JPS628428B2 - - Google Patents

Info

Publication number
JPS628428B2
JPS628428B2 JP9752977A JP9752977A JPS628428B2 JP S628428 B2 JPS628428 B2 JP S628428B2 JP 9752977 A JP9752977 A JP 9752977A JP 9752977 A JP9752977 A JP 9752977A JP S628428 B2 JPS628428 B2 JP S628428B2
Authority
JP
Japan
Prior art keywords
disubstituted
metallic sodium
reaction
sodium
yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9752977A
Other languages
Japanese (ja)
Other versions
JPS5432417A (en
Inventor
Shozo Kato
Yukio Mizutani
Jusuke Izumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP9752977A priority Critical patent/JPS5432417A/en
Publication of JPS5432417A publication Critical patent/JPS5432417A/en
Publication of JPS628428B2 publication Critical patent/JPS628428B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はN,N−ジ置換グリコールアミド又は
N,N−ジ置換オキサミン酸の製造方法に関し、
詳しくは、N,N−ジ置換ホルムアミドと金属ナ
トリウムとの反応により収率よく短時間でN,N
−ジ置換グリコールアミド又はN,N−ジ置換オ
キサミン酸を製造する方法を提供するものであ
る。 N,N−ジ置換グリコールアミドはポリマーの
安定剤あるいは溶剤として利用され工業的に有用
な化合物であるが、従来は一般に下式に示すよう
にヒドロキシ酢酸を出発物質として多段階法で合
成されていた。 しかしながら、上記の多段階法は工程が長く煩
雑であり、また塩化アセチルや塩化チオニル等の
刺激性が強く取扱いが困難な反応試薬を用いなけ
ればならないなどの欠点を有している。他方、
N,N−ジ置換ホルムアミドと金属ナトリウムと
の反応についてはエーテルまたはベンゼン中で加
熱反応させる手段が、例えばAngew.Chem.
Intern.ed.、951(1965)に記載されている。し
かしながら、従来のN,N−ジ置換ホルムアミド
と金属ナトリウムとの反応においてはN,N−ジ
置換グリコールアミドの生成、その純粋な単離に
ついては何ら言及されていない。 本発明者らはN,N−ジ置換ホルムアミドと金
属ナトリウムとの反応を金属ナトリウムと反応せ
ずしかも金属ナトリウムの融点よりも高い沸点を
有する有機溶媒中で加熱して行うことにより、反
応時間を著しく短縮して収率よくN,N−ジ置換
グリコールアミド又はN,N−ジ置換オキサミン
酸を得ることを見出し、本発明を提供するに至つ
たものである。 N,N−ジ置換ホルムアミドと金属ナトリウム
との反応は無溶媒下に加熱することによつて、反
応温度を十分に高くできるがN,N−ジ置換グリ
コールアミド又はN,N−ジ置換オキサミン酸を
得るには長時間を要する。またN,N−ジ置換ホ
ルムアミドと金属ナトリウムとをエーテルまたは
ベンゼン等の低沸点の溶媒中で加熱する場合は、
反応温度を十分に高くできずN,N−ジ置換グリ
コールアミド又はN,N−ジ置換オキサミン酸を
得るになお長時間を要する。本発明においては
N,N−ジ置換ホルムアミドと金属ナトリウムと
の反応を金属ナトリウムと反応せず、しかも金属
ナトリウムの融点よりも高い沸点を有する有機溶
媒中で加熱することにより、金属ナトリウムを容
易に融解でき反応時間を短縮して収率よくN,N
−ジ置換グリコールアミド又はN,N−ジ置換オ
キサミン酸を得ることができるのである。したが
つて、本発明においては金属ナトリウムが融解す
る温度まで加熱することが好ましい。金属ナトリ
ウムが融解する温度は、用いる有機溶媒、N,N
−ジ置換ホルムアミド等反応系により多少異なる
がほぼ100℃程度である。一般に加熱は80〜150℃
好ましくは90〜120℃の範囲で行なわれる。 150℃以上に加熱すると生成物の分解が起り好
ましくない。本発明で使用される有機溶媒は金属
ナトリウムと反応せずしかも金属ナトリウムの融
点よりも高い沸点を有するものであれば何ら制限
なく採用される。 例えば炭化水素類としてはトルエン、キシレ
ン、エチルベンゼン、メシチレン等のアルキルベ
ンゼン類およびオクタン、エチルシクロヘキサン
等の脂肪族炭化水素類、エーテル類としてはジオ
キサン、ブチルエーテル、アミルエーテル、ジグ
リム等が好適に用いられる。アルコール類、ハロ
ゲン化物、エステル類等の有機溶媒は金属ナトリ
ウムと反応する為採用できない。 本発明で用いられるN,N−ジ置換ホルムアミ
ドは一般式
The present invention relates to a method for producing N,N-disubstituted glycolamide or N,N-disubstituted oxamic acid,
Specifically, N,N is produced in high yield in a short time by the reaction of N,N-disubstituted formamide with sodium metal.
A method for producing a -disubstituted glycolamide or an N,N-disubstituted oxamic acid is provided. N,N-disubstituted glycolamide is an industrially useful compound that is used as a stabilizer or solvent for polymers, but it has conventionally been synthesized using a multistep method using hydroxyacetic acid as a starting material, as shown in the formula below. Ta. However, the above-mentioned multi-step method has drawbacks such as long and complicated steps and the need to use reaction reagents that are highly irritating and difficult to handle, such as acetyl chloride and thionyl chloride. On the other hand,
Regarding the reaction between N,N-disubstituted formamide and metallic sodium, a heating reaction in ether or benzene is described, for example, in Angew.Chem.
Intern.ed., 4 951 (1965). However, there is no mention of the production of N,N-disubstituted glycolamide or its pure isolation in the conventional reaction of N,N-disubstituted formamide with sodium metal. The present inventors succeeded in reducing the reaction time by heating the reaction between N,N-disubstituted formamide and metallic sodium in an organic solvent that does not react with metallic sodium and has a boiling point higher than the melting point of metallic sodium. The present inventors have discovered that N,N-disubstituted glycolamides or N,N-disubstituted oxamic acids can be obtained in high yields by significantly shortening the process, and have thus come to provide the present invention. The reaction temperature of N,N-disubstituted formamide and metallic sodium can be raised sufficiently by heating in the absence of a solvent. It takes a long time to obtain. In addition, when heating N,N-disubstituted formamide and metallic sodium in a low boiling point solvent such as ether or benzene,
Since the reaction temperature cannot be raised sufficiently, it takes a long time to obtain N,N-disubstituted glycolamide or N,N-disubstituted oxamic acid. In the present invention, the reaction between N,N-disubstituted formamide and metallic sodium is easily performed by heating in an organic solvent that does not react with metallic sodium and has a boiling point higher than the melting point of metallic sodium. N,N can be melted and the reaction time can be shortened with good yield.
-disubstituted glycolamides or N,N-disubstituted oxamic acids can be obtained. Therefore, in the present invention, it is preferable to heat the sodium metal to a temperature at which it melts. The temperature at which metallic sodium melts depends on the organic solvent used, N, N
-Disubstituted formamide etc. Although it varies somewhat depending on the reaction system, it is approximately 100°C. Generally heating is 80-150℃
The temperature is preferably 90 to 120°C. Heating above 150°C is undesirable because the product decomposes. The organic solvent used in the present invention may be used without any restriction as long as it does not react with metallic sodium and has a boiling point higher than the melting point of metallic sodium. For example, suitable examples of hydrocarbons include alkylbenzenes such as toluene, xylene, ethylbenzene, and mesitylene, and aliphatic hydrocarbons such as octane and ethylcyclohexane, and examples of ethers include dioxane, butyl ether, amyl ether, and diglyme. Organic solvents such as alcohols, halides, and esters cannot be used because they react with metallic sodium. The N,N-disubstituted formamide used in the present invention has the general formula

【式】で、R1,R2がメチル 基、エチル基、n−プロピル基等炭素数12以下の
直鎖或いは分岐のアルキル基、アリル基およびフ
エニル基より選ばれるものが好適であり、十分乾
燥させたものを用いる。金属ナトリウムは分散体
の形状で用いることが反応が容易に進み好まし
い。一般にN,N−ジ置換ホルムアミドは金属ナ
トリウムに対して過剰の割合で反応に供せられ
る。 以下本発明を実施例により説明するが、本発明
はこれらの実施例に限定されるものではない。な
お、本発明における収率は反応に供した金属ナト
リウムの重量に対するもので、実際に単離した生
成物の重量からモル数を算出し金属ナトリウム1
原子に対し目的生成物を1モル生成した場合を
100%として算出したものである。 実施例 1 N,N−ジメチルホルムアミド40mlとトルエン
120mlの混合物に金属ナトリウム2.55gを加え、
窒素気流中100℃の油浴上で約5分間加熱するこ
とによつて、金属ナトリウムは激しく泡を出して
溶解した。反応終了後は反応溶液を冷却し、水40
mlを加えてトルエン層を分離した。水層は300ml
のクロロホルムで抽出し、トルエン層とクロロホ
ルム層とを合わせて溶媒を留去した。残査を真空
蒸留(89℃/5mmHg)してN,N−ジメチルグ
リコールアミド1.28gを得た。収率は11.1%であ
つた。 クロロホルムでの抽出残の水溶液をカチオン交
換樹脂(H+型、ダウエツクス50W−X8、35×2.8
cm)カラムに通し溶出液300mlを得た。溶出液を
乾固しN,N−ジメチルオキサミン酸1.37gを得
た。収率は10.5%であつた。 比較例 1 N,N−ジメチルホルムアミド40mlとエーテル
120mlの混合物に金属ナトリウム3.18gを加え、
窒素気流中55℃の油浴上で加熱し還流すると金属
ナトリウムは3時間で溶解した。反応溶液を実施
例1と同様に処理し、N,N−ジメチルグリコー
ルアミド1.37g(収率9.6%)及びN,N−ジメ
チルオキサミン酸1.44g(収率8.9%)を得た。 比較例 2 N,N−ジメチルホルムアミド40mlとベンゼン
150mlの混合物に金属ナトリウム2.74gを加え、
窒素気流中90℃の油浴上で加熱し還流すると金属
ナトリウムは3.5時間で溶解した。 反応溶液を実施例1と同様に処理し、N,N−
ジメチルグリコールアミド0.91g(収率7.4%)
とN,N−ジメチルオキサミン酸1.14g(収率
8.2%)を得た。 比較例 3 N,N−ジメチルホルムアミド60mlに金属ナト
リウム2.88gを加え窒素気流中油浴上にて100℃
で加熱した。金属ナトリウムは約40分でほとんど
溶解した。反応溶液を実施例1と同様に処理し、
N,N−ジメチルグリコールアミド1.04g(収率
8.2%)およびN,N−ジメチルオキサミン酸
1.12g(収率7.8%)を得た。 実施例 2 N,N−ジエチルホルムアミド40mlとトルエン
120mlの混合物に金属ナトリウム2.76gを加え、
窒素気流中油浴上にて110℃で加熱すると金属ナ
トリウムは徐々に溶解し約5時間で反応は終了し
た。反応溶液を実施例1と同様に処理しN,N−
ジエチルグリコールアミド2.42g(収率15.3%)
とN,N−ジエチルオキサミン酸1.76g(収率
10.1%)を得た。 比較例 4 N,N−ジエチルホルムアミド40mlとベンゼン
150mlの混合物に金属ナトリウム3.11gを加え
て、窒素気流中、90℃の油浴上にて還流した。金
属ナトリウムは約2日間で溶解した。反応液を実
施例1と同様に処理し、N,N−ジエチルグリコ
ールアミド1.80g(収率10.1%)、N,N−ジエ
チルオキサミン酸1.67g(収率8.5%)を得た。 実施例 3 第1表に示した有機溶媒を用い、実施例1と同
様に反応処理しN,N−ジメチルグリコールアミ
ド、N,N−ジメチルオキサミン酸を得た。なお
N,N−ジメチルホルムアミドは40ml用い有機溶
媒は120ml用いた。結果は第1表に示す通りであ
つた。
In the formula, R 1 and R 2 are preferably selected from linear or branched alkyl groups having 12 carbon atoms or less, such as methyl, ethyl, and n-propyl groups, allyl groups, and phenyl groups. Use dried ones. It is preferable to use metallic sodium in the form of a dispersion because the reaction proceeds easily. Generally, N,N-disubstituted formamide is used in the reaction in excess of the amount of sodium metal. EXAMPLES The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples. Note that the yield in the present invention is based on the weight of metal sodium used in the reaction, and the number of moles is calculated from the weight of the actually isolated product.
When 1 mole of the desired product is produced per atom,
Calculated as 100%. Example 1 40ml of N,N-dimethylformamide and toluene
Add 2.55g of metallic sodium to 120ml of the mixture,
By heating on an oil bath at 100° C. in a nitrogen stream for about 5 minutes, the metallic sodium was dissolved with vigorous bubbling. After the reaction is complete, cool the reaction solution and add 40% water.
ml was added and the toluene layer was separated. Water layer is 300ml
The mixture was extracted with chloroform, and the toluene layer and chloroform layer were combined and the solvent was distilled off. The residue was vacuum distilled (89° C./5 mmHg) to obtain 1.28 g of N,N-dimethylglycolamide. The yield was 11.1%. The aqueous solution of the extraction residue with chloroform was treated with a cation exchange resin (H + type, Dowex 50W-X8, 35 x 2.8
cm) column to obtain 300 ml of eluate. The eluate was dried to obtain 1.37 g of N,N-dimethyloxamic acid. The yield was 10.5%. Comparative example 1 40ml of N,N-dimethylformamide and ether
Add 3.18g of metallic sodium to 120ml of the mixture,
When heated and refluxed on an oil bath at 55° C. in a nitrogen stream, the metallic sodium was dissolved in 3 hours. The reaction solution was treated in the same manner as in Example 1 to obtain 1.37 g (yield: 9.6%) of N,N-dimethylglycolamide and 1.44 g (yield: 8.9%) of N,N-dimethyloxamic acid. Comparative example 2 40ml of N,N-dimethylformamide and benzene
Add 2.74g of metallic sodium to 150ml of the mixture,
When heated and refluxed on a 90°C oil bath in a nitrogen stream, the metallic sodium was dissolved in 3.5 hours. The reaction solution was treated in the same manner as in Example 1, and N,N-
Dimethyl glycolamide 0.91g (yield 7.4%)
and 1.14 g of N,N-dimethyloxamic acid (yield
8.2%). Comparative Example 3 2.88 g of metallic sodium was added to 60 ml of N,N-dimethylformamide and heated at 100°C on an oil bath in a nitrogen stream.
heated with. Most of the metallic sodium dissolved in about 40 minutes. The reaction solution was treated as in Example 1,
N,N-dimethylglycolamide 1.04g (yield
8.2%) and N,N-dimethyloxamic acid
1.12g (yield 7.8%) was obtained. Example 2 40ml of N,N-diethylformamide and toluene
Add 2.76g of metallic sodium to 120ml of the mixture,
When heated at 110°C on an oil bath in a nitrogen stream, the metallic sodium gradually dissolved and the reaction was completed in about 5 hours. The reaction solution was treated in the same manner as in Example 1 to give N,N-
Diethyl glycolamide 2.42g (yield 15.3%)
and 1.76 g of N,N-diethyloxamic acid (yield
10.1%). Comparative example 4 40ml of N,N-diethylformamide and benzene
3.11 g of sodium metal was added to 150 ml of the mixture, and the mixture was refluxed on a 90° C. oil bath in a nitrogen stream. The metallic sodium was dissolved in about 2 days. The reaction solution was treated in the same manner as in Example 1 to obtain 1.80 g of N,N-diethylglycolamide (yield: 10.1%) and 1.67 g of N,N-diethyloxamic acid (yield: 8.5%). Example 3 Using the organic solvents shown in Table 1, the reaction was carried out in the same manner as in Example 1 to obtain N,N-dimethylglycolamide and N,N-dimethyloxamic acid. Note that 40 ml of N,N-dimethylformamide and 120 ml of organic solvent were used. The results were as shown in Table 1.

【表】【table】

Claims (1)

【特許請求の範囲】 1 N,N−ジ置換ホルムアミドと金属ナトリウ
ムを反応させてN,N−ジ置換グリコールアミド
又はN,N−ジ置換オキサミン酸を製造するに際
し、該反応を金属ナトリウムと反応せずしかも金
属ナトリウムの融点よりも高い沸点を有する有機
溶媒中で且つ加熱して行うことを特徴とするN,
N−ジ置換グリコールアミド又はN,N−ジ置換
オキサミン酸の製造方法。 2 有機溶媒がトルエン、キシレン等のアルキル
ベンゼン類である特許請求の範囲第1項記載の方
法。 3 有機溶媒がジオキサン、ブチルエーテル等の
エーテル類である特許請求の範囲第1項記載の方
法。 4 金属ナトリウムが融解する温度に加熱する特
許請求の範囲第1項記載の方法。 5 90〜130℃の加熱下で行う特許請求の範囲第
1項記載の方法。
[Claims] 1. When producing N,N-disubstituted glycolamide or N,N-disubstituted oxamic acid by reacting N,N-disubstituted formamide with metallic sodium, the reaction is reacted with metallic sodium. N, characterized in that it is carried out without heating in an organic solvent having a boiling point higher than the melting point of sodium metal,
A method for producing N-disubstituted glycolamide or N,N-disubstituted oxamic acid. 2. The method according to claim 1, wherein the organic solvent is an alkylbenzene such as toluene or xylene. 3. The method according to claim 1, wherein the organic solvent is an ether such as dioxane or butyl ether. 4. The method according to claim 1, wherein the sodium metal is heated to a temperature at which it melts. 5. The method according to claim 1, which is carried out under heating at 90 to 130°C.
JP9752977A 1977-08-16 1977-08-16 Preparation of n,n-disubstituted glycol amide Granted JPS5432417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9752977A JPS5432417A (en) 1977-08-16 1977-08-16 Preparation of n,n-disubstituted glycol amide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9752977A JPS5432417A (en) 1977-08-16 1977-08-16 Preparation of n,n-disubstituted glycol amide

Publications (2)

Publication Number Publication Date
JPS5432417A JPS5432417A (en) 1979-03-09
JPS628428B2 true JPS628428B2 (en) 1987-02-23

Family

ID=14194769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9752977A Granted JPS5432417A (en) 1977-08-16 1977-08-16 Preparation of n,n-disubstituted glycol amide

Country Status (1)

Country Link
JP (1) JPS5432417A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162304A1 (en) 2019-02-05 2020-08-13 住友ゴム工業株式会社 Rubber composition and tire

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101814921B1 (en) 2015-10-02 2018-01-04 스미또모 가가꾸 가부시키가이샤 Porous layer, laminated body, non-aqueous secondary battery member including porous layer, and non-aqueous secondary battery including porous layer
JP6430619B1 (en) 2017-12-19 2018-11-28 住友化学株式会社 Non-aqueous electrolyte secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162304A1 (en) 2019-02-05 2020-08-13 住友ゴム工業株式会社 Rubber composition and tire

Also Published As

Publication number Publication date
JPS5432417A (en) 1979-03-09

Similar Documents

Publication Publication Date Title
JPS6035038A (en) Stabilizer composition for polymer
TW201040152A (en) Method for preparing ascorbic acid derivatives
JPS628428B2 (en)
JPS5949207B2 (en) Diene manufacturing method
CN117402104A (en) Preparation method of chiral intermediate of atorvastatin
WO2003014067A1 (en) PROCESS FOR PRODUCING ß-OXONITRILE COMPOUND OR ALKALI METAL SALT THEREOF
JP4399262B2 (en) Process for producing beta-ketophosphonate
JPS609490B2 (en) Production method of cyclohexanedione-(1,3)
JP4032861B2 (en) Process for producing β-oxonitrile derivative or alkali metal salt thereof
JP2691995B2 (en) Method for producing 2-fluoro-5-halogenoisophthalonitrile and 2-fluoro-5-halogenoisophthalic acid
US2569423A (en) Process fob preparing phenoxtalktl
JPH0480910B2 (en)
JPS637170B2 (en)
JP3727093B2 (en) Method for producing 2-oxocyclopentanecarboxylic acid ester
JPS59101437A (en) Manufacture of fluorene-9-carboxylic acid
US2769814A (en) Process for making dialkyl (3-indolyl-methyl) malonates
JPS6120540B2 (en)
US3903129A (en) Catalytic process for the preparation of thiocarbamic acid esters
JP6723817B2 (en) Method for producing (trifluoromethyl)malonic acid ester
JPH0525876B2 (en)
JP2024509536A (en) Method for preparing alkyl 4-oxotetrahydrofuran-2-carboxylate
CA1090359A (en) Process for preparing a 6,6,6-trichloro-4-hexenoate
JPS647982B2 (en)
JP2022536218A (en) Malathion catalyzed environmentally friendly production method
JP2024509535A (en) Method for preparing alkyl 4-oxotetrahydrofuran-2-carboxylate