JPS628363Y2 - - Google Patents

Info

Publication number
JPS628363Y2
JPS628363Y2 JP9872979U JP9872979U JPS628363Y2 JP S628363 Y2 JPS628363 Y2 JP S628363Y2 JP 9872979 U JP9872979 U JP 9872979U JP 9872979 U JP9872979 U JP 9872979U JP S628363 Y2 JPS628363 Y2 JP S628363Y2
Authority
JP
Japan
Prior art keywords
throttle valve
air flow
passage
sensor
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9872979U
Other languages
Japanese (ja)
Other versions
JPS5617356U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9872979U priority Critical patent/JPS628363Y2/ja
Publication of JPS5617356U publication Critical patent/JPS5617356U/ja
Application granted granted Critical
Publication of JPS628363Y2 publication Critical patent/JPS628363Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は内燃機関に供給する混合気の空燃比を
適正に制御するために必要な吸入空気量を高精度
に検出する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for highly accurately detecting the amount of intake air necessary for appropriately controlling the air-fuel ratio of the air-fuel mixture supplied to an internal combustion engine.

例えば、自動車用ガソリン機関の燃料供給装置
として使用されている電子燃料噴射量制御システ
ムでは、運転条件に応じた適正空燃比の混合気を
供給するために、空気流量センサを使用して空気
流量を直接検知するか、又は、吸入負圧センサを
使用して吸入負圧と機関回転速度とに基づいて空
気流量を間接的に算出していた。又、近年では、
吸気絞り弁の開度を検出し、この絞り弁の開度と
機関回転速度とに基づいて空気流量を算出する方
法も提案されている(昭和53年8月 日産自動車
株式会社発行 NISSANサービス周報第360号
(Z−11)抜粋参照。) ところが、自動車用機関のように吸入空気の最
小流量と最大流量との比が極めて大きくなる場合
には、吸入空気量検出精度を細かくしてすべての
領域にわたり空気流量を高精度に検出することが
困難であるので、空気流量センサを全運転領域に
わたつて使用した場合は、高速高負荷領域での検
出精度が満たされても実際には微小変動するアイ
ドリング付近の空気流量の検出精度が非常に悪く
なつており、逆に低速低負荷領域で検出精度をマ
ツチングした場合には高速高負荷領域の検出量が
過大となつて損傷し易くなり或いは測定能力を超
えて測定精度が悪化するか測定能力が過敏となつ
てノイズをも拾つてしまうこととなる。例えば空
気流量センサが通路抵抗式エアフロメータの場合
には過大空気流の変化によりオーバーシユートし
易くなり、カルマン渦式エアフロメータの場合に
はカルマン渦発生周波数が極めて大となるからカ
ルマン渦検出能力を高精度にしなければならず、
熱線式エアフロメータの場合には過冷却になるお
それがあり、これらの不都合を払拭する構造にす
るにはコスト高になり過ぎる。
For example, an electronic fuel injection amount control system used as a fuel supply device for automobile gasoline engines uses an air flow sensor to control the air flow rate in order to supply a mixture with an appropriate air-fuel ratio depending on the driving conditions. The air flow rate is either directly detected or indirectly calculated based on the suction negative pressure and engine rotation speed using a suction negative pressure sensor. Also, in recent years,
A method has also been proposed in which the opening degree of the intake throttle valve is detected and the air flow rate is calculated based on the opening degree of the intake throttle valve and the engine speed (August 1978, published by Nissan Motor Co., Ltd., NISSAN Service Bulletin No. (See excerpt from No. 360 (Z-11).) However, in cases where the ratio between the minimum flow rate and the maximum flow rate of intake air is extremely large, such as in automobile engines, the accuracy of intake air amount detection is finely adjusted to cover all areas. Since it is difficult to detect air flow rate with high precision over a wide range of conditions, if an air flow sensor is used over the entire operating range, even if the detection accuracy is met in the high-speed, high-load range, there will actually be slight fluctuations. The detection accuracy of air flow rate near idling has become very poor, and conversely, if the detection accuracy is matched in the low speed and low load area, the detected amount in the high speed and high load area will be excessive, which may easily cause damage or reduce the measurement ability. If this value is exceeded, the measurement accuracy will deteriorate or the measurement ability will become too sensitive and pick up noise. For example, if the air flow sensor is a passage resistance type air flow meter, overshoot is likely to occur due to changes in excessive air flow, and if the air flow sensor is a Karman vortex type air flow meter, the Karman vortex generation frequency is extremely high, so the Karman vortex detection capability is must be made highly accurate,
In the case of a hot wire airflow meter, there is a risk of overcooling, and a structure that eliminates these disadvantages would be too expensive.

又、機関に排気還流装置を設けた場合は、排気
の還流量によつて吸入負圧が異なるので、吸入負
圧センサを適用しにくいという欠点があつた。他
方特開昭49−58224号公報にみられるように絞り
開度センサを用いるものではアイドリング付近で
絞り弁開度に対する吸気量変動が高負荷領域より
も極端に大きく、例えば絞り弁の開度が1゜変化
すると絞り弁を通過する空気量が倍位になるの
で、極めて高精度の角度検出能力を持つ絞り弁開
度センサを使用する必要がありしかもたとえ高精
度の絞り弁開度センサを設けても、排気の還流
量、絞り弁のバルブクリアランスのバラツキの影
響を受けて空気流量が大巾に変動するので、吸入
空気量を高精度に検出できるとはいえなかつた。
Furthermore, when the engine is provided with an exhaust gas recirculation device, the suction negative pressure varies depending on the amount of exhaust gas recirculated, so there is a drawback that it is difficult to apply a suction negative pressure sensor. On the other hand, as seen in Japanese Patent Laid-Open No. 49-58224, in which a throttle opening sensor is used, the intake air amount fluctuation with respect to the throttle valve opening near idling is extremely larger than in the high load region. If the angle changes by 1°, the amount of air passing through the throttle valve doubles, so it is necessary to use a throttle valve opening sensor with extremely high precision angle detection capability. However, since the air flow rate fluctuates widely due to the influence of the exhaust gas recirculation amount and variations in the valve clearance of the throttle valve, it is not possible to detect the intake air amount with high accuracy.

本考案は、上記に鑑みてなされたものであつ
て、低速低負荷領域ではプライマリ通路に配設し
た空気流量センサを用いて吸入空気量を狭い領域
で精度良く検知すると共に、排気還流及び絞り弁
クリアランスのバラツキ等の影響が減少する高速
高負荷領域ではプライマリ通路及びセカンダリ通
路に介装した吸気絞り弁を連動機構を介して連結
し、このうち一方の吸気絞り弁の開度から吸入空
気量を間接的に検出し、これらの組合わせによつ
て機関の全運転領域に亘り吸入空気量を高精度に
検出せしめ、以て混合気の空燃比の制御精度を向
上させて機関の出力特性、排気特性及び燃料消費
率等を改善しようとするものである。
The present invention was developed in view of the above, and uses an air flow sensor installed in the primary passage to accurately detect the amount of intake air in a narrow area in the low speed and low load area, and also detects the amount of intake air in the exhaust recirculation and throttle valve. In high-speed, high-load areas where the effects of clearance variations, etc. are reduced, the intake throttle valves installed in the primary passage and secondary passage are connected via an interlocking mechanism, and the amount of intake air is determined from the opening degree of one of the intake throttle valves. Through indirect detection, the intake air amount can be detected with high precision over the entire operating range of the engine through the combination of these methods, which improves the control accuracy of the air-fuel ratio of the air-fuel mixture and improves the output characteristics of the engine and the exhaust gas. The aim is to improve characteristics, fuel consumption rate, etc.

以下に本考案を図示された実施例について説明
する。
The present invention will be described below with reference to illustrated embodiments.

第1〜第3図において、エアクリーナ1のクリ
ーンサイドと機関2に設けたインテークマニフオ
ールド3のコレクタ4とを結合するスロツトルボ
デイ5内を、プライマリ通路6とセカンダリ通路
7とに区画形成する。プライマリ通路6には、図
示しないアクセルペダルなどに連動されて機関の
略全運転領域に亘つて作動する絞り弁8を装着す
ると共に、セカンダリ通路7には機関の高速高負
荷領域で作動する絞り弁9を設ける。
1 to 3, the inside of a throttle body 5, which connects the clean side of an air cleaner 1 and a collector 4 of an intake manifold 3 provided in an engine 2, is divided into a primary passage 6 and a secondary passage 7. The primary passage 6 is equipped with a throttle valve 8 that operates in substantially the entire operating range of the engine in conjunction with an accelerator pedal (not shown), and the secondary passage 7 is equipped with a throttle valve that operates in the high-speed, high-load range of the engine. 9 will be provided.

ここに、プライマリ通路6に設けられた絞り弁
8とセカンダリ通路7に設けられた絞り弁9と
は、第2図に示すような連動機構を介して連動さ
れている。即ち、プライマリ通路6に設けた絞り
弁8の軸8aに駆動レバー8bを固着し、このレ
バー8bとの当り部10a,10bを設けた作動
レバー10を前記軸8aに遊着する。又、セカン
ダリ通路7に設けた絞り弁9の軸9aに連動レバ
ー9bを固着し、この連動レバー9bと前記作動
レバー10とをコネクテイングロツド11を介し
て枢支連結する。
Here, the throttle valve 8 provided in the primary passage 6 and the throttle valve 9 provided in the secondary passage 7 are interlocked via an interlocking mechanism as shown in FIG. That is, a drive lever 8b is fixed to the shaft 8a of the throttle valve 8 provided in the primary passage 6, and an operating lever 10 provided with contact parts 10a and 10b with this lever 8b is loosely attached to the shaft 8a. Further, an interlocking lever 9b is fixed to a shaft 9a of a throttle valve 9 provided in the secondary passage 7, and the interlocking lever 9b and the operating lever 10 are pivotally connected via a connecting rod 11.

従つて、プライマリ通路6の絞り弁8がいわゆ
る全閉位置から所定の開度(例えば34゜)に達す
るまでの低速低負荷領域では、プライマリ通路6
の絞り弁8のみが作動する。又、プライマリ通路
6の絞り弁8が前記所定の開度以上即ちセカンダ
リ側絞り弁9が開く高速高負荷領域に開かれる
と、駆動レバー8bが作動レバー10の当り部1
0bに当接する。すると、作動レバー10は駆動
レバー8bとともに運動し、コネクテイングロツ
ド11を介して連動レバー9bを作動させるの
で、セカンダリ通路7の絞り弁9も開き始める。
そして、前記各レバー比を選定することにより両
絞り弁8,9が同時に全開となるようにしてい
る。
Therefore, in a low speed, low load region where the throttle valve 8 of the primary passage 6 reaches a predetermined opening degree (for example, 34 degrees) from the so-called fully closed position, the primary passage 6
Only the throttle valve 8 operates. Further, when the throttle valve 8 of the primary passage 6 is opened to the predetermined opening degree or more, that is, in a high-speed, high-load region where the secondary throttle valve 9 is opened, the drive lever 8b is moved to the contact portion 1 of the operating lever 10.
Contact with 0b. Then, the operating lever 10 moves together with the drive lever 8b and operates the interlocking lever 9b via the connecting rod 11, so that the throttle valve 9 in the secondary passage 7 also begins to open.
By selecting the respective lever ratios, both throttle valves 8 and 9 are simultaneously fully opened.

又、プライマリ通路6に設けた絞り弁8の軸8
aには、絞り弁開度センサとしての絞り弁開度に
応じて抵抗値が変化するポテンシヨメータ12を
連動させて絞り弁8の開度を検出すると共に、機
関の加速状態、減速状態、アイドル状態及び全負
荷状態をも検出できるようにしている。更に、プ
ライマリ通路6における絞り弁8の上流には、空
気流量センサとしてのカルマン渦型エアフローメ
ータ13を設けてプライマリ通路6を通る空気流
量を検出するようにしている。
Also, the shaft 8 of the throttle valve 8 provided in the primary passage 6
In a, the opening of the throttle valve 8 is detected by interlocking the potentiometer 12, which serves as a throttle valve opening sensor and whose resistance value changes according to the throttle valve opening, and also detects the acceleration state, deceleration state, etc. of the engine. It is also possible to detect idle states and full load states. Furthermore, upstream of the throttle valve 8 in the primary passage 6, a Karman vortex air flow meter 13 as an air flow sensor is provided to detect the air flow rate passing through the primary passage 6.

そして、機関2の各インテークポートに向つて
設けられた燃料噴射弁14を制御する制御回路1
5には、前記ポテンシヨメータ12及びエアフロ
ーメータ13からの出力信号がそれぞれ入力さ
れ、これらの信号に基づいて噴射弁14から噴射
される燃料の流量を適正に制御させるようにして
いる。
A control circuit 1 controls the fuel injection valves 14 provided toward each intake port of the engine 2.
The output signals from the potentiometer 12 and the air flow meter 13 are respectively input to 5, and the flow rate of fuel injected from the injection valve 14 is appropriately controlled based on these signals.

上記構成において、駆動レバー8bが作動レバ
ー10を作動させるまでの領域、即ち、機関の低
速低負荷領域では、プライマリ通路6の絞り弁8
のみが作動してセカンダリ通路7の絞り弁9は全
閉状態に保持されている。このためエアフローメ
ータ13の信号は、機関が吸入する空気量をその
まま表わしている。従つて、制御回路15は、エ
アフローメータ13の信号を利用して適正空燃比
の混合気を得るように燃料噴射弁14を駆動すれ
ば良い。尚、この場合、絞り弁開度センサとして
のポテンシヨメータ12によつて機関の加減速及
びアイドリングを検出できるので、このポテンシ
ヨメータ12の出力信号に基づいて加速増量等を
行わせれば良い。
In the above configuration, in the region until the drive lever 8b operates the operating lever 10, that is, in the low speed and low load region of the engine, the throttle valve 8 of the primary passage 6
The throttle valve 9 of the secondary passage 7 is kept fully closed. Therefore, the signal from the air flow meter 13 directly represents the amount of air taken into the engine. Therefore, the control circuit 15 may use the signal from the air flow meter 13 to drive the fuel injection valve 14 so as to obtain a mixture having an appropriate air-fuel ratio. In this case, since acceleration, deceleration, and idling of the engine can be detected by the potentiometer 12 as a throttle valve opening sensor, acceleration and increase in amount may be performed based on the output signal of the potentiometer 12.

駆動レバー8bが作動レバー10を押し付ける
位置までプライマリ通路6の絞り弁8が開かれた
時、即ち、機関高速度負荷領域に達すると、セカ
ンダリ通路7の絞り弁9が開き始める。このと
き、制御回路15には、セカンダリ通路7の絞り
弁9が開き始める時のスロツトル開度が記憶され
ているので、プライマリ通路6の絞り弁8に連動
されたポテンシヨメータ12を介してセカンダリ
通路7の絞り弁9が開き始めたことを自動的に検
知し、空気量の算出にポテンシヨメータ12の出
力を利用するようになる。
When the throttle valve 8 of the primary passage 6 is opened to the position where the drive lever 8b presses the operating lever 10, that is, when the engine reaches a high speed load region, the throttle valve 9 of the secondary passage 7 begins to open. At this time, the control circuit 15 stores the throttle opening degree at which the throttle valve 9 of the secondary passage 7 starts to open, so the throttle valve 9 of the secondary passage 7 is opened via the potentiometer 12 linked to the throttle valve 8 of the primary passage 6. It is automatically detected that the throttle valve 9 in the passage 7 begins to open, and the output of the potentiometer 12 is used to calculate the amount of air.

即ち、いま、プライマリ通路6に設けた絞り弁
8の開度をαp、エアフローメータ13にて検出
される空気流量をQpとすると、絞り弁下流の吸
入負圧αpとQpとの関数として算出できる。こ
の吸入負圧をΔpとし、セカンダリ通路7の絞り
弁9の開度をαsとすると、セカンダリ通路7を
通る空気流量QsはΔpとαsの関数として算出
される。
That is, if the opening degree of the throttle valve 8 provided in the primary passage 6 is αp, and the air flow rate detected by the air flow meter 13 is Qp, it can be calculated as a function of the suction negative pressure downstream of the throttle valve αp and Qp. . Assuming that this suction negative pressure is Δp and the opening degree of the throttle valve 9 of the secondary passage 7 is αs, the air flow rate Qs passing through the secondary passage 7 is calculated as a function of Δp and αs.

又、αsとαpとは、両絞り弁6,8の連動機
構の幾何学的位置関係にあるのでαsはαpの関
数として定まる。従つて、機関の吸入空気量(Q
=Qp+Qs)は、プライマリ通路6を通る空気量
Qpと、同通路6の絞り弁の開度αpとの関数で
与えられる。実施例では、セカンダリ通路7の絞
り弁9の開度を、プライマリ通路6の絞り弁8の
開度から検出するようにしたものであるが、セカ
ンダリ通路7の絞り弁9の開度を直接に検出する
ようにしても良い。
Further, since αs and αp are in a geometric positional relationship of the interlocking mechanism of both throttle valves 6 and 8, αs is determined as a function of αp. Therefore, the intake air amount of the engine (Q
= Qp + Qs) is the amount of air passing through the primary passage 6
It is given as a function of Qp and the opening degree αp of the throttle valve in the passage 6. In the embodiment, the opening degree of the throttle valve 9 in the secondary passage 7 is detected from the opening degree of the throttle valve 8 in the primary passage 6, but the opening degree of the throttle valve 9 in the secondary passage 7 can be detected directly. It may also be detected.

尚、セカンダリ通路7の絞り弁9が開き始める
時の開き角度1゜に対する空気流量の変化は20%
程度又はそれ以下であるので、従来のアイドル近
傍の100%程度に対比して非常に小さい。従つ
て、従来の開度センサのようにアイドル近傍から
最大出力時までの全域を検出するようにした開度
センサに対比して、精度の悪い絞り弁開度センサ
を用いても流量の検出精度を高めることができ
る。
Furthermore, when the throttle valve 9 of the secondary passage 7 starts to open, the change in air flow rate for an opening angle of 1° is 20%.
This is very small compared to about 100% in the vicinity of conventional idle. Therefore, compared to a conventional opening sensor that detects the entire range from near idle to maximum output, the accuracy of flow rate detection is low even when using a less accurate throttle valve opening sensor. can be increased.

又、実施例ではポテンシヨメータを絞り弁開度
センサとして使用すると共にカルマン渦型エアフ
ローメータを空気流量センサとして使用したもの
であるが、他の型式の開度センサ又は他の型式の
空気流量センサ(例えば熱線型エアフローメー
タ)等を使用しても良い。
In addition, in the embodiment, a potentiometer is used as a throttle valve opening sensor and a Karman vortex air flow meter is used as an air flow sensor, but other types of opening sensors or other types of air flow sensors may be used. (For example, a hot wire type air flow meter) etc. may be used.

第3図は本考案をシングルポイントインジエク
シヨンシステムに実施した場合を示す。この実施
例では、インテークマニフオールド集合部のライ
ザ16上に燃料噴射弁17を設け、燃料を噴霧の
形でインテークマニフオールドを通して各気筒に
分配供給するようにしている。このように、プラ
イマリ通路6及びセカンダリ通路7を縦型にした
場合は、全高が高くなりがちであつたが本考案で
はプライマリ通路6の空気量のみを測る空気流量
センサとしてのエアフローメータ13を設ければ
良いので、エアフローメータ13を小型化でき
る。このために、全高を低くできるので機関の搭
載性が改善される。
FIG. 3 shows a case where the present invention is implemented in a single point injection system. In this embodiment, a fuel injection valve 17 is provided on the riser 16 of the intake manifold gathering portion, and fuel is distributed and supplied to each cylinder through the intake manifold in the form of a spray. In this way, if the primary passage 6 and the secondary passage 7 were made vertical, the overall height would tend to increase, but in the present invention, an air flow meter 13 is provided as an air flow sensor that measures only the amount of air in the primary passage 6. Therefore, the air flow meter 13 can be made smaller. For this reason, the overall height can be reduced, which improves the mountability of the engine.

又このようなシングルポイントインジエクシヨ
ンシステムでは、インテークマニフオールドの壁
面に燃料が付着して流れることによる急加速時の
希薄化及び急減速時の過濃化が現れるおそれがあ
るが、絞り弁開度センサによつて検出した急加・
減速信号に応じて空燃比を補正できるので上述の
現象を相殺することもできる。従つて、絞り弁開
度センサは、プライマリ側の絞り弁に連動させる
ことが望ましい。
In addition, with such a single point injection system, there is a risk that fuel may adhere to the wall of the intake manifold and flow, resulting in dilution during sudden acceleration and over-concentration during sudden deceleration. Sudden acceleration detected by the degree sensor
Since the air-fuel ratio can be corrected according to the deceleration signal, the above-mentioned phenomenon can also be offset. Therefore, it is desirable that the throttle valve opening sensor is linked to the primary throttle valve.

以上説明したように、本考案によれば、吸気通
路をプライマリ通路とセカンダリ通路との2系統
に分割し、プライマリ通路には機関の略全運転領
域に亘つて作動する絞り弁と、この絞り弁を通過
する空気量をセカンダリ側が作動しない低速低負
荷領域で検出する空気流量センサとを設けると共
に、セカンダリ通路には機関の高速高負荷領域で
作動する絞り弁を設け、かつ、プライマリ通路及
びセカンダリ通路に介装した絞り弁を連動させて
少くとも一方の絞り弁の開度を検出する絞り弁開
度センサを設けるという極めて簡単な構成によ
り、プライマリ通路の絞り弁のみが開いている時
は空気流量センサにて空気流量を重点的に直接精
密検出し、又、セカンダリ通路の絞り弁が開いた
時には、前記空気流量検出センサを絞り弁開度検
出センサとの出力を用い空気流量を算出するよう
にしたものである。このため、低速低負荷領域で
は空気流量センサで検出する空気流量範囲が狭く
なり、従つて分解性能の優れた空気流量センサを
損傷の心配なく使用ができると共に絞り弁クリア
ランスのバラツキ及び排気還流量に関係なく直接
空気量を検出できるから、当該領域における空気
流量測定精度が著しく向上する。また高速高負荷
領域では絞り弁開度に対する空気量変化が小さく
なると共に絞り弁クリアランスのバラツキ及び排
気還流量変動が相対的に小さくなるから絞り弁開
度に空気量検出を分担させて測定精度を上げるこ
とができる。以上により空気量算出精度が全運転
領域にわたつて向上し、機関に供給する混合気の
空燃比制御を精度良く行うことができる。
As explained above, according to the present invention, the intake passage is divided into two systems, the primary passage and the secondary passage, and the primary passage includes a throttle valve that operates over almost the entire operating range of the engine, and a throttle valve that operates over substantially the entire operating range of the engine. An air flow rate sensor that detects the amount of air passing through the engine in a low speed, low load region where the secondary side does not operate is provided, and a throttle valve that operates in the high speed, high load region of the engine is provided in the secondary passage; With an extremely simple configuration that includes a throttle valve opening sensor that detects the opening of at least one throttle valve by interlocking the throttle valves installed in the primary passage, when only the throttle valve in the primary passage is open, the air flow The air flow rate is directly and accurately detected by the sensor, and when the throttle valve in the secondary passage opens, the air flow rate is calculated using the output of the air flow rate detection sensor and the throttle valve opening detection sensor. This is what I did. Therefore, in the low-speed, low-load range, the air flow rate range detected by the air flow sensor is narrower, which means that an air flow sensor with excellent disassembly performance can be used without fear of damage, and it also reduces fluctuations in throttle valve clearance and exhaust gas recirculation. Since the air amount can be directly detected regardless of the air flow rate, the air flow rate measurement accuracy in the relevant area is significantly improved. In addition, in the high-speed, high-load range, the change in air amount relative to the throttle valve opening becomes small, and the variation in throttle valve clearance and the fluctuation in the exhaust gas recirculation amount become relatively small. can be raised. As described above, the air amount calculation accuracy is improved over the entire operating range, and the air-fuel ratio of the air-fuel mixture supplied to the engine can be controlled with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を示す略示断面図、
第2図はプライマリ通路に設けた絞り弁とセカン
ダリ通路に設けた絞り弁との連動機構の一例を示
す正面図、第3図は本考案の他の実施例を示す要
部の略示断面図である。 2……内燃機関、3……インテークマニフオー
ルド、4……コレクタ、5……スロツトルボデ
イ、6……プライマリ通路、7……セカンダリ通
路、8……絞り弁、9……絞り弁、12……ポテ
ンシヨメータ(絞り弁開度センサ)、13……エ
アフローメータ(空気量検出センサ)。
FIG. 1 is a schematic cross-sectional view showing an embodiment of the present invention;
Fig. 2 is a front view showing an example of an interlocking mechanism between the throttle valve provided in the primary passage and the throttle valve provided in the secondary passage, and Fig. 3 is a schematic cross-sectional view of main parts showing another embodiment of the present invention. It is. 2... Internal combustion engine, 3... Intake manifold, 4... Collector, 5... Throttle body, 6... Primary passage, 7... Secondary passage, 8... Throttle valve, 9... Throttle valve, 12... Potentiometer (throttle valve opening sensor), 13...Air flow meter (air amount detection sensor).

Claims (1)

【実用新案登録請求の範囲】 (1) 機関の略全運転領域に亘つて作動する絞り弁
を備えたプライマリ通路と、機関の高速高負荷
領域で作動する絞り弁を備えたセカンダリ通路
とを並列に接続して吸気通路を形成し、前記プ
ライマリ通路における絞り弁の上流に空気流量
センサを設ける一方、前記プライマリ通路及び
セカンダリ通路の両絞り弁を連動機構を介して
連結し少なくとも一方の絞り弁の開度を検出す
る絞り弁開度センサを設け、低速低負荷領域で
は空気流量センサを用い、高速高負荷領域では
絞り弁開度センサを使用して空気流量を検出す
べく構成したことを特徴とする内燃機関の吸入
空気量検出装置。 (2) 絞り弁開度センサは、絞り弁の開き速度を検
知して燃料の加速増量用の信号をも発するべく
構成されてなる実用新案登録請求の範囲第1項
に記載の内燃機関の吸入空気量検出装置。
[Scope of Claim for Utility Model Registration] (1) A primary passageway equipped with a throttle valve that operates over substantially the entire operating range of the engine and a secondary passageway equipped with a throttle valve that operates in the high-speed, high-load range of the engine are arranged in parallel. an air flow sensor is provided upstream of the throttle valve in the primary passage, and the throttle valves in the primary passage and the secondary passage are connected via an interlocking mechanism to form an intake passage, and an air flow sensor is provided upstream of the throttle valve in the primary passage. A throttle valve opening sensor is provided to detect the opening, and the air flow rate sensor is used in low speed and low load areas, and the throttle valve opening sensor is used in high speed and high load areas to detect the air flow rate. Intake air amount detection device for internal combustion engines. (2) The throttle valve opening degree sensor is configured to detect the opening speed of the throttle valve and also issue a signal for increasing fuel acceleration. Air amount detection device.
JP9872979U 1979-07-19 1979-07-19 Expired JPS628363Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9872979U JPS628363Y2 (en) 1979-07-19 1979-07-19

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9872979U JPS628363Y2 (en) 1979-07-19 1979-07-19

Publications (2)

Publication Number Publication Date
JPS5617356U JPS5617356U (en) 1981-02-16
JPS628363Y2 true JPS628363Y2 (en) 1987-02-26

Family

ID=29331490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9872979U Expired JPS628363Y2 (en) 1979-07-19 1979-07-19

Country Status (1)

Country Link
JP (1) JPS628363Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60192851A (en) * 1984-03-15 1985-10-01 Mitsubishi Motors Corp Engine control

Also Published As

Publication number Publication date
JPS5617356U (en) 1981-02-16

Similar Documents

Publication Publication Date Title
US6230697B1 (en) Integrated internal combustion engine control system with high-precision emission controls
EP0295647B1 (en) Hot-wire type air flow meter.
US4177777A (en) Exhaust gas recirculation control system
JP3365197B2 (en) EGR control device for internal combustion engine
US4705001A (en) Device for controlling engine and method thereof
US20060196486A1 (en) System for controlling exhaust emissions produced by an internal combustion engine
JPH1136962A (en) Fuel injection amount control device of diesel engine
JPH02163443A (en) Controller for engine equipped with supercharger
EP1245818B1 (en) Air-fuel ratio control apparatus and method for internal combustion engine
GB2482323A (en) A method and system for controlling an engine based on determination of rotational speed of a compressor
JPS6026185Y2 (en) Internal combustion engine intake system
JPS628363Y2 (en)
JPS628621B2 (en)
JPS646339B2 (en)
GB2156431A (en) Exhaust-gas recirculation control system for an internal combustion engine
WO2019198320A1 (en) Internal combustion engine control device and control method
JPH02215930A (en) Supercharger for internal combustion engine
JPH0156256B2 (en)
JPS6329156Y2 (en)
JP4544215B2 (en) Control device for internal combustion engine
JPS6143954Y2 (en)
JPH0614042Y2 (en) Deceleration control device for internal combustion engine with supercharger
JPS6120268Y2 (en)
JPS6315554Y2 (en)
JP2991760B2 (en) Failure diagnosis device for exhaust gas recirculation device