランク角センサ、
43・・・超速■センナ、45・・・コントロールユニ
ット、46・・・検出手段、47・・・算出手段、48
・・・制ゆ0手段。
特許出願人 マツダ株式会社
7二二−
代 理 人 弁理士 前 11 弘 1第3図
第2図
エコ
・ 10
■二
手続補正書く方式)7゜
昭和61年2月24日
1、事件の表示
昭和60年 特 許 願 第225381号2、発明の
名称
気筒教制御エンジンの撮動低減装置
3、補正をする者
事件との関係 特許出願人
住 所 広島県安芸郡府中町新地311i号名
称 (313> マツダ株式会社代表者 山 本
健 −
4、代理人 〒550 ff106 (445) 21
28住 所 大阪市西区靭本町1丁目4番8号 太平
ビル氏 名 弁理士(7793)前 1) 弘
& 補正命令の日付
一−′
昭和61年1月8日(発送日61.1.28)補正の内
容
明細書の第25頁第6行目〜同頁第8行目の[第5図<
a)〜(1)はそれぞれ・・・(中略)・・・を示す説
明図である。]とあるのを、「第5図は気筒の圧力変化
を示す説明図である。jに補正する。
以上The drawings illustrate embodiments of the present invention, so FIG. 1 is a schematic diagram of the overall configuration, FIG. 2 is a plan view of the valve stop mechanism, FIG. 3 is a sectional view taken along the line III--III in FIG. 2, and FIG. Figure 4 is a flow chart explaining the operation of the control unit.
Figures (a) to (f) are explanatory diagrams showing pressure changes in the first to fourth cylinders, the entire cylinder on the idle side, and the gold cylinder, respectively. 1A...Stop open air i+5.1B...Working side cylinder, 4
a... Intake passage on the idle side, 4b... Intake passage on the operating side,
6...Throttle valve, 10...Intake valve, 11...
Exhaust valve, 20... Pressure regulation tank, 21... Gas pressure introduction passage, 22... Gas pressure introduction valve, 27... Mouth pressure introduction valve, 30... Pressure regulation means, 42... crank angle sensor,
43... Super speed Senna, 45... Control unit, 46... Detection means, 47... Calculation means, 48
...No means of control. Patent Applicant Mazda Motor Corporation 722- Agent Patent Attorney Mae Hiroshi 11 1 Figure 3 Figure 2 Eco-10 ■2 Procedures for writing amendments) 7゜February 24, 1985 1, Indication of the case Showa 1960 Patent Application No. 225381 2 Name of the invention Cylinder control engine imaging reduction device 3 Relationship with the case of the person making the amendment Patent applicant address No. 311i Shinchi, Fuchu-cho, Aki-gun, Hiroshima Prefecture
Name (313> Mazda Motor Corporation Representative Ken Yamamoto - 4, Agent 550 ff106 (445) 21
28 Address Taihei Building, 1-4-8 Utsubohonmachi, Nishi-ku, Osaka Name Patent Attorney (7793) 1) Hiroshi & Date of Amendment Order 1-' January 8, 1985 (Date of dispatch 61.1.28) ) of the statement of contents of the amendment, page 25, line 6 to page 8, line [Figure 5<
a) to (1) are explanatory diagrams showing (omitted), respectively. ] is corrected to ``Figure 5 is an explanatory diagram showing the pressure change in the cylinder.
Claims (1)
時作動する稼動側気筒とを備え、部分気筒運転時に休止
側気筒に導入するガス圧力を制御して稼動側気筒の燃焼
圧力に休止側気筒の圧縮圧力を近づけるようにした気筒
数制御エンジンの振動低減装置において、部分気筒運転
時に休止側気筒に導入するガス圧力を調圧する調圧手段
と、各稼動側気筒の最高燃焼圧力ないしこれに関連する
信号を検出する検出手段と、該各検出手段の信号を受け
て稼動側気筒の平均燃焼圧力を算出する算出手段と、該
算出手段の出力を受け、休止側気筒の圧縮行程終了時点
における休止側気筒全体としての圧縮圧力が稼動側気筒
の平均燃焼圧力と等しくなるように上記調圧手段を制御
する制御手段とを備えたことを特徴とする気筒数制御エ
ンジンの振動低減装置。(1) Equipped with a deactivated cylinder that stops operating in the low-load operating range and an active cylinder that is constantly activated, and controls the gas pressure introduced into the deactivated cylinder during partial cylinder operation to adjust the combustion pressure of the active cylinder. A vibration reduction device for an engine that controls the number of cylinders so that the compression pressures of the cylinders on the idle side are brought close to each other, includes a pressure regulating means for regulating the gas pressure introduced into the cylinder on the idle side during partial cylinder operation, and a maximum combustion pressure or the maximum combustion pressure of each cylinder on the active side. a detection means for detecting a signal related to this; a calculation means for calculating the average combustion pressure of the operating cylinder in response to the signals from each of the detection means; and completion of the compression stroke of the idle cylinder upon receiving the output of the calculation means. 1. A vibration reduction device for a cylinder number controlled engine, comprising: control means for controlling the pressure regulating means so that the compression pressure of all cylinders on the idle side at a time becomes equal to the average combustion pressure of the cylinders on the active side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22538185A JPS6285143A (en) | 1985-10-09 | 1985-10-09 | Vibration reducing device for cylinder number control engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22538185A JPS6285143A (en) | 1985-10-09 | 1985-10-09 | Vibration reducing device for cylinder number control engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6285143A true JPS6285143A (en) | 1987-04-18 |
Family
ID=16828461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22538185A Pending JPS6285143A (en) | 1985-10-09 | 1985-10-09 | Vibration reducing device for cylinder number control engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6285143A (en) |
-
1985
- 1985-10-09 JP JP22538185A patent/JPS6285143A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1945932B1 (en) | An exhaust gas recirculation system | |
JPH02119624A (en) | Air intake device of engine with supercharger | |
JPH0324838Y2 (en) | ||
JPS6285143A (en) | Vibration reducing device for cylinder number control engine | |
JP6252006B2 (en) | Engine control device | |
JPS6285142A (en) | Vibration reducing device for cylinder number control engine | |
JPS6287628A (en) | Vibration damping device for cylinder number controlling engine | |
JP2014214638A (en) | Engine device with turbo supercharger | |
JPS6285141A (en) | Vibration reducing device for cylinder number control engine | |
JPH01200019A (en) | Exhaust device for multi-cylinder engine | |
JPS6285144A (en) | Vibration reducing device for cylinder number control engine | |
JP2009052505A (en) | Internal combustion engine | |
JPS58158336A (en) | Cylinder number controllable engine | |
JPS6299642A (en) | Vibration damping device for cylinder number control engine | |
JPH0586951A (en) | Control device for mechanical type supercharger containing engine | |
JPH0324841Y2 (en) | ||
JP2000179322A (en) | Crankcase emission control system for variable valve train engine | |
JPS6270631A (en) | Vibration reducing device for number of operating cylinder control engine | |
JPS6285140A (en) | Vibration reducing device for cylinder number control engine | |
JPS6161918A (en) | Air intake device of internal-combustion engine | |
DE102004009290A1 (en) | Method for control of internal combustion engine with exhaust gas turbocharger and cylinder(s), coupled to suction and exhaust manifolds, respectively, dependent on position of gas suction and exhaust valves | |
JPH01182525A (en) | Valve timing control device for engine | |
JPH0517377B2 (en) | ||
JPH01267315A (en) | Intake device for multicylinder engine | |
JPS58185953A (en) | Multicylinder engine |