JPS6283629A - Optical temperature measuring sensor - Google Patents

Optical temperature measuring sensor

Info

Publication number
JPS6283629A
JPS6283629A JP60226503A JP22650385A JPS6283629A JP S6283629 A JPS6283629 A JP S6283629A JP 60226503 A JP60226503 A JP 60226503A JP 22650385 A JP22650385 A JP 22650385A JP S6283629 A JPS6283629 A JP S6283629A
Authority
JP
Japan
Prior art keywords
optical fiber
gaas semiconductor
bonding compound
bonded
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60226503A
Other languages
Japanese (ja)
Inventor
Ichiro Yamazaki
一郎 山崎
Takeo Yoshioka
武男 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60226503A priority Critical patent/JPS6283629A/en
Publication of JPS6283629A publication Critical patent/JPS6283629A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To improve heat-resistance without deteriorating workability, by filling SF6 gas in a detecting means using a GaAs semiconductor and a gap of an optical fiber. CONSTITUTION:A cover-material 4 stripped optical fiber 3 is inserted into a sleeve 10 and bonded with bonding compound 11. And, the sleeve 10 is inserted into a protecting tube 19 and bonded with bonding compound 12. Next, optical fiber 3, protecting tube 19 are introduced into a glove box 30 and the box is filled with GaAs semiconductor. In this condition, spacer 7, holder 9 accommodated with a semiconductor 5 and a reflecting mirror, and a spacer 8 are inserted into the protecting tube 19 in process of assembly. And, a plugging cover 14 is inserted and bonded with bonding compound 13. For bonding agents 11-13, epoxy resin of excellent gas-tightness, high-temperature impact resistance and workability is used. In atmosphere of SF6, a heat decomposition point of epoxy resin is much higher than in the case air. Consequently, in the higher temperature, drop of the sensitivity in accompaniment with drop of permeability of the GaAs semiconductor by the heat decomposition of the bonding compound is insignificant.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光学式温度計測用センサーに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical temperature measurement sensor.

〔従来の技術〕[Conventional technology]

従来の光学式温度計測用センサーを第4凶を用いて説明
する。
A conventional optical temperature measurement sensor will be explained using the fourth factor.

発光素子(1)から発せられた光はビームスプリッタ−
(2)を直進し、光ファイバー(3)を伝送し、空隙部
σりを通’) 、GaAs半導体(5)を透過して反射
鏡(6)に入射し反射される。反射鏡(6)により反射
された光は書びGaAs半導体(5)を透過し空気19
時、光ファイバー(3)を逆向きに伝送しビームスプリ
ッタ−(2)により直角方向に反射され受光素子(4)
により受光される。スリーブαQは光ファイバー(3)
を保護管q1に保持するためのものであり、光ファイバ
ー(3)とは被覆材(4)を一部おおいかぶ8創 るようにして接着[Uυにより固定され、また体制 護管側には接着%fJaにより固定されている。
The light emitted from the light emitting element (1) is transmitted through a beam splitter.
(2), is transmitted through the optical fiber (3), passes through the gap σ'), passes through the GaAs semiconductor (5), enters the reflecting mirror (6), and is reflected. The light reflected by the reflecting mirror (6) passes through the GaAs semiconductor (5) and enters the air 19.
When the optical fiber (3) is transmitted in the opposite direction, it is reflected by the beam splitter (2) in the right angle direction and sent to the light receiving element (4).
The light is received by Sleeve αQ is optical fiber (3)
The optical fiber (3) is fixed to the protective tube q1 by adhesive bonding (Uυ) so as to partially cover the coating material (4), and the adhesive % is attached to the protective tube side. It is fixed by fJa.

GaAs半導体(5)は反射鏡(6)と共にホルダー(
9)により保持されている。ホルダー(9)はスペーサ
(7)および(8)と共に保護管(IIに嵌入され、止
め蓋q弔により動かないように固定されている。止め歯
割 Q優は接着XCL3により保護管曲に固定されている。
The GaAs semiconductor (5) is mounted on a holder (
9). The holder (9) is fitted into the protection tube (II) together with spacers (7) and (8), and is fixed so that it does not move with a stopper lid.The stopper tooth split Q is fixed to the protection tube bend with adhesive XCL3. has been done.

また空隙部as、 ati、 C17)、(至)は空気
が入っている。
Also, air is contained in the voids as, ati, C17) and (to).

GaAs半導体は光吸収端波長の温度依存性により透過
光強度(又は透過率)が温度とともに低下する。そこで
GaAs半導体を被温度測定物に接触又は近傍に装置し
、反射鏡(6)により反射さnた光の強度を受光素子端
で検出することにより温度を測定するものであった。
In a GaAs semiconductor, the transmitted light intensity (or transmittance) decreases with temperature due to the temperature dependence of the optical absorption edge wavelength. Therefore, the temperature was measured by placing a GaAs semiconductor in contact with or near the object to be measured, and detecting the intensity of the light reflected by the reflecting mirror (6) at the end of the light receiving element.

(、発明が解決しようとする問題点〕 従来の光学式温度計測用センサーは作業性を考慮Iノで
エポキシ系接着剤を用いてあり、また保護管内部の空障
部は空気が入っていたため、被測定温度か高温になると
接着剤か分解し、分解物がGaAs半導体に付着してG
aAs半導体の透過率を低下させ、温度センサとしての
感度が低下するという問題点を有し7ていた。
(Problems to be solved by the invention) Conventional optical temperature measurement sensors use epoxy adhesive in consideration of workability, and air is trapped inside the protective tube. When the temperature to be measured reaches a high temperature, the adhesive decomposes and the decomposed products adhere to the GaAs semiconductor, causing G
This has the problem of lowering the transmittance of the aAs semiconductor and lowering the sensitivity as a temperature sensor.

この発明は上記問題点を解決するtこめになされたもの
−(−あり、作業性を損なうことなく耐熱性のすぐれ1
こ光学式温度計測用センサーを提供することを目的とす
る。
This invention has been made to solve the above problems.It has excellent heat resistance without impairing workability.
The purpose of the present invention is to provide this optical temperature measurement sensor.

〔、問題点を解決するための手段〕[Means to solve the problem]

この発明に係る光学式温度計測用センサーは”4 &管
内部の空隙に六フッ化イオウガスを充填しfXごとを特
徴とする。
The optical temperature measurement sensor according to the present invention is characterized by filling the void inside the tube with sulfur hexafluoride gas every fX.

〔作用〕[Effect]

六フッ化イオウガスは高温下におけるエポキシ系接着剤
の熱分解を防止し、それによって分解物がGaAs半導
体に付着して透過率か低下するのを防止する。
Sulfur hexafluoride gas prevents thermal decomposition of the epoxy adhesive at high temperatures, thereby preventing decomposition products from adhering to the GaAs semiconductor and reducing transmittance.

〔発明の実施例〕[Embodiments of the invention]

この発明に係る光学式温度計測用センサーの実施例を第
1内(a)および(1))を用いて説明する。
An embodiment of the optical temperature measurement sensor according to the present invention will be described using the first embodiment (a) and (1).

ただし組立完成後の機械的部品の構造は、第4凶に示し
た従来の光学式温度計測用センサーと全く同じであり、
従来の光学式温度計測用センサーにおける空障部μs、
 Qf$、 Q7)、Q8)に六フッ化イオウ(SF6
)ガスが充填されでいる。凶中同一番号を符したものは
全く同一・の機能をするものとする。
However, the structure of the mechanical parts after assembly is completed is exactly the same as the conventional optical temperature measurement sensor shown in the fourth example.
The air obstruction μs in the conventional optical temperature measurement sensor,
Qf$, Q7), Q8) contains sulfur hexafluoride (SF6)
) The gas is already filled. Items with the same number in the middle have exactly the same function.

第1凶(a)は空気中で組立てを行なう部分を示四にス
リ・−ブ(10を嵌合接着を行なう。
The first part (a) shows the part to be assembled in air, where the sleeve (10) is fitted and bonded.

次に上記組立途中の光ファイバー(3)、保護管側をグ
ローブボックス■の中に入れ、グローブボックスは矛の
内部を真空にした後SF6ガスを大気圧と同じ圧力に・
了るように封入する。この状態において、上記組立途中
の保護管側ζこスペーサ(7)、GaAs半導体(5)
と反射鏡(6)を装着1.たホルタ−(9)、スペーサ
(8)全嵌入する。そl、て接着盾(」す急を用いて止
め逝(]4)全嵌合接着し組立作業は完了下る。
Next, put the optical fiber (3), which is in the process of being assembled, and the protective tube side into the glove box (■), and after evacuating the inside of the glove box, the SF6 gas is heated to the same pressure as atmospheric pressure.
Enclose it so you can understand. In this state, the protective tube side ζ spacer (7), the GaAs semiconductor (5), which is being assembled above,
and attach the reflector (6) 1. Fully insert the halter (9) and spacer (8). Then, use the adhesive shield (4) to glue everything together and the assembly work is complete.

六フッ化イオウガスの漏nを防ぐため接着剤(l]J 
、 11卓、 Ll’i+は気と性にすぐれ、耐熱伺撃
性、作業性にすぐntこ2液性エポキシ樹脂を用いる。
Adhesive (l)J to prevent leakage of sulfur hexafluoride gas.
Ll'i+ uses a two-component epoxy resin that has excellent properties, heat resistance, and workability.

次に空気中およびSF6雰囲気中におけるエポキシ樹脂
の対温度爪弾減少率を第2凶および第3囚に示す。これ
らの特性曲線はエポキシ樹脂と17でチバガイギー社の
アラルダイトGY260.100屯量部とアラルダイト
HT951.10重量部を室温で72時間硬化させて得
た接着剤硬化物堂、空気写囲気(流量somi/分)と
六フッ化イオウ雰囲気(流ffiaom#/分)で各々
昇温速度5℃/分の条件のもとで、島津製作所製熱重量
分析装置を用いて熱重量分析を行なった結果を示してい
る。これらの凶から、エポキシ樹脂の初期重置の1()
%か誠少する淘Iiを求めると、空気°4囲気中では2
80’Cであるのに対し、六フッ化イオウ雰囲気中では
420℃である。すなわち六フッ化イオウ雰囲気中では
エポキシ樹脂の熱分解温度は空気雰囲気中と比較して著
しく高いことがわかる。
Next, the second and third graphs show the temperature reduction rates of epoxy resin in air and SF6 atmosphere. These characteristic curves are based on the adhesive cured product obtained by curing epoxy resin and 17 parts by weight of Ciba Geigy's Araldite GY260.100 parts by weight and Araldite HT951.10 parts by weight at room temperature for 72 hours. The results show the results of thermogravimetric analysis using a Shimadzu thermogravimetric analyzer under the conditions of a heating rate of 5°C/min in a sulfur hexafluoride atmosphere (flow ffiaom#/min) and a sulfur hexafluoride atmosphere (flow ffiaom#/min). ing. From these problems, 1 () of the initial superposition of epoxy resin
If we look for the % Ii, it is 2 in an air °4 environment.
80'C, whereas it is 420°C in a sulfur hexafluoride atmosphere. That is, it can be seen that the thermal decomposition temperature of the epoxy resin in a sulfur hexafluoride atmosphere is significantly higher than that in an air atmosphere.

なお、この実施例では六フッ化イオウガスを用いt、=
か、6フツ化イオウガスの濃度が1〜100本債%の6
フツ化イオウガスとチッソガスの混合ガスを用いてもよ
い。また、この実施例は1本の光ファイバーを入出力光
路とする反射型であるが、入出力光路をそれぞれ別々の
2本の光ファイバーを用いる透過型であってもかまわな
いことは言うまでもない。
Note that in this example, sulfur hexafluoride gas was used, and t,=
Or, the concentration of sulfur hexafluoride gas is 1 to 100% 6
A mixed gas of sulfur fluoride gas and nitrogen gas may also be used. Further, although this embodiment is of a reflection type in which one optical fiber is used as the input and output optical path, it goes without saying that a transmission type may be used in which two separate optical fibers are used as the input and output optical paths.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明に係る光学式温度計測用センサ
ーを用いれば、高温時においても接着剤の熱分解による
GaAs半導体の透過率の低下にともなう感度低下が少
なく、耐熱性のすぐれた光学式温度計測用センサーを提
供することか可能である。
As described above, if the optical temperature measurement sensor according to the present invention is used, even at high temperatures, the sensitivity decrease due to the decrease in the transmittance of the GaAs semiconductor due to thermal decomposition of the adhesive is small, and the optical temperature measurement sensor with excellent heat resistance can be used. It is possible to provide a sensor for temperature measurement.

【図面の簡単な説明】[Brief explanation of drawings]

第1凶(a)および(b)はこの発明に係る光学式温度
計測用センサーの組立子)鐘を示す凶、第2凶および第
3スはエポキシ樹脂の対温度重量減少率を示す特性曲線
、第4凶はこの発明に係る光学式温度計測用センサーの
機械的部品の構成および従来の光学式温度計測用センサ
ーを示す断面図である。 図中(3)は光ファイバー、(5)はGaAs半導体、
(6)は反射鏡、Uυ、@、(l:うは接着剤、卵、西
、面、Q&は学際hトであ・、−6
The first lines (a) and (b) are the assembly parts of the optical temperature measurement sensor according to the present invention. , No. 4 is a sectional view showing the configuration of mechanical parts of the optical temperature measurement sensor according to the present invention and a conventional optical temperature measurement sensor. In the figure, (3) is an optical fiber, (5) is a GaAs semiconductor,
(6) is a reflective mirror, Uυ, @, (l: is glue, egg, west, surface, Q& is interdisciplinary hto, -6

Claims (1)

【特許請求の範囲】[Claims] (1)ガリウムヒ素(GaAs)半導体を検知手段とし
、光ファイバーを伝送路とする光学式温度計測用センサ
ーにおいて、 前記検知手段と光ファイバーの空隙部を六フッ化イオウ
(SF_6)ガスで充填したことを特徴とする光学式温
度計測用センサー。
(1) In an optical temperature measurement sensor that uses a gallium arsenide (GaAs) semiconductor as a detection means and an optical fiber as a transmission path, the gap between the detection means and the optical fiber is filled with sulfur hexafluoride (SF_6) gas. A unique optical temperature measurement sensor.
JP60226503A 1985-10-09 1985-10-09 Optical temperature measuring sensor Pending JPS6283629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60226503A JPS6283629A (en) 1985-10-09 1985-10-09 Optical temperature measuring sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60226503A JPS6283629A (en) 1985-10-09 1985-10-09 Optical temperature measuring sensor

Publications (1)

Publication Number Publication Date
JPS6283629A true JPS6283629A (en) 1987-04-17

Family

ID=16846134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60226503A Pending JPS6283629A (en) 1985-10-09 1985-10-09 Optical temperature measuring sensor

Country Status (1)

Country Link
JP (1) JPS6283629A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008055718A (en) * 2006-08-30 2008-03-13 Takeuchi Press Ind Co Ltd Printing device of threaded container
WO2011003167A1 (en) * 2009-07-07 2011-01-13 Institut National D'optique Fiber-optic temperature sensor assembly
US8170382B2 (en) 2009-07-07 2012-05-01 Institut National D'optique Fiber-optic temperature sensor assembly
WO2024062891A1 (en) * 2022-09-21 2024-03-28 双葉電子工業株式会社 Temperature sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008055718A (en) * 2006-08-30 2008-03-13 Takeuchi Press Ind Co Ltd Printing device of threaded container
WO2011003167A1 (en) * 2009-07-07 2011-01-13 Institut National D'optique Fiber-optic temperature sensor assembly
US8170382B2 (en) 2009-07-07 2012-05-01 Institut National D'optique Fiber-optic temperature sensor assembly
WO2024062891A1 (en) * 2022-09-21 2024-03-28 双葉電子工業株式会社 Temperature sensor

Similar Documents

Publication Publication Date Title
DK1772758T3 (en) Optical fiber with hollow fiber core
KR0137123B1 (en) Protective structure for an optical fiber coupler and method for protecting the same
US5783152A (en) Thin-film fiber optic hydrogen and temperature sensor system
CN104949920A (en) Reflective gas sensing system based on hollow-core photonic crystal fiber
JPS62118226A (en) Optical type pyrometer for control during flight of engine
CN101726372B (en) Optical fiber fluorescence temperature sensor
CN105699327A (en) System and method for detecting laser based on micro-nano Er-doped fiber
US4997286A (en) Apparatus for measuring temperature using a sensor element
JPS6283629A (en) Optical temperature measuring sensor
CN206557059U (en) A kind of double light path apparatus for measuring dust concentration
CN105372206A (en) Parallel remote optical fiber sensing system for detecting various gas refractive indexes
CN208043281U (en) Optical fiber temperature-measurement sensing head and temperature measuring equipment
AU604129B2 (en) A positioning device and a hermetically sealed package formed therefrom
CN205593917U (en) Detecting system of laser instrument based on receive er -doped fiber a little
US3162045A (en) Radiation pyrometer
JPH0638067B2 (en) Humidity sensor
CN108225604A (en) Optical fiber temperature-measurement sensing head, temperature measuring equipment and temp measuring method
JPS6441826A (en) Temperature sensor and manufacture thereof
JPH03255943A (en) Optical fiber for gas sensor
JPS573020A (en) Temperature measuring method
GB1413945A (en) Light guides
JPS56165383A (en) Gas laser tube
JPS57111424A (en) Optical temperature detector
JPS62174678A (en) Radiation sensor using optical fiber
JPH083467B2 (en) Optical fiber sensor