JPS628503B2 - - Google Patents

Info

Publication number
JPS628503B2
JPS628503B2 JP53131730A JP13173078A JPS628503B2 JP S628503 B2 JPS628503 B2 JP S628503B2 JP 53131730 A JP53131730 A JP 53131730A JP 13173078 A JP13173078 A JP 13173078A JP S628503 B2 JPS628503 B2 JP S628503B2
Authority
JP
Japan
Prior art keywords
steel
high speed
speed steel
aisi
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53131730A
Other languages
Japanese (ja)
Other versions
JPS54132419A (en
Inventor
Fuedorikuson Buyoorun
Waaderu Bengudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fagersta AB
Original Assignee
Fagersta AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fagersta AB filed Critical Fagersta AB
Publication of JPS54132419A publication Critical patent/JPS54132419A/en
Publication of JPS628503B2 publication Critical patent/JPS628503B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、切削並びに冷間加工用の低合金高速
度鋼に関するものである。 下記の主要合金元素を含有する低合金の基本的
高速度鋼が知られている。
The present invention relates to low alloy high speed steels for cutting and cold working. Low alloy basic high speed steels containing the following main alloying elements are known:

【表】 この鋼の特徴はC/V比が極めて高く、
SIS2722(AISI M2)及びSIS2782(AISI M7)
高速度鋼では約0.45に対し約0.75になつており、
その結果、極めて硬いマルテンサイト地鉄が生ず
る。一方、Mo+W+Vの含有量は、SIS2722
(AISI M2)とSIS2782(AISI M7)ではそれぞ
れ13.5%と12.5%であるのに対しわずかに8%で
ある。炭化物形成元素であるMo、W及びVの含
有量が低いにもかかわらずC/V比が高いため
に、この高速度鋼はSIS2722及びSIS2782やその
他の同様の高速度鋼と同等もしくはそれ以上にす
ぐれた性能を有している 上記の公知の高速度鋼の性能は、C/V比を高
めることができればさらに改善せしめられうる。
しかしながら、この鋼を二段階の焼きもどし工程
を伴なう普通の熱処理を行うと、残留オーステナ
イトと焼きもどしされないマルテンサイトの問題
があつて前記の改善は不可能である。 本発明の目的は、望ましくない組織的な構成成
分を生ずることなしに冒頭に述べた高速度鋼の
C/V比を高め、その性能を著しく改善すること
にある。 本発明の要旨とするところは、重量%でC0.90
〜1.05%、Si0.10〜1.00%、Cr2.0〜4.5%、Mo4.0
〜6.0%、W1.0〜2.0%、V1.0〜2.0%、Co1.0〜
6.0%、N0.02〜0.08%、S0.060%以下、残部鉄及
び通常の不純物からなりかつC/Vの比が0.70〜
0.94であることを特徴とする低合金高速度鋼にあ
る。 最近まで、高速度鋼中の残留オーステナイトの
分解速度に及ぼすCoの影響は知られていなかつ
た。例えば1972年以来、Haufes著“高速度鋼”
において、残留オーステナイトを転化するために
は、Coを含有する高速度鋼はCoを含有しない高
速度鋼よりも焼きもどしの回数を多くしなければ
ならないと述べられている。 “メタルプログレス”誌1977年8月号50頁にお
いて、B.FedrikssonはSIS2722(AISI M2)型の
高速度鋼における5〜10%のCoの影響を研究
し、この種の高速度鋼においてCoが残留オース
テナイトの転化を速める能力を有していることを
示している。本発明は冒頭に述べた基本的な高速
度鋼において、5%未満のCoが残留オーステナ
イトの安定性を著しく減じることを確かめたもの
である。C/V比の高いこの低合金高速度鋼にお
ける残留オーステナイトの分解に及ぼすCoの影
響はSIS2722(AISI M2)型の高速度鋼における
よりもはるかに大きいことが発見された。本発明
においては、この知見が高いC/V比を利用する
ことを可能にした。本発明は、前記の基本的な低
合金高速度鋼において、0.70〜0.94という高い
C/V比と1.0〜6.0%のCoとの組合せが組織上の
問題を生ずることなく、該鋼から作られた工具に
著しく優れた特性を与えることを確めたものであ
り、該工具は或種の用途においては、高合金高速
度鋼から作られた工具の特性より優れていること
を見出したものである。 一般に高速度鋼にCoを添加すると、高温にお
ける硬度の維持能力が鋼に与えられ、之と共に工
具の性能が向上することが知られている。しかし
ながら、C/V比の高い基本的な低合金高速度鋼
におけるCo添加の影響は、同様なCo添加をC/
V比の低い高合金高速度鋼、例えばSIS2722
(AISI M2)、SIS2782(AISI M7)、AISI T1や
AISI T7について行つた場合に比較して、驚異的
に大きい。 第1図に、本発明の鋼とSIS2722(AISI M2)
AISI M3:2、及びAISI T7におけるCoの添加
の影響を示す。本発明鋼以外の鋼のC/V比は
0.38〜0.45で本発明鋼のC/V比は約0.80であ
る。 第1図の曲線1と2は本発明鋼の旋削と穴あけ
作業における性能を示す(垂直軸は作業性能の増
大を%で示す)。これらの曲線の完全な切削デー
タは実施例1(曲線1)及び実験例4(曲線2)
に示す。曲線3はAISI M3:2に対するCoの添
加が、穴あけ作業に際してその性能に対して如何
なる影響を及ぼすかを示す(実験例4における完
全な旋削データ)。曲線4は“Krupp Monats”
誌13頁、1932のHoudremontとSchraderの記事か
ら抜莢した。この曲線はCoの添加によつてAISI
T7の旋盤工具の性能がどのように影響されるか
を示している。曲線5,6及び7はSIS2722
(AISI M2)の性能がCo添加によつてどのように
影響されるかを示す。これら曲線の切削データを
下記に示す。
[Table] This steel has an extremely high C/V ratio.
SIS2722 (AISI M2) and SIS2782 (AISI M7)
It is about 0.75 compared to about 0.45 for high-speed steel.
As a result, an extremely hard martensitic steel is produced. On the other hand, the content of Mo+W+V is SIS2722
(AISI M2) and SIS2782 (AISI M7) are 13.5% and 12.5%, respectively, while it is only 8%. Due to the high C/V ratio despite the low content of carbide-forming elements Mo, W and V, this high speed steel performs as well as or better than SIS2722 and SIS2782 and other similar high speed steels. The performance of the above-mentioned known high speed steels having excellent performance can be further improved if the C/V ratio can be increased.
However, if this steel is subjected to conventional heat treatment with a two-step tempering process, the above-mentioned improvement is not possible due to the problems of retained austenite and untempered martensite. The object of the invention is to increase the C/V ratio of the high speed steels mentioned at the outset and to significantly improve their performance without introducing undesirable structural constituents. The gist of the present invention is that C0.90 in weight%
~1.05%, Si0.10~1.00%, Cr2.0~4.5%, Mo4.0
~6.0%, W1.0~2.0%, V1.0~2.0%, Co1.0~
6.0%, N0.02~0.08%, S0.060% or less, balance iron and normal impurities, and C/V ratio is 0.70~
Located in low alloy high speed steel characterized by 0.94. Until recently, the effect of Co on the decomposition rate of retained austenite in high-speed steels was unknown. For example, since 1972, “High Speed Steel” by Haufes
, it is stated that in order to convert retained austenite, high speed steel containing Co must be tempered more times than high speed steel not containing Co. In the August 1977 issue of “Metal Progress”, page 50, B. Fedriksson studied the effect of 5-10% Co in high speed steels of the SIS2722 (AISI M2) type and found that in this type of high speed steels Co This shows that it has the ability to accelerate the conversion of retained austenite. The present invention is based on the finding that in the basic high speed steel mentioned at the outset, less than 5% Co significantly reduces the stability of retained austenite. It was found that the effect of Co on the decomposition of retained austenite in this low alloy high speed steel with high C/V ratio is much greater than in the SIS2722 (AISI M2) type high speed steel. In the present invention, this knowledge has made it possible to utilize a high C/V ratio. The present invention provides that the combination of a high C/V ratio of 0.70 to 0.94 and 1.0 to 6.0% Co can be made from the basic low alloy high speed steel without causing any structural problems. It has been determined that the properties of the tool are superior to those of tools made from high-alloy high-speed steel in certain applications. be. It is generally known that adding Co to high-speed steel gives the steel the ability to maintain hardness at high temperatures, thereby improving tool performance. However, the effect of Co addition in basic low alloy high speed steel with high C/V ratio is
High alloy high speed steel with low V ratio, e.g. SIS2722
(AISI M2), SIS2782 (AISI M7), AISI T1 and
It is surprisingly large compared to the AISI T7. Figure 1 shows the steel of the present invention and SIS2722 (AISI M2).
The effect of Co addition on AISI M3:2 and AISI T7 is shown. The C/V ratio of steels other than the steel of the present invention is
The C/V ratio of the steel of the present invention is about 0.80 in the range of 0.38 to 0.45. Curves 1 and 2 in FIG. 1 show the performance of the steel according to the invention in turning and drilling operations (the vertical axis shows the increase in performance in %). Complete cutting data for these curves can be found in Example 1 (Curve 1) and Example 4 (Curve 2)
Shown below. Curve 3 shows how the addition of Co to AISI M3:2 affects its performance in drilling operations (complete turning data in Example 4). Curve 4 is “Krupp Monats”
Extracted from Houdremont and Schrader's article, 1932, p. 13 of the magazine. This curve shows AISI by adding Co.
It shows how the performance of T7 lathe tools is affected. Curves 5, 6 and 7 are SIS2722
This shows how the performance of (AISI M2) is affected by Co addition. The cutting data for these curves is shown below.

【表】【table】

【表】 添付図は、本発明による0.70〜0.94という高い
C/V比と1.0〜6.0%のCo含有量の組合せによ
り、従来知られていなかつた複合効果で説明する
以外に説明のできない程高い性能の向上が得られ
ることを示す。 本発明における各化学成分組成の限定理由を説
明する。 CとVは、Vが強力な炭化物形成元素であるか
ら互いに強い影響力と依存性を持つている。C/
V比を0.70〜0.94と規定した理由は、これが0.70
未満では硬度および耐摩耗性が劣化し、一方0.94
を超えると、残留オーステナイトと焼戻しされな
いマルテンサイトが生じ、靭性が劣化するからで
ある。 しかして、Cを0.90〜1.05%、Vを1.0〜2.0%
と夫々規定したのは、勿論前記したC/V比にも
関連するが、C及びVが前記の上限値を超える
と、VC−炭化物が過剰となつて研削性が劣化
し、他方下限値未満ではVC−炭化物の析出が過
少となり、耐摩耗性が劣化するからである。 SiとNの両者は、M2C−炭化物をMC及びM6C
−炭化物に熱分解する効果を奏する点で一つのグ
ループに属するものと見做されうる。しかして、
之等の炭化物は、焼入れ性の優れた微細均一に分
散した炭化物を有する最終組織を形成する。この
ような効果を奏するためには、SiとNの量は夫々
0.10〜1.00%、0.02〜0.08%と規定する必要があ
る。より好ましくは、Si0.40〜0.70%、N0.04〜
0.07%である。 Mo及びWの両者は、鋼の二次硬度又は焼入れ
性、耐摩耗性にとつて重要である。また鋼の原料
コストにも著しい影響がある。これらを勘案して
Mo4.0〜6.0%、W1.0〜2.0%と定めた。 Coは残留オーステナイト、従つて脆い焼戻さ
れないマルテンサイトを減少する効果がある。こ
の効果は高いC/V比の高速度鋼において、より
顕著であることが確かめられた。Coは又赤熱硬
度を高める効果を有する。斯かる観点からその量
を1.0〜6.0%と規定した。 Crは鋼の熱間強度、耐摩耗性、焼入れ性、靭
性、耐酸化性の向上並びに変形の抑制に効果があ
るが、本発明が対象とする高速度鋼においては、
その量は2.0〜4.5%で十分である。 以下本発明による高速度鋼の組成(wt%)と
C/V比の例を例示すれば次の通りである。
[Table] The attached diagram shows that the combination of the high C/V ratio of 0.70 to 0.94 and the Co content of 1.0 to 6.0% according to the present invention results in an extremely high value that cannot be explained other than by a previously unknown combined effect. Show that improved performance can be obtained. The reasons for limiting the composition of each chemical component in the present invention will be explained. C and V have a strong influence and dependence on each other because V is a strong carbide-forming element. C/
The reason why the V ratio is specified as 0.70 to 0.94 is that this is 0.70.
Hardness and wear resistance deteriorate below 0.94
This is because, if it exceeds, retained austenite and untempered martensite will be generated, resulting in deterioration of toughness. Therefore, C is 0.90-1.05%, V is 1.0-2.0%
The above-mentioned C/V ratio is of course related to the above-mentioned C/V ratio, but when C and V exceed the above-mentioned upper limit, VC-carbide becomes excessive and the grindability deteriorates, while when below the lower limit, This is because the precipitation of VC-carbide becomes too small and the wear resistance deteriorates. Both Si and N convert M2C -carbide into MC and M6C
- It can be considered to belong to one group in that it exhibits the effect of thermal decomposition into carbides. However,
These carbides form a final structure having fine and uniformly dispersed carbides with excellent hardenability. In order to achieve this effect, the amounts of Si and N must be adjusted respectively.
It is necessary to specify 0.10 to 1.00% and 0.02 to 0.08%. More preferably Si0.40~0.70%, N0.04~
It is 0.07%. Both Mo and W are important for the secondary hardness or hardenability and wear resistance of steel. It also has a significant impact on the cost of raw materials for steel. Taking these into consideration
It was set as Mo4.0~6.0% and W1.0~2.0%. Co has the effect of reducing retained austenite and therefore brittle untempered martensite. It was confirmed that this effect is more pronounced in high-speed steel with a high C/V ratio. Co also has the effect of increasing red-hot hardness. From this point of view, the amount was defined as 1.0 to 6.0%. Cr is effective in improving the hot strength, wear resistance, hardenability, toughness, and oxidation resistance of steel, as well as suppressing deformation, but in the high-speed steel targeted by the present invention,
Its amount from 2.0 to 4.5% is sufficient. Examples of the composition (wt%) and C/V ratio of the high speed steel according to the present invention are as follows.

【表】【table】

【表】 さきにも述べたように、本発明の高速度鋼は、
或る種の用途において、例えば捩れ錐(ドリル)
の場合、高合金高速度鋼と同等もしくはよりすぐ
れた性能を発揮する。以下、本発明の高速度鋼、
冒頭に述べた基本的な高速度鋼及び市販の高合金
高速度鋼の性能を比較テストした結果を示す。本
発明鋼及び冒頭に述べた基本の高速度鋼は1160℃
でオーステナイト化し、塩浴中で550℃に急冷し
(Slake)、油中で室温まで冷却した。試片は最終
的に565℃で1時間2回焼きもどした。 試験例中の標準鋼は通常の方法で熱処理を施し
た。 試験例 1 本発明による低合金高速度鋼の性能に及ぼす
Co含有量の影響 作 業:旋 削 鋼 材:SIS2541、HB=255 工 具:γ=10゜、α=5゜、η=60゜、λ=0
゜、r=0.5mm 切削データ:a×s=2.0×0.31mm、v=30m/
min 判 定:破 断 切削液:デイフエンドール 旋削テストの結果を、Co含有量との関係にお
いて、第2図に示した。 本試験例1で使用した低合金高速度鋼の化学成
分組成を下記表に示す。
[Table] As mentioned earlier, the high speed steel of the present invention is
In some applications, e.g.
In this case, the performance is equivalent to or better than that of high-alloy high-speed steel. Hereinafter, the high speed steel of the present invention,
The results of a comparative test of the performance of the basic high-speed steel mentioned at the beginning and the commercially available high-alloy high-speed steel are shown below. The steel of the present invention and the basic high-speed steel mentioned at the beginning are heated to a temperature of 1160°C.
austenitized, quenched to 550°C in a salt bath (Slake) and cooled to room temperature in oil. The specimens were finally tempered twice for 1 hour at 565°C. The standard steel in the test example was heat treated in a conventional manner. Test Example 1 Effect on the performance of low alloy high speed steel according to the present invention
Effect of Co content Work: Turning steel Material: SIS2541, HB=255 Tool: γ=10°, α=5°, η=60°, λ=0
゜, r=0.5mm Cutting data: a×s=2.0×0.31mm, v=30m/
min Judgment: Fracture Cutting fluid: Deifendor The results of the turning test are shown in Figure 2 in relation to the Co content. The chemical composition of the low alloy high speed steel used in Test Example 1 is shown in the table below.

【表】【table】

【表】 試験例 2 本発明鋼とSIS2723(AISI M35)の性能比較 作 業:ねじ山切削 鋼 材:AISI4340、HRC=25−26 速 度:560rpm 冷 却:オイルエマルジヨン 穴寸法:8.5×20mm(深さ) 判 定:標準ゲージによるねじ公差(thread
tolerance) 結果は下表に示す通りである。
[Table] Test example 2 Comparison of performance between the invention steel and SIS2723 (AISI M35) Work: Thread cutting steel Material: AISI4340, HRC=25−26 Speed: 560 rpm Cooling: Oil emulsion Hole size: 8.5 x 20 mm (depth) Judgment: Thread tolerance (thread
tolerance) The results are shown in the table below.

【表】 試験例 3 本発明の高速度鋼とSIS2723(AISI M35)と
の性能比較 作 業:ねじ山切削 鋼 材:AISI H11、HRC=44−45 速 度:100rpm 冷 却:オイルエマルジヨン 穴寸法:8.5×15mm(深さ) 判 定:標準ゲージによるねじ公差 結果は下表に示す通りである。
[Table] Test Example 3 Performance comparison between the high speed steel of the present invention and SIS2723 (AISI M35) Work: Thread cutting steel Material: AISI H11, HRC=44-45 Speed: 100 rpm Cooling: Oil emulsion hole Dimensions: 8.5 x 15mm (depth) Judgment: Thread tolerance by standard gauge The results are shown in the table below.

【表】 試験例 4 本発明の高速度鋼と基本の高速度鋼、BS
BT42、AISI M3:2、AISI M3:2(Co:8.5
%)との性能比較 作 業:穴あけ 鋼 材:SIS1880、HB=235 ドリル寸法:φ5.0×85mm ドリル速度:22.5m/min 送 り:0.091mm/回転 穴深さ(盲あな):10mm(2×d) 切削液:デイフエンドール 判 定:全摩耗 結果は下表に示す通りである。
[Table] Test example 4 High speed steel of the present invention, basic high speed steel, BS
BT42, AISI M3:2, AISI M3:2 (Co:8.5
Performance comparison work: Drilling steel Material: SIS1880, HB=235 Drill dimensions: φ5.0 x 85 mm Drill speed: 22.5 m/min Feed: 0.091 mm / Rotating hole depth (blind hole): 10 mm ( 2×d) Cutting fluid: Defendor Judgment: Total wear The results are shown in the table below.

【表】 上述の性能試験例においては、高速度鋼に添加
される高価で稀少な合金元素の消費を節減する上
で本発明鋼が大きな貢献をしていることを示すた
めにMo+W+V+Coの合計量(wt%)を示し
た。
[Table] In the above performance test example, the total amount of Mo + W + V + Co was used to demonstrate that the steel of the present invention makes a significant contribution to reducing the consumption of expensive and rare alloying elements added to high-speed steel. (wt%).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明鋼及び比較鋼におけ
る切削性能に及ぼすCo添加量の影響を示す図で
ある。
FIG. 1 and FIG. 2 are diagrams showing the influence of the amount of Co added on the cutting performance of the steel of the present invention and the comparative steel.

Claims (1)

【特許請求の範囲】 1 重量%でC0.90〜1.05%、Si0.10〜1.00%、
Cr2.0〜4.5%、Mo4.0〜6.0%、W1.0〜2.0%、
V1.0〜2.0%、Co1.0〜6.0%、N0.02〜0.08%、
S0.060%以下、残部鉄及び通常の不純物からなり
かつC/Vの比が0.70〜0.94であることを特徴と
する低合金高速度鋼。 2 Coの含有量が2.0〜4.0%である特許請求の範
囲第1項記載の低合金高速度鋼。 3 Siの含有量が0.40〜0.70%である特許請求の
範囲第1項または第2項記載の低合金高速度鋼。 4 N含有量が0.04〜0.07%である特許請求の範
囲第1項ないし第3項の何れかに記載の低合金高
速度鋼。 5 Mo、W、V、及びCoの含有量が9%≦Mo+
W+V+Co≦12%の関係にある特許請求の範囲
第1項ないし第4項の何れかに記載の低合金高速
度鋼。
[Claims] 1. C0.90 to 1.05%, Si 0.10 to 1.00%,
Cr2.0~4.5%, Mo4.0~6.0%, W1.0~2.0%,
V1.0~2.0%, Co1.0~6.0%, N0.02~0.08%,
1. A low-alloy high-speed steel comprising S0.060% or less, the balance being iron and ordinary impurities, and having a C/V ratio of 0.70 to 0.94. 2. The low alloy high speed steel according to claim 1, wherein the Co content is 2.0 to 4.0%. 3. The low alloy high speed steel according to claim 1 or 2, wherein the Si content is 0.40 to 0.70%. 4. The low alloy high speed steel according to any one of claims 1 to 3, wherein the N content is 0.04 to 0.07%. 5 Content of Mo, W, V, and Co is 9%≦Mo+
The low alloy high speed steel according to any one of claims 1 to 4, which has a relationship of W+V+Co≦12%.
JP13173078A 1977-10-28 1978-10-27 Low alloy high speed steel Granted JPS54132419A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE7712190A SE422598B (en) 1977-10-28 1977-10-28 speed steel

Publications (2)

Publication Number Publication Date
JPS54132419A JPS54132419A (en) 1979-10-15
JPS628503B2 true JPS628503B2 (en) 1987-02-23

Family

ID=20332712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13173078A Granted JPS54132419A (en) 1977-10-28 1978-10-27 Low alloy high speed steel

Country Status (10)

Country Link
JP (1) JPS54132419A (en)
AT (1) AT386613B (en)
BR (1) BR7807117A (en)
DE (1) DE2844961A1 (en)
ES (1) ES474632A1 (en)
FR (1) FR2407270B1 (en)
GB (1) GB2006826B (en)
IN (1) IN149321B (en)
IT (1) IT1099832B (en)
SE (1) SE422598B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100011594A1 (en) * 2008-07-15 2010-01-21 Wysk Mark J Composite Saw Blades

Also Published As

Publication number Publication date
SE422598B (en) 1982-03-15
BR7807117A (en) 1979-05-08
GB2006826A (en) 1979-05-10
FR2407270B1 (en) 1985-06-28
AT386613B (en) 1988-09-26
SE7712190L (en) 1979-04-29
JPS54132419A (en) 1979-10-15
ES474632A1 (en) 1979-03-16
ATA746678A (en) 1983-04-15
IT1099832B (en) 1985-09-28
GB2006826B (en) 1982-03-10
DE2844961A1 (en) 1979-05-10
FR2407270A1 (en) 1979-05-25
IN149321B (en) 1981-10-24
IT7829125A0 (en) 1978-10-26

Similar Documents

Publication Publication Date Title
US6162389A (en) High-strength and high-toughness non heat-treated steel having excellent machinability
US3012879A (en) Nitrogen containing tool steels
US5362337A (en) Free-machining martensitic stainless steel
JPH039168B2 (en)
JPS628503B2 (en)
JP2768062B2 (en) Manufacturing method of high strength tough steel
JPS5852458A (en) Nonquenched and tempered steel with high strength and toughness
JPH0425343B2 (en)
US3259489A (en) Ultra hard high speed steel
JPH04154936A (en) Precipitation hardening nitriding steel
JP2021011637A (en) Cold work tool steel
JPS61272351A (en) Steel pipe for oil well having high toughness as well as high strength
JPS6362568B2 (en)
JPH0797657A (en) Air cooled type martensitic non-heattreated steel with high toughness for hot forging
US2206847A (en) Alloy steel
JPH01201424A (en) Manufacture of free-cutting die steel
JP3089424B2 (en) Manufacturing method of tough non-heat treated steel
SU863673A1 (en) Method of thermal treatment of carbon austenite steels
US3712808A (en) Deep hardening steel
JPH07316742A (en) Production of high strength martensitic stainless steel excellent in rusting resistance and cold formed product
JPH01177338A (en) Non-heat treated steel for nitriding
US3749568A (en) Steel suitable for razor blades
US2201072A (en) Alloy steel
JPH026828B2 (en)
JPH0331444A (en) Tough and hard non-heattreated steel for hot forging