JPS6270631A - Vibration reducing device for number of operating cylinder control engine - Google Patents
Vibration reducing device for number of operating cylinder control engineInfo
- Publication number
- JPS6270631A JPS6270631A JP21077785A JP21077785A JPS6270631A JP S6270631 A JPS6270631 A JP S6270631A JP 21077785 A JP21077785 A JP 21077785A JP 21077785 A JP21077785 A JP 21077785A JP S6270631 A JPS6270631 A JP S6270631A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- cylinder
- valve
- gas pressure
- idle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Output Control And Ontrol Of Special Type Engine (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、エンジン低負荷運転域で一部気筒の作動を休
止させて部分気筒運転を行うようにした気筒数制御エン
ジンにおいて、その部分気筒運転時にトルク変動に起因
して発生する]h肋を低減するための振動低減装置の改
良に関するものである。Detailed Description of the Invention (Industrial Application Field) The present invention provides a cylinder number control engine in which operation of some cylinders is stopped in a low engine load operating range to perform partial cylinder operation. The present invention relates to an improvement of a vibration reduction device for reducing vibrations generated due to torque fluctuations during operation.
(従来の技術)
一般に、エンジンを高い負荷状態で運転すると燃料消費
率が向上する傾向がある。このことから、多気筒エンジ
ンにおいて、高負荷運転域では全気筒を作動させる全気
筒運転を行つ′C高出力を確保でる一方、低負荷運転域
では一部気筒の作動を休止させる部分気筒運転を行うこ
とにより、稼動側気筒の負荷を相対的に高めて、全体と
して低負荷運転域での燃費を改善するようにした気筒数
制御エンジンは公知である。(Prior Art) Generally, when an engine is operated under a high load condition, the fuel consumption rate tends to increase. From this, in a multi-cylinder engine, high output can be ensured by performing all-cylinder operation in which all cylinders are operated in high-load operating ranges, while partial-cylinder operation in which some cylinders are deactivated in low-load operating ranges. A cylinder number control engine is known in which the load on the active cylinder is relatively increased by performing the following steps, thereby improving overall fuel efficiency in a low-load operating range.
ところで、このような気筒数制御エンジンにおいて、そ
の部分気筒運転時には、稼動開気1!′7iの燃焼圧力
と休止側気筒の圧縮圧力との間に大きな着が生じてトル
ク変動が生じ、しかもこの差は部分気筒運転の継続に伴
い体重開気局内に閉じ込められたガスがクランクケース
側ヘブローバイしてぞの圧縮圧力が徐々に減少するので
、一層増大してトルク変動が増加する。このことから、
全気筒運転時には問題とならない低周波の1辰動が増大
するという問題がある。By the way, in such a cylinder number controlled engine, during partial cylinder operation, the operating air opening is 1! A large difference occurs between the combustion pressure of the '7i and the compression pressure of the cylinder on the idle side, causing torque fluctuations.Moreover, this difference is caused by the gas trapped in the weight opening station being transferred to the crankcase side as partial cylinder operation continues. As the compression pressure gradually decreases due to heavy blow-by, it increases further and torque fluctuation increases. From this,
There is a problem in that low-frequency single-stroke motion, which is not a problem during all-cylinder operation, increases.
このため、このような撮動を低縁する技術として、従来
、実開昭5E1156134号公報に開示されるように
、部分気筒運転に伴う体lF側気筒のブローバイガスに
相当する分をエンジンのサイクル毎に休止側気筒に補給
するとともに、吸気通路を稼動側気筒と休止側気筒とに
対応して仕切って、休止側気筒の圧縮圧力が稼動側気筒
の燃焼圧力に近づくようにエンジンの負荷状態に応じて
休止側吸気通路内の圧力を稼動側吸気通路内の圧力に対
して一定倍率で調圧することにより、部分気筒運転時の
トルク変動を抑制するようにしたものが1定業されてい
る。For this reason, as a technology that is not related to such imaging, as disclosed in Japanese Utility Model Application No. 5E1156134, the amount of blow-by gas in the 1F side cylinder that accompanies partial cylinder operation is At the same time, the intake passage is divided into active and inactive cylinders so that the compression pressure in the inactive cylinder approaches the combustion pressure in the active cylinder, depending on the engine load condition. Accordingly, there is a system in which torque fluctuations during partial cylinder operation are suppressed by regulating the pressure in the idle side intake passage at a constant ratio to the pressure in the active side intake passage.
(発明が解決しようとする問題点)
しかるに、」−記従来のものでは、部分気筒運転時に吸
気通路を休止側吸気通路と稼動側吸気通路とに仕切って
該休止側吸気通路の圧力を調圧するものであるため、全
気筒運転から部分気筒運転への切換直後には、調圧の応
答性が悪く、休止側気筒の圧縮圧力を稼動側気筒の燃焼
圧力に近づけるのに応答遅れがあり、その際のトルク変
動を十分に抑制できないという問題がある。(Problems to be Solved by the Invention) However, in the conventional system mentioned above, during partial cylinder operation, the intake passage is divided into a rest-side intake passage and an operating-side intake passage, and the pressure in the rest-side intake passage is regulated. Immediately after switching from full-cylinder operation to partial-cylinder operation, the response of pressure regulation is poor, and there is a delay in response in bringing the compression pressure of the idle cylinder closer to the combustion pressure of the active cylinder. There is a problem in that torque fluctuations cannot be sufficiently suppressed.
さらに、稼動側気筒の燃焼圧力はエンジン負荷以外に、
点火時期や空燃比、EGR率等の多くの要因に影響され
て決まるもので、その吸気圧力と燃焼圧力とは比例関係
にはない。このため、休止側の吸気圧力を稼動側の吸気
圧力に対してエンジン負荷に応じて一定倍率で比例調圧
させても、休止側気筒の圧縮圧力を稼動側気筒の燃焼圧
力に精度良く一致ないし近付けることは困難であり、振
動を有効に低減できない。しかも、上記圧縮圧力および
燃焼圧力はガス洩れや着火性等の経年変化する要因に影
響されて変化でるが、これに対処できないという欠点も
ある。In addition to the engine load, the combustion pressure in the active cylinder is
It is determined by many factors such as ignition timing, air-fuel ratio, and EGR rate, and there is no proportional relationship between intake pressure and combustion pressure. For this reason, even if the intake pressure on the idle side is adjusted proportionally to the intake pressure on the active side at a fixed rate according to the engine load, the compression pressure in the idle cylinder will not accurately match the combustion pressure in the active cylinder. It is difficult to get close to it, and vibration cannot be effectively reduced. In addition, the compression pressure and combustion pressure change due to aging factors such as gas leakage and ignitability, and there is also the drawback that it is impossible to deal with this.
本発明はかかる点に鑑みてなされたもので、その目的と
するところは、吸気通路以外に別途に部分気筒運転時に
休止側気筒に導入するガス圧力を貯える調圧タンクを設
けておき、このタンク内のガス圧力を調圧して休止側気
筒の圧縮圧力を稼leJ側気筒の燃焼圧力に近づけるこ
とにより、全気筒運転から部分気筒運転への切換直後も
含む部分気筒運転全域に亘り、経年変化等に影響される
ことな(各サイクルでの稼動側気筒と休止側気筒との圧
力を応答性良くかつ精度良く略一致させて、トルク変動
を一層有効に抑制することにある。The present invention has been made in view of the above, and its object is to provide a pressure regulating tank in addition to the intake passage to store the gas pressure introduced into the cylinder on the idle side during partial cylinder operation. By adjusting the gas pressure in the engine and bringing the compression pressure of the idle cylinder close to the combustion pressure of the active cylinder, the engine will reduce aging, etc. over the entire range of partial cylinder operation, including immediately after switching from full cylinder operation to partial cylinder operation. The objective is to more effectively suppress torque fluctuations by substantially matching the pressures of the operating cylinder and the idle cylinder in each cycle with good responsiveness and accuracy, without being affected by the
(問題点を解決するための手段)
上記の目的を達成するため、本発明の解決手段は、低口
荷運転域で作動を休出する休止側気筒と、常時作動する
稼動側気筒とを備え、部分気筒運転時に休止側気筒に導
入するガス圧力を制御して稼動側気筒の燃焼圧力に休止
側気筒の圧縮圧力を近づけるようにした気量数制御エン
ジンの振動低減装置として、吸気通路とは別に独立して
、部分気筒運転時に休止側気筒に導入でるガス圧力を貯
える調圧タンクを設けるとともに、該調圧タンクのガス
圧力を調圧する調圧手段を設ける。さらに、稼動側気筒
の最高燃焼圧力を把握する把握手段と、該把握手段の出
力を受け、休止側気筒の圧縮行程終了時点における休止
側気筒仝休としてのrFi高圧縮圧力が稼動側気筒の最
高燃焼圧力と等しくなるように上記調圧手段を制御づる
制御手段とを備える構成としたものである。(Means for Solving the Problems) In order to achieve the above object, the solving means of the present invention includes a dormant cylinder that stops operating in a low port operation range and an active cylinder that constantly operates. The intake passage is used as a vibration reduction device for air volume control engines that controls the gas pressure introduced into the idle cylinder during partial cylinder operation to bring the compression pressure of the idle cylinder closer to the combustion pressure of the active cylinder. Separately and independently, a pressure regulating tank is provided for storing the gas pressure introduced into the cylinder on the idle side during partial cylinder operation, and a pressure regulating means is provided for regulating the gas pressure in the pressure regulating tank. Further, a grasping means for grasping the maximum combustion pressure of the operating cylinder, and an output from the grasping means are provided, and the rFi high compression pressure as the idle cylinder at the end of the compression stroke of the idle cylinder is determined to be the maximum combustion pressure of the operating cylinder. The present invention includes a control means for controlling the pressure regulating means so that the pressure becomes equal to the combustion pressure.
(作用)
上記の構成により、本発明では、制御手段により調圧手
段が制御されて、該調圧手段により調圧タンクのガス圧
力は、休止側気筒の圧縮行程終了時点における休止側気
筒全体としての最高圧縮圧力が把握手段で把握した稼動
側気筒の最高燃焼圧力と等しくなるように調圧され、こ
の調圧された調圧タンクのガス圧力が部分気筒運転時に
休止側気筒に導入されて該休止側気筒のガス圧力が制ネ
11されるので、部分気筒運転時、各サイクルで稼動側
気筒の最高燃焼圧力と休止側気筒全体としての最高圧縮
圧力とが略一致して、トルク変動が抑&1されることに
なる。(Function) With the above configuration, in the present invention, the pressure regulating means is controlled by the control means, and the gas pressure in the pressure regulating tank is adjusted by the pressure regulating means as a whole at the end of the compression stroke of the disabled cylinder. The pressure is regulated so that the maximum compression pressure of the cylinder is equal to the maximum combustion pressure of the operating cylinder ascertained by the grasping means, and the regulated gas pressure in the pressure regulating tank is introduced into the idle cylinder during partial cylinder operation. Since the gas pressure of the cylinder on the idle side is controlled 11, during partial cylinder operation, the maximum combustion pressure of the cylinder on the active side and the maximum compression pressure of the entire cylinder on the idle side almost match in each cycle, suppressing torque fluctuations. &1 will be done.
この場合、上記調圧タンクは吸気通路とは別に独立して
設けられていて、上述の如く調圧されたガス圧力が貯え
られているので、全気筒運転から部分気筒運転へのり換
直後においてら、上記調圧タンクの調「されたガス圧力
を休止側気筒に直ちに応答性良く導入することができ、
部分気筒運転全域に亘って上記トルク変動の抑制、低減
を有効に行うことができる。In this case, the pressure regulating tank is provided independently from the intake passage and stores the regulated gas pressure as described above, so that it can be used immediately after switching from full cylinder operation to partial cylinder operation. , the regulated gas pressure in the pressure regulating tank can be immediately introduced into the idle cylinder with good responsiveness,
The torque fluctuation can be effectively suppressed and reduced over the entire partial cylinder operation range.
また、休止側気筒のガス圧力の調圧は、稼φh側気筒の
最高燃焼圧力を把握して、この稼動側気筒のR高燃焼圧
力に休止側気筒全体としてのg1高圧縮圧力が等しくな
るように行われるので、燃焼圧力に影響を与える要因や
ガス洩れ等の経年変化に左右されることがなく、上記調
圧制御つまり稼動側気筒と休止側気筒との最高圧力の一
致化を精麿良く行うことができ、トルク変動のより一層
の抑制を図ることが可能である。In addition, the gas pressure of the idle cylinder is adjusted by determining the maximum combustion pressure of the active φh cylinder so that the g1 high compression pressure of the entire idle cylinder is equal to the R high combustion pressure of the active cylinder. Since it is performed at the same time, it is not affected by factors that affect combustion pressure or aging changes such as gas leaks, and the above pressure regulation control, that is, the matching of the maximum pressure between the operating cylinder and the idle cylinder, can be performed with precision. Therefore, it is possible to further suppress torque fluctuations.
〈第1実施例)
以下、本発明の実施例を図面に基づいて詳細に説明する
。<First Embodiment> Hereinafter, embodiments of the present invention will be described in detail based on the drawings.
第1図は本発明の第1実施例に係る(騒動低減装置を備
えた気筒数制御エンジンの全体概略構成を示し、4リイ
クル4気筒エンジンで点火順序が1→3→4→2の気筒
類に行われるものについて例示づ−る。同図おいて、1
△は低負荷運転域で作動を休止する第1および第4気筒
に相当する休止側気筒、1Bは低負荷および高負荷の全
運転域で常時作動する第2および第3気筒に相当する稼
動側気筒であって、各気筒1△、1Bはピストン2の往
復動により容積可変となる燃焼室3を右しIいる。4は
、上流端がエアクリーナ5を介して大気に開口して金気
1a1△、1Bに吸気を供給づ°るための主吸気通路で
あって、該主吸気通路4の途中には吸入空気量を制御す
るスロットル弁6が配設されており、主吸気通路4の下
流側は上記各気筒1△、1Bに対応して休止側吸気通路
4aと稼動側吸気通路4bとに分岐されていて、それぞ
れ対応する気筒IA、1Bの燃焼室3に連通されている
。また、7aおよび7bはそれぞれ休止側J3」:び稼
動側気筒’IA、1Bの燃焼室3からの排気ガスを排出
するための休止側および稼動側排気通路、8は各吸気通
路4a、4bに配設され燃料を噴射供給する燃料噴射弁
、9は主吸気通路4のスロワ1〜ル弁61流に配設され
吸入空気量を検出するエアフローメータである。FIG. 1 shows the overall schematic configuration of a cylinder number control engine equipped with a noise reduction device according to a first embodiment of the present invention. The following is an example of what is done in 1.
△ indicates the cylinder on the inactive side, which corresponds to the first and fourth cylinders that are inactive in the low-load operating range, and 1B indicates the active-side cylinder, which corresponds to the second and third cylinders, which are constantly operating in the entire operating range of low and high loads. Each of the cylinders 1Δ and 1B defines a combustion chamber 3 whose volume can be varied by the reciprocation of the piston 2. Reference numeral 4 denotes a main intake passage whose upstream end opens to the atmosphere via an air cleaner 5 and supplies intake air to the metal air 1a1Δ, 1B. A throttle valve 6 is disposed to control the main intake passage 4, and the downstream side of the main intake passage 4 is branched into a rest-side intake passage 4a and an active-side intake passage 4b corresponding to each of the cylinders 1Δ and 1B. The combustion chambers 3 of the corresponding cylinders IA and 1B are communicated with each other. In addition, 7a and 7b are the idle side and active side exhaust passages for discharging exhaust gas from the combustion chambers 3 of the idle side cylinders 'IA and 1B, respectively, and 8 is the respective intake passages 4a and 4b. A fuel injection valve 9 is disposed in the flow of the main intake passage 4 from the throttle valves 1 to 61 and is an air flow meter that detects the amount of intake air.
また、10は各吸気通路4a 、4bの燃焼室3への開
口部に配設された吸気弁、11は各排気通路7a、7b
の燃焼室3への開口部に配設された排気弁である。そし
て、上記各吸気弁10および各排気弁11は、図示しな
い動弁機構により所定のタイミングで開閉作動して全気
筒1A、IBが作動する全気筒運転を行う一方、体d二
側気筒1Δの吸気弁10J−3よび排気弁11にはそれ
ぞれ、L記動弁機構の駆動力の台片10,11への伝達
を遮断して台片10.11の開閉作動を停止させ台片1
0,11を閉弁状態に維持づる吸気弁停止用アクチュエ
ータ12および排気弁停止用アクチユエータ13が連係
されていて、該各アクヂュエータ12.13の作動によ
り休止側気筒1△の作動を休止させて、稼動側気筒1B
のみが作動する部分気筒運転を1テうように構成されて
いる。Further, 10 is an intake valve disposed at the opening of each intake passage 4a, 4b to the combustion chamber 3, and 11 is each exhaust passage 7a, 7b.
This is an exhaust valve disposed at the opening to the combustion chamber 3. Each of the intake valves 10 and each exhaust valve 11 is opened and closed at predetermined timing by a valve mechanism (not shown) to perform an all-cylinder operation in which all cylinders 1A and IB are activated. For the intake valve 10J-3 and the exhaust valve 11, the transmission of the driving force of the L operating valve mechanism to the base pieces 10, 11 is cut off to stop the opening and closing operations of the base pieces 10 and 11, respectively.
An intake valve stop actuator 12 and an exhaust valve stop actuator 13 that maintain the valves 0 and 11 in a closed state are linked, and the operation of each actuator 12 and 13 stops the operation of the stop cylinder 1△, Working side cylinder 1B
It is configured to perform partial cylinder operation in which only the cylinders are activated.
ここで、上記吸気弁停止用および排気弁停止用アクチュ
エータ12.13の具体的構造の一例について第2図お
よび第3図により詳述するに、両アクチュエータ12.
13は共に同じ構成の弁停止)4横に組込まれており、
第2図および第3図には吸気フt 10用の弁停止機構
50を示づ。すなわら、吸気弁10に対応してカム51
を有するカムシャフト52に並行にロッカーシャフト5
3が配設され、該ロッカーシャツiへ53にロッカーア
ーム54が支承されていて、該ロッカーアーム54は、
上記カム51に当接するカム側アーム55と、吸気弁1
0に当接するバルブ側アーム56とに分割されている。Here, an example of a specific structure of the intake valve stop actuator and exhaust valve stop actuator 12.13 will be described in detail with reference to FIGS. 2 and 3.
13 is a valve stop with the same configuration) 4 is incorporated on the side,
A valve stop mechanism 50 for the intake valve 10 is shown in FIGS. 2 and 3. As shown in FIGS. That is, the cam 51 corresponds to the intake valve 10.
A rocker shaft 5 parallel to the camshaft 52 having a
3 is disposed, and a rocker arm 54 is supported at 53 to the rocker shirt i, and the rocker arm 54 is
The cam-side arm 55 that comes into contact with the cam 51 and the intake valve 1
0, and a valve side arm 56 that abuts on the valve side arm 56.
この両アーム55.56は、ロッカーシャフト53回り
に相対運動可能に支承されているとと6に、プランジヤ
57およびレバ一部材58rjで構成されIこセレクタ
59により接続状態と非接続状態とに切換可能に構成さ
れており、該セレクタ59にはセレクタ59を切換作動
させるアクチュエータ12が連結されている。しかして
、アクチュエータ12の非作動時には、セレクタ5つに
よりカム側アーム55とバルブ側アーム56とが接続状
態となり、カム51の回転に伴うカム側アーム55の揺
動がバルブ側アーム5Gに伝達されて吸気弁10が開閉
作動づ゛る一方、アクチュエータ12の作動時には、セ
レクタ59により両アームが非接続状態となり、カム5
1の回転に伴うカム側アーム55の揺動がバルブ側アー
ム56に伝達されず、吸気弁10のItil閉作動が停
止されて吸気弁10がバルブスプリング60により閉か
状態に保持されるようになっている。尚、排気弁11用
の弁停止機構も同様の構成である。Both arms 55 and 56 are supported for relative movement around the rocker shaft 53, and are composed of a plunger 57 and a lever member 58rj, and are switched between a connected state and a non-connected state by a selector 59. The selector 59 is connected to an actuator 12 that switches the selector 59. Therefore, when the actuator 12 is inactive, the five selectors connect the cam-side arm 55 and the valve-side arm 56, and the swinging of the cam-side arm 55 due to the rotation of the cam 51 is transmitted to the valve-side arm 5G. While the intake valve 10 continues to open and close, when the actuator 12 is operated, both arms are disconnected by the selector 59, and the cam 5
The swing of the cam side arm 55 caused by the rotation of the valve 1 is not transmitted to the valve side arm 56, the closing operation of the intake valve 10 is stopped, and the intake valve 10 is held in the closed state by the valve spring 60. It has become. Note that the valve stop mechanism for the exhaust valve 11 has a similar configuration.
このような気筒数制御エンジンにおいて、20は部分気
筒運転時に休止側気筒1Aに導入するガス圧力を貯える
調圧タンクであって、該調圧タンク20は、休止側吸気
通路4aとは別に独立して設けられていて、ガス圧導入
通路21を介して休止側気筒1Aの燃焼室3に連通され
ている。該ガス圧導入通路21の燃焼室3への開口部に
はガス圧導入通路21を開閉するガス圧導入弁22が配
設されており、該ガス圧導入弁22には、部分気筒運転
時にガス圧導入弁22を吸気行程後期に開弁させるガス
圧導入弁用アクチュエータ23が連結されていて、部分
気筒運転時、ガス圧導入弁用アクチュエータ23の作動
によるガス圧導入弁22の開弁により調圧タンク2Q内
のガス圧力を休止側気筒1Aの燃焼室3に導入するよう
に構成されている。ここで、上記ガス圧導入弁22の間
弁周明は、4ナイクル4気筒エンジンで点火順序が1→
3→4→2の気筒類の場合、第1および第4気筒の各休
止側気筒1Aのガス圧導入弁22を360’毎に開弁す
るように設定されていて、177ホの如く各休止側気筒
1AのiN大圧縮圧力を合停したトータルとしての最高
圧縮圧力が8稼りJ開気筒1Bの最高燃焼圧力に等しく
なるようにしている。In such a cylinder number control engine, reference numeral 20 denotes a pressure regulating tank that stores the gas pressure introduced into the idle cylinder 1A during partial cylinder operation, and the pressure regulating tank 20 is independent from the idle side intake passage 4a. The combustion chamber 3 is connected to the combustion chamber 3 of the idle cylinder 1A via a gas pressure introduction passage 21. A gas pressure introduction valve 22 that opens and closes the gas pressure introduction passage 21 is disposed at the opening of the gas pressure introduction passage 21 to the combustion chamber 3. A gas pressure introduction valve actuator 23 that opens the pressure introduction valve 22 in the latter half of the intake stroke is connected to the gas pressure introduction valve actuator 23. During partial cylinder operation, the gas pressure introduction valve actuator 23 is operated to open the gas pressure introduction valve 22 to adjust the pressure. It is configured to introduce the gas pressure in the pressure tank 2Q into the combustion chamber 3 of the idle cylinder 1A. Here, between the gas pressure introduction valves 22 and 22, the ignition order is 1→
In the case of cylinders 3 → 4 → 2, the gas pressure introduction valve 22 of each idle cylinder 1A of the 1st and 4th cylinders is set to open every 360', and at each idle as shown in 177E. The total maximum compression pressure obtained by adding and stopping the iN large compression pressure of the side cylinder 1A is made equal to the maximum combustion pressure of the 8-stroke open cylinder 1B.
また、24は、一端が主吸気通路4のスロットル弁6上
流に開口し他端が調圧タンク20に開口して調圧タンク
20に大気圧を導入する大気圧導入通路、25は、一端
が主吸気通路4のスロットル弁6五流に開口し他端が調
圧タンク20km開口して調圧タンク2oに吸気負圧を
導入する0圧導入通路であって、上記大気圧導入通路2
4の調圧タンク20への11■口部には大気圧導入通路
24を開閉する大気圧導入弁26が配設されているとと
しに、上記負圧導入通路25の調圧タンク2oへの開口
部には負圧導入通路25を開閉するQ圧導入弁27が配
設されている。さらに、両導入弁26.27にはそれぞ
れ各39人弁26.27を開閉作動させるアクチェ1−
夕28.29が連結されていて、該各アクヂュエータ2
8.29の作動により各導入弁26.27を開閉させて
、調圧タンク20への大気圧又は負圧の導入をHg y
g L、調圧タンク20のガス圧力を調圧するようにし
た調圧手段30を構成している。Reference numeral 24 denotes an atmospheric pressure introduction passage whose one end opens upstream of the throttle valve 6 of the main intake passage 4 and whose other end opens into the pressure regulating tank 20 to introduce atmospheric pressure into the pressure regulating tank 20; The main intake passage 4 is a 0-pressure introduction passage that opens to the fifth flow of the throttle valve 6 and the other end opens to the pressure regulation tank 20km to introduce negative intake pressure into the pressure regulation tank 2o, and the atmospheric pressure introduction passage 2
Assuming that an atmospheric pressure introduction valve 26 for opening and closing the atmospheric pressure introduction passage 24 is disposed at the opening 11 to the pressure regulation tank 20 of No. 4, the negative pressure introduction passage 25 to the pressure regulation tank 2o is disposed at the A Q pressure introduction valve 27 that opens and closes the negative pressure introduction passage 25 is disposed at the opening. Furthermore, actuators 1-1 to 39-man valves 26 and 27 for opening and closing the 39-person valves 26 and 27 are respectively attached to both inlet valves 26 and 27.
28.29 are connected, and each actuator 2
8.29 opens and closes each introduction valve 26.27 to introduce atmospheric pressure or negative pressure into the pressure regulating tank 20.
gL constitutes a pressure regulating means 30 that regulates the gas pressure in the pressure regulating tank 20.
一方、40はイグニッションコイル14がらの点火回数
によりエンジン回転数NEを検出する回転数センサ、4
1は稼動側吸気通路4bに配設されて稼動側気筒1Bの
吸気圧力PAを検出する吸気圧センサであって、この両
ゼン1ノ40.41により、エンジン回転数Nεと稼動
側気筒1Bの吸気圧力PAとに基づいて稼動側気筒1B
の最高燃焼圧力を把握する把握手段を構成している。ま
た、42は調圧タンク20のガス圧力Paを検出するガ
ス圧センサである。そして、これら各セン瞥す40〜4
2の出力は、上記吸気弁停止用、排気弁停止用、ガス圧
導入弁用、大気圧導入弁用および負圧導入弁用の各アク
チュエータ12.13,23゜26.27を作動制御す
る制御手段としてのCPU等よりなるコントロールユニ
ット45に入力可能になっている。On the other hand, 40 is a rotational speed sensor that detects the engine rotational speed NE based on the number of ignitions of the ignition coil 14;
Reference numeral 1 denotes an intake pressure sensor which is disposed in the working side intake passage 4b and detects the intake pressure PA of the working cylinder 1B. Based on the intake pressure PA, the operating cylinder 1B
It constitutes a grasping means for grasping the maximum combustion pressure of. Further, 42 is a gas pressure sensor that detects the gas pressure Pa of the pressure regulating tank 20. And each of these 40 to 4
The output No. 2 is a control for controlling the operation of each actuator 12.13, 23° 26.27 for the intake valve stop, exhaust valve stop, gas pressure introduction valve, atmospheric pressure introduction valve, and negative pressure introduction valve. The information can be input to a control unit 45 including a CPU or the like.
次に、上記コン1〜ロールユニツト45の作動を第4図
のフローチャートにより説明するに、スタートして、先
ずステップS1において回転数センサ40からのエンジ
ン回転fiNεおよび吸気圧センサ41からの稼動側気
筒1Bの吸気圧力PAの信号を入力するととしに、部分
気筒運転中のフラグiの信号およびエンジン冷却水温T
w(エンジン温度)の信号などを入力したのち、ステッ
プS2でこれらの信号から部分気筒運転時11が成立し
ているか否かを判別する。この111別がNoであると
きには、ステップS3で全気筒運転中であるか否かを判
別し、全気筒運転中でないNoのときには部分気筒運転
から全気筒運転への切換時であると判断して、ステップ
S4で休止側気筒1Aの吸気弁10および排気弁11を
rjF1閉作動させるよう吸気弁停止用および排気弁停
止用アクチュエータ12.13に復帰信号を出力すると
と5に、ガス圧導入弁22を閉弁状態に維持するようガ
ス圧導入弁用アクチュエータ23に停止信号を出力して
終了する。一方、全気筒運転中であるYESの場合には
そのまま終了する。Next, the operations of the controller 1 to the roll unit 45 will be explained with reference to the flowchart of FIG. When inputting the signal of intake pressure PA of 1B, the signal of flag i during partial cylinder operation and the engine cooling water temperature T
After inputting signals such as w (engine temperature), it is determined from these signals whether or not 11 is established during partial cylinder operation in step S2. When the answer to 111 is No, it is determined in step S3 whether or not all-cylinder operation is in progress, and when it is not in all-cylinder operation, it is determined that it is time to switch from partial-cylinder operation to all-cylinder operation. In step S4, a return signal is output to the intake valve stop and exhaust valve stop actuators 12.13 to close the intake valve 10 and exhaust valve 11 of the idle cylinder 1A to rjF1. A stop signal is output to the gas pressure introduction valve actuator 23 to maintain the valve in the closed state, and the process ends. On the other hand, in the case of YES, which means that all cylinders are in operation, the process ends immediately.
これに対し、上記ステップS2の判別が部分気筒運転条
件の成立しているYESの場合には、次のステップS5
で部分気筒運転中か否かを判別し、部分気筒運転中でな
いNoのとぎには全気筒運転から部分気筒運転への切換
時であると判断して、ステップS6で休止側気筒1Aの
吸気弁10および排気弁11の開閉作動を停止させるよ
う吸気弁停止用および排気弁停止用アクチュエータ12
゜13に停止[信号を出力するととしに、ガス圧導入ブ
f22を一定周明毎(4気筒の場合360°tσ)に開
弁作動させるようガス圧導入弁用ツノクチユニーク23
に作動信号を出力したのら、上記ステップ$5の判別が
部分気筒運転中であるYESの場合と共に次のステップ
S1に進む。On the other hand, if the determination in step S2 is YES, indicating that the partial cylinder operating condition is satisfied, the next step S5 is performed.
It is determined whether partial cylinder operation is in progress or not, and if No is not in partial cylinder operation, it is determined that it is time to switch from all cylinder operation to partial cylinder operation, and in step S6 the intake valve of cylinder 1A on the idle side is closed. 10 and an exhaust valve stop actuator 12 to stop the opening/closing operation of the exhaust valve 11.
゜13 [When outputting a signal, the gas pressure introduction valve unique 23 is set to open the gas pressure introduction valve f22 at regular intervals (360°tσ in the case of 4 cylinders).
After outputting the activation signal, if the determination in step $5 is YES indicating that partial cylinder operation is in progress, the process proceeds to the next step S1.
次いで、ステップ$7にJ3いて、調圧タンク20の調
圧すべき目標ガス圧力1!口Pooを計口づる。Next, in step J3, the target gas pressure to be regulated in the pressure regulating tank 20 is 1! The mouth Poo is calculated.
この目標ガス圧力値Psoは、稼動側気筒1Bの吸気圧
力PAとエンジン回転数NEとに基づいて休止側気筒1
Aの圧縮行程終了時点における休止側気筒1A全体とし
ての最高圧縮圧力(第1気筒と第4気筒との最高圧縮圧
力を合ε、7した圧力〉が各稼動側気筒1B(第2又は
第3気筒)の最高燃焼圧力と等しくなるようにPso−
f (PA、N臼)より篩用されるものひ、1つの体
lヒ側気筒でi高圧縮圧力を賄うものに比べて1/2の
低い目標値で済み、このことから、エアポンプ等が不要
で、大気圧と吸気負圧との導入の調整によって十分に目
標ガス圧力値Peoを賄い得る利点がある。This target gas pressure value Pso is determined based on the intake pressure PA of the operating cylinder 1B and the engine speed NE.
The maximum compression pressure of the rest cylinder 1A as a whole at the end of the compression stroke of A (the pressure obtained by adding the maximum compression pressures of the first cylinder and the fourth cylinder ε, 7) is the maximum compression pressure of each active cylinder 1B (second or third cylinder). Pso- so that it is equal to the maximum combustion pressure of the cylinder)
f (PA, N mortar), the target value is 1/2 lower than that of the one that covers the high compression pressure with one cylinder on the side of the body, and from this, the air pump etc. This is not necessary, and there is an advantage that the target gas pressure value Peo can be sufficiently covered by adjusting the introduction of atmospheric pressure and intake negative pressure.
そして、上記で篩出した目標ガス圧力値PBOに基づい
て調圧タンク20のガス圧力P8が目標(直Psoにな
るように以下フィードバック制御される。すなわち、ス
テップS8でガス圧センサ42からの調圧タンク20の
ガス圧力PBの信号を入力したのち・ステップSって目
標ガス圧力(直Psoと実際のガス圧力Paとの差1P
eo−Ps1が許容調整誤差Δρ内にあるか否かを判別
する。Then, based on the target gas pressure value PBO screened above, the gas pressure P8 of the pressure regulating tank 20 is feedback-controlled so as to reach the target (directly Pso). That is, in step S8, the gas pressure P8 of the pressure regulating tank 20 is controlled by feedback from the gas pressure sensor 42. After inputting the signal of the gas pressure PB of the pressure tank 20, Step S is to calculate the target gas pressure (the difference between the direct Pso and the actual gas pressure Pa by 1P).
It is determined whether eo-Ps1 is within the allowable adjustment error Δρ.
この判別がIPθo−Po1≦ΔPのYESのときには
、許容調整誤差Δρ内の微小停であり、かつサージング
の発生を防止する見地から直らに制御を終了する。一方
、上記判別がl PB o −PBl〉ΔPのNoの場
合には、さらにステップS I。When this determination is YES, IPθo-Po1≦ΔP, it is a slight stop within the allowable adjustment error Δρ, and the control is immediately terminated from the viewpoint of preventing the occurrence of surging. On the other hand, if the above determination is No for l PB o −PBl>ΔP, step SI is further performed.
で目標1ItIP8oと実測ガス圧力Paとの大小を比
較判別し、Ps o >PBのYESのときにはステッ
プSoで大気圧導入弁26を微小期間開くよう大気圧導
入弁用アクチュエータ28に開弁信号を出力する一方、
Pea≦P8のNoのときにはステップS 12で負圧
導入弁27を微小期間開くよう負圧導入弁用アクチュエ
ータ2つに開弁信号を出力して、それぞれステップ$8
にλることを繰返し、調圧タンク20のガス圧力Pal
の目標値PBOとの差が許′15調整誤差Δρ内に収ま
るようにする。Compare and determine the magnitude of the target 1ItIP8o and the measured gas pressure Pa, and if Ps o > PB (YES), output a valve opening signal to the atmospheric pressure introduction valve actuator 28 to open the atmospheric pressure introduction valve 26 for a minute period in step So. On the other hand,
When Pea≦P8 (No), in step S12, a valve opening signal is output to the two negative pressure introduction valve actuators to open the negative pressure introduction valve 27 for a minute period, and each step $8
λ is repeated, and the gas pressure Pal in the pressure regulating tank 20 is
The difference between the target value PBO and the target value PBO is made to fall within the allowable adjustment error Δρ.
以上のフローにおいて、ステップ82.85〜S 12
により、部分気筒運転時、調圧タンク20のガス圧力P
aを目標値Poaになるように調圧制御することにより
、休止側気筒1Δの圧縮行程時点におりる休止側気筒1
△全体(第1気筒と第4気筒)としての最高圧縮圧力が
稼動側気筒1Bの最高燃焼圧力と等しくなるように上記
調圧1段30を見込み制御する制御手段46を構成して
いる。In the above flow, steps 82.85 to S12
Therefore, during partial cylinder operation, the gas pressure P in the pressure regulating tank 20
By controlling the pressure so that a becomes the target value Poa, the deactivated cylinder 1 which enters the compression stroke of the deactivated cylinder 1Δ
ΔA control means 46 is configured to prospectively control the first stage of pressure regulation 30 so that the maximum compression pressure as a whole (first cylinder and fourth cylinder) becomes equal to the maximum combustion pressure of the operating cylinder 1B.
したがって、上記第1実施例においては、部分気筒運転
時には、制御手段46により調圧手段30が制御されて
、調圧タンク20のガス圧力P[Iが、エンジン回転数
NEと稼動側気筒1Bの吸気圧力PAとに基づいて稼動
111!I気筒1Bの最高燃焼圧力を把握すべくn出さ
れた目標値Peoになるように調圧される。このことに
より、各体IL側気筒1△(第1気筒と第4気筒)の3
60°亀の圧縮行程終了時点にj7ける最高圧縮圧力が
第5図(a )及び(d )に示す如く稼動側気筒1B
(第2気筒および第3気筒)の最高燃焼圧力(同図(1
))及び(c)参照)の略1/2の圧力i+0となって
、これら各休止側気筒1Aの最高圧縮圧力を合算した3
60″毎の全体の最高圧縮圧力が同図(e)に示す如く
稼動側気筒1Bの最高燃焼圧力に等しくなるように児込
み制御されることになる。Therefore, in the first embodiment, during partial cylinder operation, the pressure regulating means 30 is controlled by the control means 46, so that the gas pressure P[I in the pressure regulating tank 20 is determined by the difference between the engine speed NE and the operating cylinder 1B. Operation 111 based on intake pressure PA! The pressure is regulated to a target value Peo determined to determine the maximum combustion pressure of the I cylinder 1B. As a result, 3 of the IL side cylinders 1△ (1st cylinder and 4th cylinder) of each body
The maximum compression pressure at j7 at the end of the 60° compression stroke is as shown in Figure 5 (a) and (d).
(2nd and 3rd cylinders) maximum combustion pressure (see figure (1)
)) and (c)), which is approximately 1/2 of the pressure i+0, and the maximum compression pressure of each of the cylinders 1A on the idle side is added up to 3.
Child control is performed so that the overall maximum compression pressure for every 60'' becomes equal to the maximum combustion pressure of the active cylinder 1B, as shown in FIG. 2(e).
その結束、上記の如く調圧された調圧タンク20のガス
圧力が休止側気筒1△に導入されると、同図<1>に示
す如く各サイクルでの稼1.IJ側気筒1Bと休止側気
筒1Aとの最高圧力が略一致することになり、トルク変
動を抑制して低周波の振動の低減化を図ることができる
。When the gas pressure in the pressure regulating tank 20 whose pressure has been regulated as described above is introduced into the cylinder 1Δ on the idle side, the operation 1. The maximum pressures of the IJ side cylinder 1B and the idle side cylinder 1A are approximately the same, and torque fluctuations can be suppressed and low frequency vibrations can be reduced.
その場合、上記調圧タンク20は休止側吸気通路4aと
は別に独立して設けられていて、上述の如く調圧された
ガス圧力P日が貯えられているので、全気筒運転から部
分気筒運転への切換直後においても、調圧タンク2oの
調圧されたガス圧力PBを体1ト側気筒1Aに直ちに応
答竹皮く導入りることができて、休止側気筒1Aと稼動
開気vJ1Bとの最高圧力を一致させることができ、よ
って部分気筒運転全域に亘って一ヒ記トルク変動の抑1
1すをイi効に行うことができる。In that case, the pressure regulating tank 20 is provided independently from the idle-side intake passage 4a and stores the regulated gas pressure P days as described above, so that the pressure regulating tank 20 can be changed from full-cylinder operation to partial-cylinder operation. Immediately after switching to , the regulated gas pressure PB of the pressure regulating tank 2o can be immediately introduced into the cylinder 1A on the side of the body, and the cylinder 1A on the idle side and the open air vJ1B can be It is possible to match the maximum pressure of
1 can be done effectively.
さらに、部分気筒運転時に休止側気筒1△に導入される
ガス圧力Psの調圧は、エンジン回転数NEと稼動側気
筒1Bの吸気圧力P^とに基づいて稼動側気筒1Bの最
高燃焼圧力を把握し、この把握した最高燃焼圧力に休止
側気筒1A全体としての最高圧縮圧力が等しくなるよう
に行われるので、燃焼圧力を決定するエンジンロ荷、点
火時期、空燃比、EGR率などの要因に影冑されること
がなく、かつガス洩れや着火性などの経年変化する要因
に影響されることがなく、最高燃焼圧力に繕づく調圧制
御により稼動側気筒1Bと休止側気筒1Aとの最高圧力
の一致制御を精度良く行うことができ、トルク変動をよ
り一層抑制できて振動の低減化を一層図ることができる
。Furthermore, the pressure regulation of the gas pressure Ps introduced into the idle cylinder 1△ during partial cylinder operation is based on the engine speed NE and the intake pressure P^ of the active cylinder 1B. This is done so that the maximum compression pressure of the entire idle cylinder 1A is equal to the maximum combustion pressure determined, so the combustion pressure is determined by factors such as engine load, ignition timing, air-fuel ratio, and EGR rate. The maximum combustion pressure between the active cylinder 1B and the idle cylinder 1A is maintained by pressure regulation control that maintains the maximum combustion pressure. Pressure consistency control can be performed with high precision, torque fluctuations can be further suppressed, and vibrations can be further reduced.
また、上記実施例では、第1気筒と第4気筒との各休止
側気筒1Aの360′毎の最高圧縮圧力を金儲した全体
としての1il高圧縮圧力が稼動側気筒1Bの最高燃焼
圧力に等しくなるようにしたので、1つの休止側気筒1
Aで720°fUに賄う場合に比べて調圧タンク20で
調圧するガス圧J)がほぼ1/2の低い圧力値で済み、
その結果、エンジンに生成でる吸気(1圧と大気圧との
導入調整によって調圧でき、エアポンプが不要であるな
ど、@造を簡略なものとすることができる。In addition, in the above embodiment, the overall high compression pressure of 1il obtained by making money from the maximum compression pressure of every 360' of each of the idle side cylinders 1A of the first cylinder and the fourth cylinder becomes the maximum combustion pressure of the active side cylinder 1B. Since they are made to be equal, one cylinder on the idle side
Compared to the case where A provides 720°fU, the gas pressure J) regulated in the pressure regulating tank 20 can be reduced to approximately 1/2,
As a result, the pressure of the intake air generated in the engine can be regulated by adjusting the intake pressure (1 pressure) and the atmospheric pressure, and an air pump is not required, making it possible to simplify the construction.
〈第2実/M例)
第6図は本発明の第2実施例を示し、上記第1実施例に
おける休止側気筒1Δのガス圧今入弁22(つまり、調
圧タンク20からのガス圧力を燃焼室3に導入するガス
圧導入通路21の燃焼室3への開口部に設けられて、こ
のガス圧力の導入を制御する弁)を不要にし、また、そ
の分、スペース上右利となるので、各気筒に吸気弁10
および排気弁11を2つずつ設けた4バルブタイプに変
更したものである。尚、上記第1実施例と同一の部分に
ついては同一の符号を付してその、31明を省略する。(Second Actual/M Example) FIG. 6 shows a second embodiment of the present invention. This eliminates the need for a valve (which is provided at the opening of the gas pressure introduction passage 21 to the combustion chamber 3 to control the introduction of this gas pressure), and also saves space accordingly. Therefore, each cylinder has 10 intake valves.
The exhaust valve 11 is changed to a four-valve type in which two exhaust valves 11 are provided each. Incidentally, the same parts as in the first embodiment are given the same reference numerals, and the number 31 is omitted.
このため、本例では、一端が調圧タンク20に連通ずる
ガス圧導入通路21′の他端を、休止側吸気通路4aに
連通接続し、この接続部上流の休止側吸気通路4aに第
1切換弁31を、ガス圧導入通路21′に第2切換弁3
2を設け、全気筒運転時には第1切換弁31を閉作動さ
せるとともに第2切換弁32を閉作動させて、通常どお
り休止側吸気通路4aから吸気を供給する一方、部分気
筒運転時には第1切換弁31を閉作動させるとともに第
2切換弁32を閉作動させて、調圧タンク20のガス圧
力をガス圧導入通路21′および休止側吸気通路4aの
一部を利用して、休止側気筒1Aに導入するようにして
いる。Therefore, in this example, one end of the gas pressure introduction passage 21' communicates with the pressure regulating tank 20, and the other end is connected to the idle side intake passage 4a, and a first The switching valve 31 is connected to the second switching valve 3 in the gas pressure introduction passage 21'.
2 is provided, and during full cylinder operation, the first switching valve 31 is closed and the second switching valve 32 is closed to supply intake air from the idle side intake passage 4a as usual, while during partial cylinder operation, the first switching valve 31 is closed and the second switching valve 32 is closed. The valve 31 is closed and the second switching valve 32 is closed, so that the gas pressure in the pressure regulating tank 20 is transferred to the idle cylinder 1A using the gas pressure introduction passage 21' and a part of the idle intake passage 4a. We are planning to introduce it to
さらに、休止側気筒1△の吸気弁10はそのアクチュエ
ータ12′により、全気筒運転時には吸気行程にて量弁
作動し、部分気筒運転時には吸気行程後期のみにて調圧
のために量弁作動するように可変制御される。尚、休止
側気筒1Aの排気弁11は上記第1実施例と同様に、全
気筒運転時には所定のタイミングで開閉作動する一方、
部分気筒運転時には開閉を停止して閉弁状態に保持ける
よう制御され、そのために上記第1実施例で述べた弁停
止I:機構50(第2図および第3図)と同様のもので
、2つの排気弁11.11に対応するように変更したも
のが採用される。Further, the actuator 12' of the intake valve 10 of the idle cylinder 1Δ operates the quantity valve during the intake stroke during full cylinder operation, and operates the quantity valve for pressure regulation only in the latter half of the intake stroke during partial cylinder operation. It is variably controlled as follows. Note that, similarly to the first embodiment, the exhaust valve 11 of the idle cylinder 1A opens and closes at predetermined timing when all cylinders are in operation;
During partial cylinder operation, the valve is controlled to stop opening and closing and maintain the valve in a closed state, and for this purpose, the valve stop I mechanism 50 (FIGS. 2 and 3) described in the first embodiment is similar to the valve stop I mechanism 50 (FIGS. 2 and 3). A modification is adopted to accommodate two exhaust valves 11.11.
ここで、上記休止側気筒1Δの吸気弁10用のアクチュ
エータ12′が組込まれるバルブタイミング可変機構の
一例を第7図および第8図に示す。Here, an example of a variable valve timing mechanism in which the actuator 12' for the intake valve 10 of the idle cylinder 1Δ is incorporated is shown in FIGS. 7 and 8.
尚、図例のものでは、部分気筒運転時、吸気弁10の調
圧のl;めの開弁を720’fυの周期で行うものを示
している。このバルブタイミング可変機構70は、カム
シセフト71に、休止側気筒1△の吸気弁10.10に
対して形状の異なる2梗のカム72.73を設け、これ
らのカム72.73と吸気弁10.10との間に1コツ
カーシヤフト80に支承されたロッカーアーム74を配
置するとと乙に、これらのカム72.73に対し選択的
に上記吸気弁10.10を連係して、その連係を運転状
態(全気筒運転と部分気筒運転)に応じて切換える切換
機構を設けたものである。そして、上記2種のカム72
.73は、両サイドの稼動時用カム72.72が同一形
状て゛、中央の休止時用カム73が両サイドの稼動時用
カム72.72と異なる形状となったカムで構成されて
いる一方、上記ロッカーアーム74は、上記両サイドの
稼動時用カム72.72に対する当接部を一体に備えた
第1アーム75と、上記中央の休止時用カム73および
吸気弁10.10に対する当接部を備えた第2アーム7
6とに分割されて構成されていて、この両アーム75.
76は1]ツカ−シャフト80回りに相対運動可能に支
承されている。さ゛らに、上記wS1アーム75の幅方
向中央部には、上記第1アーム75と第2アーム76と
の相り・j運動を阻止する接続状態と両アーム75.7
6の相対運動を許容する非接続状態とに切換える。プラ
ンジせ77およびレバ一部材78rfにより構成された
セレクタ79が設けられ、該セレクタ79にはそれを切
換作動させるアクチュエータ12′が連結されている。In the illustrated example, the intake valve 10 is opened at a cycle of 720'fυ during pressure regulation during partial cylinder operation. In this variable valve timing mechanism 70, a camshaft 71 is provided with two cams 72.73 having different shapes from the intake valve 10.10 of the cylinder 1Δ on the idle side, and these cams 72.73 and the intake valve 10. When the rocker arm 74 supported on the car shaft 80 is disposed between the cams 72 and 10, the intake valves 10 and 10 are selectively linked to these cams 72 and 73, and the link is operated. It is equipped with a switching mechanism that switches depending on the state (full cylinder operation and partial cylinder operation). Then, the above two types of cams 72
.. 73, the cams 72, 72 for operation on both sides have the same shape, and the cam 73 for rest at the center has a different shape from the cams 72, 72 for operation on both sides, The rocker arm 74 includes a first arm 75 that is integrally provided with abutting parts for the operating cams 72 and 72 on both sides, and abutting parts for the central resting cam 73 and the intake valve 10.10. a second arm 7 with
6, and both arms 75.
76 is supported for relative movement around the lug shaft 80. Furthermore, at the center in the width direction of the wS1 arm 75, there is a connecting state for preventing the first arm 75 and the second arm 76 from moving together, and both arms 75.7.
Switch to a disconnected state that allows relative movement of 6. A selector 79 constituted by a plunger 77 and a lever member 78rf is provided, and an actuator 12' for switching the selector 79 is connected to the selector 79.
しかして、全気筒運転時には、アクチュエータ12′に
よりセレクタ79が第1アーム75と第2アーム76と
の相対運転を阻止する接続状態に切換作動することによ
り、第17−ム75が稼動時用カム72.72に押され
て揺動したとき、第2アーム76が休止時用カム73か
ら離間して第1アーム75と一体に揺動し、よって稼動
時用カム72.72の回転に応じて吸気弁10゜10が
吸気行穆時に開j?作動する一方、部分気筒)■転時に
は、アクチュエータ12′によりセレクタ79が両アー
ム75.76の相対運動を許容プる非接続状態に切換作
動することにより、稼動時用カム72.72の回転に伴
う第1アーム75の揺動が第2アーム76に伝達されず
、休止時用カム73の回転に応じた第2アーム76の揺
動により吸気弁io、ioが吸気行程後期に開弁作動す
るようにしたものである。尚、上記の如き構造のバルブ
タイミング可変機構70としてはその他公知の立体カム
構造のもの等が採用可能である。During all-cylinder operation, the actuator 12' switches the selector 79 to a connected state that prevents relative operation between the first arm 75 and the second arm 76, so that the 17th arm 75 is connected to the operating cam. 72.72, the second arm 76 separates from the rest cam 73 and swings together with the first arm 75. Therefore, according to the rotation of the operating cam 72. Is the intake valve 10°10 open during intake? On the other hand, when the partial cylinder is rotated, the actuator 12' switches the selector 79 to a disconnected state that allows the relative movement of both arms 75, 76, thereby controlling the rotation of the operating cams 72, 72. The accompanying swinging of the first arm 75 is not transmitted to the second arm 76, and the swinging of the second arm 76 in response to the rotation of the rest cam 73 opens the intake valves io and io in the latter half of the intake stroke. This is how it was done. As the variable valve timing mechanism 70 having the above-described structure, other known three-dimensional cam structures may be employed.
(第3大施例)
第9図は本発明の第3実施例を示し、上記第1実施例で
は稼動側気筒1Bの吸気圧力PAとエンジン回転数NE
とに基づいて稼動側気筒1Bの最高燃焼圧力を把(屋し
て調圧タンク20のガス圧力の調圧を見込み制御したが
、これに代え、クランク角とその角速度変動とにより休
止側および稼動側の各気筒の角速度変動つまりトルク変
動を検出し、両者が一致するように調圧タンク20のガ
ス圧力のフィードバック制御を行うようにしたしのであ
る。(Third Example) FIG. 9 shows a third example of the present invention. In the first example, the intake pressure PA of the working cylinder 1B and the engine speed NE
The maximum combustion pressure of the operating cylinder 1B was determined based on the above, and the pressure regulation of the gas pressure in the pressure regulating tank 20 was controlled in anticipation of the pressure regulation of the gas pressure in the pressure regulating tank 20. The angular velocity fluctuations, that is, the torque fluctuations of each cylinder on the side are detected, and feedback control of the gas pressure in the pressure regulating tank 20 is performed so that the two match.
すなわら、稼動側気筒1Bの燃焼圧力および休止側気筒
1Aの圧縮圧力tよそれぞれクランク軸にモーメン1−
として作用し、これによりクランク軸に角速度変動を惹
起するとともに、稼動側気筒1Bと休止側気筒1Aとが
それぞれ角速j女変動を大きく生じる時期つまりPL高
高圧力発生開明経時的なズレがあり、4気筒の場合クラ
ンク角で180’ tuに交互となる。、:Xのことか
ら、クランクプーリ15に近接して配置されクランク角
を検出づる電磁ピックアップ等よりなるクランク角セン
サ43と、フライホイールのリングギヤ16に近接して
配回されクランク軸の角速度変動を検出する電罎ピック
アップ等よりなる角速度センサ44とを設け、これら各
センサ43,44の出力信号をコントロールユニット4
5に入力して、稼動側気筒1Bの最高燃焼圧1ノに相当
するクランク軸の角速度変動(トルク変動)と休止開気
13) 1 A全体としての最高圧縮圧力に相当するク
ランク軸の角速度変動(トルク変動)を求め、この両角
速度変動が等しくなるように調圧タンク20の調圧をフ
ィードバック制御するものである。この作動を第10同
に示す。In other words, the combustion pressure of the active cylinder 1B and the compression pressure t of the idle cylinder 1A each cause a moment 1- to the crankshaft.
This causes angular velocity fluctuations in the crankshaft, and there is also a time-dependent shift in the timing at which large fluctuations in angular velocity occur in the operating cylinder 1B and the idle cylinder 1A, that is, when the PL high and high pressure is generated. , in the case of a 4-cylinder engine, the crank angle alternates at 180' tu. , : An angular velocity sensor 44 consisting of a telegraph pickup or the like is provided, and the output signals of these sensors 43 and 44 are sent to the control unit 4.
5, the angular velocity fluctuation (torque fluctuation) of the crankshaft corresponding to the maximum combustion pressure 1 of the active cylinder 1B and the angular velocity fluctuation of the crankshaft corresponding to the maximum compression pressure of the entire A (Torque variation) is determined, and the pressure regulation of the pressure regulation tank 20 is feedback-controlled so that both angular velocity variations are equal. This operation is shown in No. 10.
第10図において、そのフ1コーヂャー1−中、ステッ
プ81〜S6までは上記′IS1実施例での第4図のフ
ローと同じであるので、それ以険のフローについて)!
!3べろに、ステップS、I においてクランク角セン
υ43からのクランク色の信号および角速庭センサ44
からのクランク軸の角速度変動の信号を入力して、ステ
ップSs’でこのクランク角と角速趨変動とに塁づいて
稼動側気筒1Bの最高燃焼圧力時でのトルク変動Tfお
よび休止側気筒1A全体としての最高圧縮圧力時でのト
ルク変動下Cを算出する。そして、次のステップS・〕
′で上記両トルク変動Tf、Tcの差ITf−TC;が
許容調整誤差へT内にあるか否かを判別し、許容調整誤
差ΔT内であるYESの場合にはサージング防止の観点
から直ちに制御を終了する。一方、lZr容調整誤差Δ
丁を越えるNoの場合には、さらにステップSIQ’
で上記TfとTOとの大小を比較判別し、7f >Tc
のYESのときにはステップ811′で大気圧導入弁2
Gを微小期間開くよう大気圧導入弁用アクチュエータ2
8に量弁信号を出力する一方、Tf≦TOのNoのとき
にはステップ$12′で負圧導入弁27を微小期間聞く
よう0圧導入弁用アクチユエータ29に量弁信号を出力
して、それぞれステップS y ’ に戻ることを繰返
し、調圧タンク20のガス圧力を両トルク変初Tf 、
Tcの差ITf−TO+が許容調整誤差ΔT内に収まる
ようフィードバック制御により調圧する。In FIG. 10, steps 81 to S6 in the F1 coder 1 are the same as the flow shown in FIG. 4 in the above-mentioned 'IS1 embodiment, so the rest of the flow is as follows)!
! Third, in steps S and I, the crank color signal from the crank angle sensor υ43 and the angular speed sensor 44 are
Inputs the signal of the crankshaft angular velocity fluctuation from , and calculates the torque fluctuation Tf at the maximum combustion pressure of the active cylinder 1B and the idle cylinder 1A based on the crank angle and angular velocity trend fluctuation in step Ss'. Calculate the torque fluctuation C under the overall maximum compression pressure. And next step S.]
', it is determined whether the difference ITf-TC; between the two torque fluctuations Tf and Tc is within the allowable adjustment error T, and if YES, which is within the allowable adjustment error ΔT, control is immediately performed from the viewpoint of surging prevention. end. On the other hand, lZr capacity adjustment error Δ
If the answer exceeds 1, step SIQ'
Compare and determine the magnitude of the above Tf and TO, and 7f > Tc
If YES, the atmospheric pressure introduction valve 2 is opened in step 811'.
Actuator 2 for atmospheric pressure introduction valve to open G for a minute period
8, and when Tf≦TO (No), a quantity valve signal is output to the 0 pressure introduction valve actuator 29 so as to listen to the negative pressure introduction valve 27 for a minute period in step $12', and each step Repeating the process of returning to S y ', the gas pressure in the pressure regulating tank 20 is adjusted to the initial torque Tf,
The pressure is regulated by feedback control so that the difference in Tc ITf-TO+ falls within the allowable adjustment error ΔT.
したがって、本例の場合、調圧タンク2oのガス圧力の
調圧を、第1実施例の如(見込み制御でなく、稼動側気
筒1Bのf&高燃焼圧力と休止剛気1141A全体とし
ての最高圧縮圧力を把握して、それらが一致するように
フィードバック制御により行うので、制御精度がより向
上しトルク変動抑制化を一層図ることができるものであ
る。Therefore, in the case of this example, the pressure regulation of the gas pressure in the pressure regulating tank 2o is controlled as in the first embodiment (not by prospective control, but by f & high combustion pressure of the active cylinder 1B and the maximum compression as a whole of the rest stiff air 1141A). Since the pressures are grasped and feedback control is performed so that they match, control accuracy is further improved and torque fluctuations can be further suppressed.
(変形例)
本発明は上記の如き第1〜第3実施例のほかに、以下の
ような変形例をも包含するものぐある。(Modifications) In addition to the first to third embodiments described above, the present invention includes the following modifications.
■ 第1実施例の変形として、体J1側気筒1Aにおい
て調圧のためのガス圧導入弁22の量弁周期を4気筒の
場合720’fHに設定して、休止側気筒1△全体とし
r、でtよイ1く各々の最高圧縮圧力が稼動側気筒1B
の最高燃焼圧りと等しくなるように見込み制御により調
圧してもよい。■ As a modification of the first embodiment, the valve cycle of the gas pressure introduction valve 22 for pressure regulation in the body J1 side cylinder 1A is set to 720'fH in the case of 4 cylinders, and the entire idle side cylinder 1△ is set to r. , the maximum compression pressure of each t is 1B in the working cylinder 1B
The pressure may be adjusted by anticipatory control so that it becomes equal to the maximum combustion pressure of .
この場合、調圧タンク20の調圧すべきガス圧力が第1
実施例と比べて約2倍に高くなるので、大気圧導入通路
24の途中にエアポンプを介設して、該大気圧導入通路
24から大気圧よりb高い圧力を調圧タンク20に轡く
ことにより、調圧の応答性等を高めるように1゛ること
が好ましい。In this case, the gas pressure to be regulated in the pressure regulating tank 20 is the first
Since the pressure is approximately twice as high as that in the embodiment, an air pump is provided in the middle of the atmospheric pressure introduction passage 24 to supply pressure b higher than atmospheric pressure from the atmospheric pressure introduction passage 24 to the pressure regulating tank 20. Therefore, it is preferable to increase the pressure by 1゜ so as to improve the responsiveness of pressure regulation.
■ 第3実胞例の変形として、クランク角廿ンサ43お
よび角速重センサ44の代わりに、稼動側鎖rtfJ1
Bの燃焼圧力および休止側気筒1Aの圧縮圧力をそれぞ
れ直接検出する圧力センサを設けて、これらから稼動側
気筒1Bの最高燃焼圧力および休止側気筒1A全体とし
てのム)高圧縮圧力を口出し、両者が一1& ツるよう
フィードバック制御により調圧を行うようにしてもよい
。■ As a modification of the third example, instead of the crank angle sensor 43 and the angular velocity weight sensor 44, the operating side chain rtfJ1
A pressure sensor is provided to directly detect the combustion pressure of B and the compression pressure of the idle cylinder 1A, and from these, the maximum combustion pressure of the active cylinder 1B and the high compression pressure of the idle cylinder 1A as a whole are determined. The pressure may be adjusted by feedback control so that the pressure is 11 & 2.
■ 以上の説明では4気筒エンジンの場合について述べ
たが、その他の多気筒エンジンにも同様に適用可能であ
る。また、吸・排気弁の数し上述の2バルブタイプ、4
バルブタイプの他、公知の各種タイプのものにも適用可
能であり、吸気系、排気系の構造は特に限定されない。■ In the above explanation, the case of a four-cylinder engine has been described, but it can be similarly applied to other multi-cylinder engines. In addition, the number of intake and exhaust valves is 2 valve type, 4 valve type as mentioned above.
In addition to the valve type, it is also applicable to various known types, and the structures of the intake system and exhaust system are not particularly limited.
(発明の効果)
以上説明したように、本発明の気筒数制御1ンジンの振
動低減装置によれば、全気筒運転から部分気筒運転への
切換直後も含む部分気筒運転全域に亘って、各サイクル
での稼動側気筒と休止側気筒との最高圧力を応答性良く
かつ精度良く略−敗させることができるので、部分気筒
運転時の1〜ルク変動をより一芒有効に抑制又゛きて振
動低減効果の向上を図ることができる。(Effects of the Invention) As explained above, according to the vibration reduction device for a single engine with cylinder number control according to the present invention, the vibration reduction device for a single engine with cylinder number control of the present invention can reduce vibrations in each cycle over the entire range of partial cylinder operation, including immediately after switching from all cylinder operation to partial cylinder operation. Since the maximum pressure between the operating cylinder and the idle cylinder can be reduced with good response and accuracy, it is possible to more effectively suppress 1 to 1 torque fluctuations during partial cylinder operation and reduce vibration. It is possible to improve the reduction effect.
図面は本発明の丈廁例を例示するもので、第1図〜第5
図は第1実施例を示し、第1図はその仝休戦1?l1M
成図、第2図は弁停止機構の平面図、第3図は第2図の
ト(線断面図、第4図はコン1へロールユニットの作動
を説明づる)じ1−ブt−−1−図、第5図(a)〜(
f)はそれぞれ第1〜第4気筒、休止側気筒全体および
金気筒の圧fJ ′rt化を示す説明図である。第6図
〜第8図は第2実施例を示し、第6図はその全体概略構
成図、第7図はバルブタイミング可変機構の平面図、第
8図は第7図の■−■線断面図である。第9図および第
10図は第3実施例を示し、第9図はその全体概略構成
図、第10図はコント]]−ルユニットの作動を31明
するフローチャート図である。
1△・・・休止側気筒、1B・・・稼aiJ(lIll
気筒、4a・・・休止側吸気通路、4b・・・稼動側吸
気通路、1o・・・吸気弁、11・・・排気弁、20・
・・調圧タンク、21゜21′・・・ガス圧導入通路、
22・・・ガス圧導入弁、30・・・調圧手段、40・
・・回転数ヒンサ、41・・・吸気圧センナ、42・・
・ガス圧せンリ゛、43・・・クランク角センサ、44
・・・角速度センサ、45・・・コントロールユニツi
〜、46・・・it、II Ifl 手段。
特許出願人 マツダ株式会社
代 理 人 弁理士 前 [ロ
弘第3図
第2図
工二
第8因
第7図The drawings illustrate examples of the length of the present invention, and are shown in Figs. 1 to 5.
The figure shows the first embodiment, and FIG. l1M
Fig. 2 is a plan view of the valve stop mechanism, Fig. 3 is a cross-sectional view of Fig. Figure 1-, Figure 5(a)-(
f) is an explanatory diagram showing the change in pressure fJ'rt of the first to fourth cylinders, all cylinders on the deactivated side, and the gold cylinder, respectively. 6 to 8 show the second embodiment, FIG. 6 is a schematic diagram of the overall configuration, FIG. 7 is a plan view of the variable valve timing mechanism, and FIG. 8 is a cross section taken along the line ■-■ in FIG. 7. It is a diagram. 9 and 10 show a third embodiment, FIG. 9 is a general schematic diagram thereof, and FIG. 10 is a flowchart illustrating the operation of the control unit. 1△...Cylinder on the idle side, 1B...Working aiJ (lIll
Cylinder, 4a... Inactive side intake passage, 4b... Working side intake passage, 1o... Intake valve, 11... Exhaust valve, 20.
...Pressure adjustment tank, 21゜21'...Gas pressure introduction passage,
22... Gas pressure introduction valve, 30... Pressure regulating means, 40...
・Rotational speed sensor, 41 ・Intake pressure sensor, 42...
・Gas pressure sensor, 43...Crank angle sensor, 44
...Angular velocity sensor, 45...Control unit i
〜,46...it,II Ifl means. Patent Applicant Mazda Motor Corporation Representative Patent Attorney Former [RO]
Hiroshi Figure 3 Figure 2 Figure 2 Factor 8 Figure 7
Claims (1)
時作動する稼動側気筒とを備え、部分気筒運転時に休止
側気筒に導入するガス圧力を制御して稼動側気筒の燃焼
圧力に休止側気筒の圧縮圧力を近づけるようにした気筒
数制御エンジンの振動低減装置において、吸気通路とは
別に独立して設けられ、部分気筒運転時に休止側気筒に
導入するガス圧力を貯える調圧タンクと、該調圧タンク
のガス圧力を調圧する調圧手段と、稼動側気筒の最高燃
焼圧力を把握する把握手段と、該把握手段の出力を受け
、休止側気筒の圧縮行程終了時点における休止側気筒全
体としての最高圧縮圧力が稼動側気筒の最高燃焼圧力と
等しくなるように上記調圧手段を制御する制御手段とを
備えたことを特徴とする気筒数制御エンジンの振動低減
装置。(1) Equipped with a deactivated cylinder that stops operating in the low-load operating range and an active cylinder that is constantly activated, and controls the gas pressure introduced into the deactivated cylinder during partial cylinder operation to adjust the combustion pressure of the active cylinder. In a vibration reduction device for an engine that controls the number of cylinders to bring the compression pressures of the cylinders on the idle side close to each other, there is a pressure regulating tank that is provided independently from the intake passage and stores the gas pressure introduced into the cylinder on the idle side during partial cylinder operation. , a pressure regulating means for regulating the gas pressure in the pressure regulating tank; a grasping means for grasping the maximum combustion pressure of the operating cylinder; and a grasping means that receives the output of the grasping means and determines the maximum combustion pressure of the idle cylinder at the end of the compression stroke of the idle cylinder. A vibration reduction device for a cylinder number controlled engine, comprising: control means for controlling the pressure regulating means so that the overall maximum compression pressure is equal to the maximum combustion pressure of the operating cylinder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21077785A JPS6270631A (en) | 1985-09-24 | 1985-09-24 | Vibration reducing device for number of operating cylinder control engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21077785A JPS6270631A (en) | 1985-09-24 | 1985-09-24 | Vibration reducing device for number of operating cylinder control engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6270631A true JPS6270631A (en) | 1987-04-01 |
Family
ID=16594968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21077785A Pending JPS6270631A (en) | 1985-09-24 | 1985-09-24 | Vibration reducing device for number of operating cylinder control engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6270631A (en) |
-
1985
- 1985-09-24 JP JP21077785A patent/JPS6270631A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6523504B2 (en) | Control system for controlling variable valve type internal combustion engine | |
KR0152101B1 (en) | Supercharged engine | |
US7324889B2 (en) | Intake-air quantity control system of engine | |
US5775283A (en) | Intake control system for engine | |
KR20070097127A (en) | Control method and control apparatus for internal combustion engine | |
KR100815035B1 (en) | Valve gear control device of internal combustion engine | |
US5138839A (en) | Control system for internal combustion engine with turbo supercharger | |
JPS6270631A (en) | Vibration reducing device for number of operating cylinder control engine | |
JP4044625B2 (en) | Combustion control device for internal combustion engine | |
JPS6285142A (en) | Vibration reducing device for cylinder number control engine | |
JPS61164009A (en) | Low noise and high output operated tappet valve system | |
JPS6287628A (en) | Vibration damping device for cylinder number controlling engine | |
JPH071009B2 (en) | Engine intake control device | |
JPS6220631A (en) | Exhaust turbosupercharged engine | |
JP2740664B2 (en) | Intake device for internal combustion engine | |
JPS6299642A (en) | Vibration damping device for cylinder number control engine | |
JPS6285141A (en) | Vibration reducing device for cylinder number control engine | |
JPS6285143A (en) | Vibration reducing device for cylinder number control engine | |
JPS6285144A (en) | Vibration reducing device for cylinder number control engine | |
JP3011974B2 (en) | Engine control device | |
JPS595846A (en) | Four-cylinder internal combustion engine | |
JPH10103092A (en) | Engine controller with electromagnetic intake-exhaust valve | |
JPH039026A (en) | Intake and exhaust device for internal combustion engine | |
JPH05163970A (en) | Controller for internal combustion engine | |
JPH01267315A (en) | Intake device for multicylinder engine |