JPS6284257A - Combustion controller of hot water supplier - Google Patents

Combustion controller of hot water supplier

Info

Publication number
JPS6284257A
JPS6284257A JP60223792A JP22379285A JPS6284257A JP S6284257 A JPS6284257 A JP S6284257A JP 60223792 A JP60223792 A JP 60223792A JP 22379285 A JP22379285 A JP 22379285A JP S6284257 A JPS6284257 A JP S6284257A
Authority
JP
Japan
Prior art keywords
output
differential
integral
circuit
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60223792A
Other languages
Japanese (ja)
Inventor
Kiyoshi Sakurazawa
桜沢 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GASUTAA KK
Gastar Co Ltd
Original Assignee
GASUTAA KK
Gastar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GASUTAA KK, Gastar Co Ltd filed Critical GASUTAA KK
Priority to JP60223792A priority Critical patent/JPS6284257A/en
Publication of JPS6284257A publication Critical patent/JPS6284257A/en
Pending legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

PURPOSE:To improve an excessive overshoot at the time of excessive overshooting at the time of cold starting and also to improve an excessive undershoot at the time of resupplying hot water by forcibly rewinding an integral action circuit when the output from a differential action circuit exceeds the reference value. CONSTITUTION:When a fuel is ignited and the detected temperature begins to rapidly rises up, a large differential action output is produced in a differential amlifier 8. When a diferential value comparator 12 detects that this variation is larger than a reference level, an integral action rewind circuit 13 is actuated to use an integral action output from an integral amplifier 9 temporarily as a proportional action output. By this procedures, the fuel which is burning at maximum is controlled to a value determined by the proportional output from a proportional amplifier 7 and an integral amplifier 9 and as output from a differential amplifier 8, and thereafter the fuel burning is controlled by the integral output and the differential output in accordance with the variation of the hot water temperature.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、給湯器の燃焼を比例制御するだめの燃焼制御
装置、詳しくは、湯温を設定温度に維持するため、所望
とする設定温度と検出湯温とを比較し、その比較結果に
基づいて燃料供給量を比例制御するI) I D制御回
路を備えた給湯器の燃焼制御装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a combustion control device for proportionally controlling the combustion of a water heater, and more specifically, to maintain the temperature of hot water at a set temperature. This invention relates to a combustion control device for a water heater equipped with an I)ID control circuit that compares the detected hot water temperature with the detected hot water temperature and proportionally controls the fuel supply amount based on the comparison result.

〔従来の技術〕[Conventional technology]

この種の燃焼制御装置においては、省エネルギーの観点
から、設定温度と検出温度との偏差に対して燃料供給量
すなわち供給熱量を自動調節可能なPID制御手段が採
用されている。
In this type of combustion control device, from the viewpoint of energy saving, PID control means is employed which can automatically adjust the amount of fuel supply, that is, the amount of heat supplied, depending on the deviation between the set temperature and the detected temperature.

第4図はその基本構成を示すブロック図である。FIG. 4 is a block diagram showing its basic configuration.

同図において、lは制御対象である瞬間ガス湯沸器、2
は同湯沸器に対しガスを供給する比例弁を示し、湯沸器
の出湯温度をサーミスタなどの検出部3によって検出し
、その検出温度を温度検出回路4によって電圧として取
出し、その値と設定回路5に設定した値とを偏差検出回
路6によって比較し、その差に基づいて制御出力を作シ
出す。
In the figure, l is an instantaneous gas water heater to be controlled; 2
indicates a proportional valve that supplies gas to the water heater; the hot water temperature of the water heater is detected by a detection unit 3 such as a thermistor, the detected temperature is extracted as a voltage by a temperature detection circuit 4, and the value and setting are A deviation detection circuit 6 compares the value set in the circuit 5 and generates a control output based on the difference.

制御出力は、比例・微分アンプ7(8)によって比例動
作出力と微分動作出力をつくり出し、積分アンプ9によ
って積分動作出力をつくり出し、これらの各出力は加算
アンプ10で合成されて比例操作回路11に入力され、
その出力によって比例弁2が開閉されて燃料がコントロ
ールされる。
As for the control output, a proportional/differential amplifier 7 (8) generates a proportional operation output and a differential operation output, an integral amplifier 9 generates an integral operation output, and these outputs are combined by an summing amplifier 10 and sent to a proportional operation circuit 11. entered,
The output opens and closes the proportional valve 2 to control the fuel.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述の如きPID燃焼制御装置を備えた給湯器は、通常
の使用時には大きな支障はないが、コールドスタート時
には過大なオーバーシュートが発生し、短時間にくシ返
して使用する再出湯時には過大なアンダーシュートが発
生するという問題がある。
Water heaters equipped with PID combustion control devices as described above do not have any major problems during normal use, but excessive overshoot occurs during cold starts, and excessive undershoot occurs when hot water is re-discharged after being turned over for a short period of time. There is a problem that shoots occur.

すなわち、水の状態から瞬間湯沸器を使用する場合にお
いては、検出温度と設定温度との偏差は当然大きな値を
示す。このような状態で瞬間湯沸器を使用するため水栓
を開くと流水スイッチが入シ、自動制御回路に電力が供
給されて燃焼制御装置は動作状態となる。
That is, when using an instantaneous water heater due to the state of the water, the deviation between the detected temperature and the set temperature naturally shows a large value. When the faucet is opened to use the instantaneous water heater in such a state, the water flow switch is turned on, power is supplied to the automatic control circuit, and the combustion control device becomes operational.

燃焼制御装置が動作状態になると、比例アンプ7からは
水温−と設定温度によって定まった出力を、微分アンプ
8からは湯温の変化速度に比例しかつ湯温の変化の方向
と逆方向の出力を生ずるが、燃料が供給されて点火する
までは温度変化がないので出力は設定値基準電圧を示す
。積分アンプ9は最初入力電圧と同一電圧で出力され、
積分アンプの負帰還コンデンサへの充電速速度に合せて
急速に最尚限界出力になる。
When the combustion control device is in operation, the proportional amplifier 7 outputs an output determined by the water temperature - and the set temperature, and the differential amplifier 8 outputs an output proportional to the rate of change of the hot water temperature and in the opposite direction to the change direction of the hot water temperature. However, since there is no temperature change until fuel is supplied and ignition occurs, the output shows the set value reference voltage. Integrating amplifier 9 initially outputs the same voltage as the input voltage,
Depending on the charging speed of the integrating amplifier's negative feedback capacitor, the output will quickly reach its lowest limit.

一方、流水スイッチが入るとファンが回転し、燃焼室の
パージ時間(通常は約2秒)後点火動作に入る。この間
1.短時間ではあるが温度偏差が大きく、かつ、積分ア
ンプの負帰還回路の時定数はきわめて短かいので、それ
が短時間であっても燃焼制御装置からは最大ガス量を指
示する限界出力が生ずる。
On the other hand, when the water flow switch is turned on, the fan rotates, and after the combustion chamber purge time (usually about 2 seconds), ignition begins. During this time 1. Although the temperature deviation is large for a short period of time, and the time constant of the negative feedback circuit of the integrating amplifier is extremely short, the combustion control device generates a limit output that indicates the maximum gas amount even for a short period of time. .

このため、点火動作後、点火確認回路で点火が確認され
ると、直ちに最大燃焼状態となる。そして、燃料が燃焼
を始めると出湯温度が上昇し、これに従って比例アンプ
7は出力が減少し、微分アンプ8は燃料を減らす方向に
出力が生ずるが、積分アンプ9は限界出力を出し続け、
検出温度が設定温度に極めて近づいたとき始めて出力が
減少し始める。
Therefore, after the ignition operation, when ignition is confirmed by the ignition confirmation circuit, the maximum combustion state is reached immediately. Then, when the fuel starts to burn, the hot water temperature rises, and accordingly the output of the proportional amplifier 7 decreases, and the differential amplifier 8 generates an output in the direction of reducing the amount of fuel, but the integral amplifier 9 continues to output its limit output,
Only when the detected temperature gets very close to the set temperature does the output start to decrease.

すなわち、積分動作回路9は、増幅率100dBを起え
るオペアンプが抵抗入力、コンデンサ負帰還回路で作用
し、負帰還コンデンサが限界出力で充電されてしまうと
負帰還がか\らず、設定温度と検出湯温との温度差が極
めて小さい差であっても限界出力を出し続け(積分動作
回路が固定された状態となる)このため、出湯温度が設
定温度を越えて燃料が減らされても、熱交換器の熱容量
によって出湯温度は上昇を続けて大きなオーバーシュー
トを生ずる。この状態を第5図に示す。なお、第5図に
おいて、点線はガス量、実線は出湯温度を示し、この図
は50°Cに設定した場合で、最高出湯温度は75°C
にも達している。
That is, in the integral operation circuit 9, an operational amplifier that generates an amplification factor of 100 dB acts with a resistor input and a capacitor negative feedback circuit, and if the negative feedback capacitor is charged at the limit output, negative feedback will not occur and the set temperature will not reach the set temperature. Even if the temperature difference between the detected hot water temperature and the detected hot water temperature is extremely small, the limit output will continue to be output (the integral operation circuit will be in a fixed state), so even if the hot water temperature exceeds the set temperature and the fuel is reduced, The hot water temperature continues to rise due to the heat capacity of the heat exchanger, causing a large overshoot. This state is shown in FIG. In Figure 5, the dotted line shows the gas amount, and the solid line shows the hot water temperature.This figure shows the case where the temperature is set at 50°C, and the maximum hot water temperature is 75°C.
It has also reached

上記の例の如く、積分動作回路が限界出力を出し続ける
のは、短時間内にくり返して使用する再出湯時において
も同様である。すなわち、再出湯時には、後沸き現象に
よって当初の出湯温度は設定温度よりもはるかに高温と
なシ、給湯器に供給される燃料は最小値となって過大な
アンダーシュートが発生する。
As in the above example, the integral operation circuit continues to output the limit output even when the hot water is re-dispensed and used repeatedly within a short period of time. That is, when hot water is re-discharged, the initial discharge temperature is much higher than the set temperature due to the after-boiling phenomenon, and the fuel supplied to the water heater becomes the minimum value, resulting in excessive undershoot.

前記の如き問題点を改善するため1強制的な燃料カット
方式や、ポストハイロット時間の延長などの方策がとら
れているが、これらの方式はPID制御の本質的改善で
はなく、対象療法であるため、良好な特性を有するもの
ではなく、最近では前記フィードバック制御にフィード
フォワード制御を附加することによって特性の改善を計
ろうとしているが、コスト扁となるばかシでなく、十分
なものではない。
In order to improve the above-mentioned problems, measures such as forced fuel cut-off methods and extension of post-high-lot time have been taken, but these methods do not improve the essential PID control, but rather improve the target therapy. Therefore, it does not have good characteristics, and recently attempts have been made to improve the characteristics by adding feedforward control to the feedback control, but it is not a fool's errand and is not sufficient. .

本発明は、前記の如き従来技術の問題点を改善し、簡単
なフィードバック方式のPID制御であシ乍ら、コール
ドスタート時における過大なオーバーシュートおよび再
出湯時における過大なアンダーシュートを改善すること
ができる燃焼制御装置を提供せんとするものである。
The present invention improves the problems of the prior art as described above, and improves the excessive overshoot at the time of cold start and the excessive undershoot at the time of re-releasing hot water, while using simple feedback type PID control. The purpose is to provide a combustion control device that can perform

〔問題点を改善するための手段〕[Means to improve problems]

本発明は、前記の如き目的を達成するため、PID制御
回路の積分動作回路を微分動作回路の出力によってリワ
インドさせるための微分値比較器とその微分値比較器の
出力が基準値を超えたとき動作する積分動作リワインド
回路とを付加し、微分動作回路の出力が基準値を超える
と強制的に積分動作回路をリワインドさせるようにした
ことを特徴とする特 〔作用〕 積分動作回路が限界出力を出し続ける状態においても、
点火されると湯温の変化が起り、これにより微分動作回
路の出力が変化するので、その変化を微分値比較器で検
知し、それがある値以上であるときに積分動作リワイン
ド回路を働らかせて積分動作回路を初期動作状態に引き
戻す。
In order to achieve the above object, the present invention provides a differential value comparator for rewinding the integral operation circuit of the PID control circuit by the output of the differential operation circuit, and when the output of the differential value comparator exceeds a reference value. The feature is that an integral operation rewind circuit that operates is added, and the integral operation circuit is forcibly rewinded when the output of the differential operation circuit exceeds a reference value. Even in a state where it continues to be released,
When the water is ignited, the temperature of the water changes, which causes the output of the differential operation circuit to change. This change is detected by a differential value comparator, and when the value exceeds a certain value, the integral operation rewind circuit is activated. Then, the integral operation circuit is returned to its initial operation state.

〔実施例〕〔Example〕

次に、第1図ないし第3図に基づいて本発明の実施の一
例を説明する。
Next, an example of the implementation of the present invention will be described based on FIGS. 1 to 3.

第1図は本発明燃焼制御装置のブロック図、第2図はそ
の具体例を示す回路図、第3図は動作説明図である。
FIG. 1 is a block diagram of the combustion control device of the present invention, FIG. 2 is a circuit diagram showing a specific example thereof, and FIG. 3 is an operation explanatory diagram.

これらの図において、lは制御対象である瞬間ガス湯沸
器、2はガス用の比例弁、3はサーミスタなどの検出部
、4は温度検出回路、5は設定回路、6は検出された湯
温と設定回路5に設定した温度との偏差検出回路、7は
比例アンプ、8は微分アンプ、9は積分アンプ、10は
加算アンプ%11は比例操1!回路を示し、これらの構
成は第4図に示す従来例と実質的に同一である。
In these figures, l is the instantaneous gas water heater to be controlled, 2 is a proportional valve for gas, 3 is a detection unit such as a thermistor, 4 is a temperature detection circuit, 5 is a setting circuit, and 6 is a detected hot water heater. A deviation detection circuit between the temperature and the temperature set in the setting circuit 5, 7 is a proportional amplifier, 8 is a differential amplifier, 9 is an integral amplifier, 10 is an addition amplifier %11 is a proportional operation 1! 4 shows a circuit whose configuration is substantially the same as the conventional example shown in FIG.

本発明においては、前記微分アンプ8の出力を微分値比
較器12によシ検出し、その出力がある基準値を超えた
とき、動作する積分動作リワインド回路13を積分アン
プ9に付設する。具体的に云うと、第2図に示す如く、
微分値比較器12の出力によって動作するPETなどの
スイッチを積分アンプ9の負帰還コンデンサCと並列に
接続し、FETがオンしたときにコンデンサCを放電さ
せて積分アンプ9を初期動作状態に引き戻すようにする
。また。
In the present invention, the output of the differential amplifier 8 is detected by a differential value comparator 12, and an integral operation rewind circuit 13 is attached to the integral amplifier 9, which operates when the output exceeds a certain reference value. Specifically, as shown in Figure 2,
A switch such as a PET operated by the output of the differential value comparator 12 is connected in parallel with the negative feedback capacitor C of the integrating amplifier 9, and when the FET is turned on, the capacitor C is discharged to return the integrating amplifier 9 to its initial operating state. Do it like this. Also.

このリワインドのだめのスイッチと直列に抵抗Rを接続
して、スイッチFBTがオン状態のときに積分アンプ9
を比例動作回路として働かせ、本来の比例アンプ7と合
せて比例帯を狭める動作をさせるようにする。
A resistor R is connected in series with this rewind stop switch, and when the switch FBT is on, the integrating amplifier 9
is made to work as a proportional operation circuit, and together with the original proportional amplifier 7, it is made to operate to narrow the proportional band.

このようにすると、微分アンプ8の出力を微分値比較器
12で比較し、それが基準レベルよシ外れたときFET
のゲートに電圧をかけてFETをオン状態として、積分
アンプ9のコンデンサCを放電させ、また、積分アンプ
9を比例動作回路となるようにする。
By doing this, the output of the differential amplifier 8 is compared with the differential value comparator 12, and when it is out of the reference level, the FET
A voltage is applied to the gate of the FET to turn it on, discharging the capacitor C of the integrating amplifier 9, and making the integrating amplifier 9 a proportional operation circuit.

微分出力レベルを比較する基準値は、熱変換器の特性に
よって定まるPID動作各々の受もたせ方によって変化
するので、実験によってより良い特性が得られるレベル
に設定する。
The reference value with which the differential output level is compared changes depending on how each PID operation is received, which is determined by the characteristics of the thermal converter, and is therefore set at a level at which better characteristics can be obtained through experiments.

本発明の燃焼制御装置は、上記の如く構成されているの
で、例えばコールドスタート時に、燃焼に点火されるま
では第4図に示す従来例と同様に動作するが、燃料に点
火されて検出温度が急速に上昇し始めると、微分アンプ
8は大きな微分動作出力が生じ、この微分アンプの動作
出力の変化が基準レベルより大きいことを微分値比較器
12で検出すると、積分動作リワインド回路13を動作
させて積分アンプ9からの積分動作出力を一時的に比例
動作出力とする。これによって、最大で燃焼していた燃
料は温度上昇の初期に比例アンプ7、積分アンプ9から
の比例出力と、微分アンプ8からの出力によって定めら
れた燃料にコントロールされ、以後湯温の変化に応じた
積分出力、微分出力により燃料はコントロールされる。
Since the combustion control device of the present invention is configured as described above, it operates in the same manner as the conventional example shown in FIG. When the differential amplifier 8 starts to rise rapidly, a large differential operation output is generated, and when the differential value comparator 12 detects that the change in the operation output of the differential amplifier is larger than the reference level, the integral operation rewind circuit 13 is activated. As a result, the integral operation output from the integral amplifier 9 is temporarily made into a proportional operation output. As a result, the fuel that was being burned at maximum is controlled to the fuel determined by the proportional output from the proportional amplifier 7 and the integral amplifier 9 and the output from the differential amplifier 8 at the beginning of the temperature rise, and from then on due to changes in the hot water temperature. The fuel is controlled by the corresponding integral output and differential output.

そして、コントロールされている燃料に応じた湯温に近
づき、湯温の変化速度が小さくなると、微分アンプ8か
らの微分出力は小さくなシ、微分値比較器12が基準レ
ベルよシも小さくなった微分動作出力を検知すると、積
分動作リワインド回路13を停止させて積分アンプを正
常な動作に戻す。
Then, as the hot water temperature approaches the temperature corresponding to the controlled fuel and the rate of change in hot water temperature decreases, the differential output from the differential amplifier 8 becomes smaller, and the differential value comparator 12 becomes smaller than the reference level. When the differential operation output is detected, the integral operation rewind circuit 13 is stopped to return the integral amplifier to normal operation.

このように、本発明の燃焼制御装置は、湯温の変化が起
シ始めると、すぐに積分動作回路からの限界出力が解除
されて比例、微分の動作を始め、燃料がコントロールさ
れるので、小さなオーバーシュートで設定温度におさえ
ることができる。これを図に示すと第3図に示すとおり
′である。なお、第3図において、点線はガス量、実線
は出湯温度を示し、設定温度を50’Cにした場合であ
る。
As described above, in the combustion control device of the present invention, as soon as the hot water temperature starts to change, the limit output from the integral operation circuit is released and proportional and differential operations are started to control the fuel. The temperature can be kept at the set temperature with a small overshoot. This is illustrated in Figure 3. In addition, in FIG. 3, the dotted line shows the gas amount, and the solid line shows the tapping temperature, when the set temperature is 50'C.

このように、本発明は、比較的大きな温度変化によって
生ずる微分動作回路の大きな出力によって限界出力を生
じていた積分動作回路をリワインドして、PID制御回
路を正常な動作状態とし、極めて特性の良い燃焼制御を
行なわせることができる。
As described above, the present invention rewinds the integral operation circuit which has produced a marginal output due to the large output of the differential operation circuit caused by a relatively large temperature change, brings the PID control circuit into a normal operation state, and achieves extremely good characteristics. Combustion control can be performed.

先に述べたような積分動作回路が限界出力を出すケース
は、コールドスタート時の他に、瞬間湯沸器を短時間の
うちに繰シ返して使用する再出湯時にも生ずる。すなわ
ち、再出湯時には後沸き温度を検知して最小燃料供給量
にする限界出力を出し、前述と陶様になるので、設定温
度よシ大きく低温側に偏った湯温となってシャワー使用
時などでは湯から一時的に水に変るような不快な状態が
生ずる。また、水量の少ない場合で低い出湯温度で湯を
使用しようとする場合、最低限界量に達すると前述と同
様にしてサイクリング現象を生ずる。
The above-mentioned case where the integral operation circuit produces the limit output occurs not only at the time of cold start but also at the time of re-dispensing hot water when the instantaneous water heater is used repeatedly within a short period of time. In other words, when hot water is re-discharged, the after-boiling temperature is detected and the limit output is output to minimize the amount of fuel supplied, and as described above, the water temperature is significantly biased towards the lower temperature side than the set temperature, such as when using a shower. This creates an unpleasant situation where hot water temporarily turns into water. In addition, when the amount of water is small and the hot water is used at a low outlet temperature, when the minimum limit amount is reached, a cycling phenomenon occurs in the same manner as described above.

これらの現象は、すべて本発明によって改善することが
できる。
All of these phenomena can be improved by the present invention.

〔発明の効果〕〔Effect of the invention〕

以上述べたように1本発明は、コールドスタート時する
いは再出湯時のように、積分動作回路が最大燃料供給i
jk″または最少燃料供給量の限界出力にはりつけられ
た状態のとき、積分動作回路を一時的にリワインドさせ
てPID制御回路を正常な動作状態とし、特性の良好な
燃焼制御を行なうことができる。
As described above, one aspect of the present invention is that the integral operation circuit operates at maximum fuel supply i.
jk'' or the limit output of the minimum fuel supply amount, the integral operation circuit is temporarily rewinded to bring the PID control circuit into a normal operating state, and combustion control with good characteristics can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発廚の一実施例を示すブロック図、第2図は
同じく回路図、第3図はガス量と出湯温度を示す説明図
である。第4図は従来装置のブロック図、第5図は従来
のガス量と出湯温度を示す説明図である。 l・・・瞬間ガス湯沸器、2・・・ガス用の比例弁、3
・・・湯温検出部、4・・・温度検出回路、5・・・設
定回路、6・・・偏差検出回路、7・・・比例アンプ、
8・・・微分アンプ、9・・・積分アンプ、10・・・
カロ算アンプ、11・・・比例操作回路、ル・・・微分
値比較器、13・・・積分動作リワインド回路。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a circuit diagram, and FIG. 3 is an explanatory diagram showing gas amount and hot water temperature. FIG. 4 is a block diagram of a conventional device, and FIG. 5 is an explanatory diagram showing a conventional gas amount and hot water temperature. l... Instantaneous gas water heater, 2... Proportional valve for gas, 3
... Hot water temperature detection section, 4 ... Temperature detection circuit, 5 ... Setting circuit, 6 ... Deviation detection circuit, 7 ... Proportional amplifier,
8... Differential amplifier, 9... Integral amplifier, 10...
Calorie calculation amplifier, 11... Proportional operation circuit, Le... Differential value comparator, 13... Integral operation rewind circuit.

Claims (1)

【特許請求の範囲】[Claims] 所望とする設定温度と検出湯温との比較結果に基づいて
燃料供給量を自動制御するPID制御回路を備えた給湯
器の燃焼制御装置において、前記PID制御回路の積分
動作回路を微分動作回路の出力によつてリワインドさせ
るための微分値比較器とその微分値比較器の出力が基準
値を超えたとき動作する積分動作リワインド回路とを付
加したことを特徴とする給湯器の燃焼制御装置。
In a combustion control device for a water heater equipped with a PID control circuit that automatically controls a fuel supply amount based on a comparison result between a desired set temperature and a detected hot water temperature, an integral operation circuit of the PID control circuit is replaced with a differential operation circuit. 1. A combustion control device for a water heater, comprising: a differential value comparator for rewinding according to the output; and an integral operation rewind circuit that operates when the output of the differential value comparator exceeds a reference value.
JP60223792A 1985-10-09 1985-10-09 Combustion controller of hot water supplier Pending JPS6284257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60223792A JPS6284257A (en) 1985-10-09 1985-10-09 Combustion controller of hot water supplier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60223792A JPS6284257A (en) 1985-10-09 1985-10-09 Combustion controller of hot water supplier

Publications (1)

Publication Number Publication Date
JPS6284257A true JPS6284257A (en) 1987-04-17

Family

ID=16803784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60223792A Pending JPS6284257A (en) 1985-10-09 1985-10-09 Combustion controller of hot water supplier

Country Status (1)

Country Link
JP (1) JPS6284257A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58213149A (en) * 1982-06-04 1983-12-12 Matsushita Electric Ind Co Ltd Temperature-controlling method of hot water supplying device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58213149A (en) * 1982-06-04 1983-12-12 Matsushita Electric Ind Co Ltd Temperature-controlling method of hot water supplying device

Similar Documents

Publication Publication Date Title
JPH07234014A (en) Hot water supplying apparatus
JPS6284257A (en) Combustion controller of hot water supplier
JPS60245947A (en) Hot-water supply control device
JPH0113016B2 (en)
JP2570568B2 (en) How to operate the water heater
JPH09318153A (en) Hot-water supplier
JPH0142764Y2 (en)
JPH07243700A (en) Method for controlling temperature of hot water feeding device
JP3384855B2 (en) Hot water heater and its hot water temperature control method
JP3240203B2 (en) Water heater and its combustion control method
JP2576351B2 (en) Water heater
JP3166459B2 (en) Water heater
JPS60159554A (en) Control device for hot-water supplier
JP3226842B2 (en) Water heater
JP3315209B2 (en) Control method of rising water amount at the time of re-water supply in water heater
JP3144729B2 (en) Circulating warm water heater
JPH0615257Y2 (en) Cold / hot shower device
JP2616694B2 (en) Water heater overflow prevention device
JP3161132B2 (en) Water heater
JPH07127909A (en) Hot water supply heater
JPH0416690B2 (en)
JPH0713541B2 (en) Water amount control device for water heater
JPH01169269A (en) On-off combustion controller for hot water supply device
JPH07190395A (en) Hot water supply heater
JPH06288627A (en) Water heater