JPS6283423A - Manufacture of permanent magnetic sheet having easily magnetized axis in direction vertical to sheet surface - Google Patents

Manufacture of permanent magnetic sheet having easily magnetized axis in direction vertical to sheet surface

Info

Publication number
JPS6283423A
JPS6283423A JP22380385A JP22380385A JPS6283423A JP S6283423 A JPS6283423 A JP S6283423A JP 22380385 A JP22380385 A JP 22380385A JP 22380385 A JP22380385 A JP 22380385A JP S6283423 A JPS6283423 A JP S6283423A
Authority
JP
Japan
Prior art keywords
annealing
sheet
magnetic field
plate
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22380385A
Other languages
Japanese (ja)
Inventor
Hiroshi Shishido
宍戸 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP22380385A priority Critical patent/JPS6283423A/en
Priority to EP19860305484 priority patent/EP0216457A1/en
Publication of JPS6283423A publication Critical patent/JPS6283423A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily manufacture the titled permanent magnet sheet in industrial scale, by forming sheet contg. a specified quantity of columnar crystals from molten alloy having a specified compsn. while controlling cooling condition, applying recrystallization annealing, magnetic field impressing annealing, aging annealing under specific conditions. CONSTITUTION:Molten alloy having a compsn. indicating a chemical formula Fe100-x-y-zCrxCoyMz is rapidly cooled and solidified to form sheet by ultrarapid cooling method. In the formula, M is at least one kind selected from Ti, Zr, V, Nb, Ta, Mo, W, Mn, Cu, Si, Sn, P, Al, B, x is 10-35wt%, y is 3-35wt% and z is 1.0-10wt%. Thereat, cooling condition is controlled corresponding to the desired thickness of sheet and crystalline structure of sheet is made to that contg. >=30% columnar crystals. Next, sheet is recrystallization annealed at 800-1,300 deg.C range, then annealed at 600-750 deg.C range under magnetic field impression in the direction vertical to sheet surface. Further, it is aging annealed at temp. of <= magnetic field annealing temp.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、<001 >方向が板面垂直方向に揃った
、板面垂直磁気異方性を有する永久磁石板の製造方法に
関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for manufacturing a permanent magnet plate having magnetic anisotropy perpendicular to the plate surface, with the <001> direction aligned in the direction perpendicular to the plate surface. .

近年、永久磁石は、我々に身近かな磁石画鋲、計器類、
電話機、スピーカー、モーターがらバイテクノロジー分
野でのマグネトロンやタライストロンに至まで多方面に
わたって使用されている。
In recent years, permanent magnets have been used in the things that are familiar to us, such as magnetic thumbtacks, instruments,
It is used in a wide variety of fields, from telephones, speakers, and motors to magnetrons and talistrons in the biotechnology field.

この永久磁石の設計や使用にあたって重要な性能パラメ
ータは、残留磁束密度Br、  保磁力11cおよび最
大エネルギー積(fill)maxである。
Important performance parameters in designing and using this permanent magnet are residual magnetic flux density Br, coercive force 11c, and maximum energy product (fill) max.

第7図にこれらのパラメータを示す。永久磁石にとって
は、Dr、  Ilcともに大きい方が良いのはいうま
でもない。flcは反磁場に逆らってBrを保持する抗
磁力の目安になる。(fill)maxは、第7図に示
した第2象限に右ける減磁曲線のそれぞれのBとHの積
を計算して作ったエネルギー積曲線上での最大値であり
、磁石が単位体積あたりに持ちうるエネルギーの最大値
を意味する。
FIG. 7 shows these parameters. It goes without saying that for a permanent magnet, the larger both Dr and Ilc, the better. flc is a measure of the coercive force that holds Br against the demagnetizing field. (fill)max is the maximum value on the energy product curve created by calculating the product of B and H for each demagnetization curve in the second quadrant shown in Figure 7, and the magnet has a unit volume. It means the maximum amount of energy that can be held.

(従来の技術〉 一般に高性能の永久磁石は、アルニコ、フェライト及び
希土類系永久磁石にみられるように硬くて脆いため、加
工性が悪いという性質がある。このため製造方法におい
ては大きな制限があった。
(Prior art) Generally, high-performance permanent magnets are hard and brittle, as seen in alnico, ferrite, and rare earth permanent magnets, and therefore have poor workability.Therefore, there are significant limitations on manufacturing methods. Ta.

例えばアルニ:jは鋳造法、他方フェライトおよび希土
類はそれぞれの化合物粉末を焼結する粉末焼結法に限定
されていた。
For example, Alni:j has been limited to a casting method, while ferrite and rare earth materials have been limited to a powder sintering method in which the respective compound powders are sintered.

そしてこのような高性能永久磁石は、その製造上の制約
からブロック状で作られることが多く、製造法が限定さ
れずに板状磁石を作れるのは易加工性のキュニフエ、キ
ュニコやパイカロイ等に限られていた。しかしながら性
能の面ではアルニコ、フェライト及び希十、類系にはは
るかに及ばなかった。
Due to manufacturing constraints, such high-performance permanent magnets are often made in block shapes, and plate-shaped magnets can be made without any restrictions on manufacturing methods, such as Cunifue, Cunico, and Pikaroy, which are easy to process. It was limited. However, in terms of performance, it was far inferior to alnico, ferrite, and rare type systems.

この点、最近例えば特開昭59−83751号公報に示
されるように、加工性に富み、しかも従来の易加工性磁
石であるキュニフェ、キュニコやハイカロイなどに比べ
て大きなエネルギー積(lllI)ma×を有するもの
としてFe−[’lr−[二o系合金が注目4浴び−C
いる。
In this regard, recently, as shown in Japanese Patent Application Laid-open No. 59-83751, it has been shown that the energy product (IllI) max Fe-['lr-[nio-based alloys have attracted attention as having -C
There is.

(発明が解決しようとする問題点) ところで最近、板状磁石の用途が急増しており、用途に
よっては板面に垂直な磁気異方性を必要とする材料が要
求され−Cいるが、上記したFe−Cr−G。
(Problems to be Solved by the Invention) Recently, the use of plate magnets has increased rapidly, and depending on the use, materials that require magnetic anisotropy perpendicular to the plate surface are required. Fe-Cr-G.

系合金磁石においても、従来圧延法等によって製造され
ていたこみもあって、板面垂直方向の磁気異方性は必ず
しも良好とはいい難く、その改善が望まれていた。
Even in alloy magnets, the magnetic anisotropy in the direction perpendicular to the plate surface is not necessarily good, partly due to the imperfections that have been produced by conventional methods such as rolling, and improvement has been desired.

この発明は、−F、記の問題を有利に解決するもので、
このような板状磁石であっても板面垂直方向に磁化容易
軸を有する、すなわち板面垂直方向に<001.>軸を
有する永久磁石の有利な製造方法を提案ずろことを目的
とする。
This invention advantageously solves the problems described in -F.
Even such a plate-shaped magnet has an axis of easy magnetization in the direction perpendicular to the plate surface, that is, it has an axis of easy magnetization in the direction perpendicular to the plate surface. The purpose of this invention is to propose an advantageous manufacturing method for a permanent magnet having a shaft.

(問題点を解決のだy〕の手段) 板状永久磁石において、板面垂直方向に<001 >軸
を有する材料を得るこの発明の要旨構成は次のとおりで
ある。
(Means for solving the problem) The main structure of the present invention for obtaining a material having a <001> axis in the direction perpendicular to the plate surface in a plate-shaped permanent magnet is as follows.

すなわち化学式: Fe1oo−o−y−z cr)l
 COY MZここでM :Ti、 lr、 V、 N
b、 Ta、 Mo、 W、 Mn。
That is, the chemical formula: Fe1oo-o-y-z cr)l
COY MZ where M: Ti, lr, V, N
b, Ta, Mo, W, Mn.

Cu、 Si、 Sn、 P、 AAおよびBのうちか
ら選んだ少なくとも1種 X:10〜35wt%。
At least one selected from Cu, Si, Sn, P, AA and B: 10 to 35 wt%.

y: 3〜35wt% z + 1.0−10wt% で示される組成になる合金溶湯を、超急冷法によって急
冷凝固させて薄板とするに際し、該薄板の所望板原に対
応させた冷却条件の削整によって、該薄板の結晶組織を
30%以七の柱状晶を含む組織とし、ついで該薄板に8
00〜1300℃の温度範囲で再結晶焼鈍を施してから
、600〜750℃の温度範囲において板面垂直方向へ
の磁場印加の下に焼鈍を施し、引続き磁場焼鈍温度以下
の温度で時効焼鈍を施すことを特徴とする、板面垂直方
向に磁化容易軸を有する永久磁石板の製造方法。
y: 3 to 35 wt% z + 1.0 to 10 wt% When rapidly solidifying a molten alloy having a composition shown by the following super-quenching method to form a thin plate, the cooling conditions must be adjusted to correspond to the desired sheet material for the thin plate. By grinding, the crystal structure of the thin plate is changed to a structure containing 30% or more columnar crystals, and then the thin plate is
Recrystallization annealing is performed in the temperature range of 00 to 1300°C, then annealing is performed in the temperature range of 600 to 750°C under the application of a magnetic field in the direction perpendicular to the plate surface, and then aging annealing is performed at a temperature below the magnetic field annealing temperature. A method for producing a permanent magnet plate having an axis of easy magnetization in a direction perpendicular to the plate surface.

以下、この発明を具体的に説明する。This invention will be specifically explained below.

まず、この発明において素材の成分組成を上記の範囲に
限定した理由について説明する。
First, the reason why the component composition of the material is limited to the above range in this invention will be explained.

じr、10 〜35% Crは、非磁性のCr富のα2相であるマトリックスを
形成する有用成分であるが、その含有晴が10%に満た
ないとこのα2相がマトリックスにならず2相分離後の
析出相になり、Fe富のα、相が逆にマトリックス相に
なってしまうたy)、永久磁石特性が十分に得られない
。またスピノダル分解温度が低下するため、スピノダル
分解による2相分離に多大の時間を要する。一方35%
を超えると合金の一部にRe−[’:r系のび相が析出
し始め非常に脆くなって加工しにくくなる。また、スピ
ノダル分解温度が低下するため2相分離に長時間を要す
る。
Cr, 10 to 35% Cr is a useful component that forms a matrix, which is a non-magnetic Cr-rich α2 phase, but if its content is less than 10%, this α2 phase will not form a matrix and will form a two-phase matrix. After separation, it becomes a precipitated phase, and the Fe-rich α phase conversely becomes a matrix phase, making it impossible to obtain sufficient permanent magnetic properties. Furthermore, since the spinodal decomposition temperature decreases, it takes a long time for two-phase separation by spinodal decomposition. On the other hand, 35%
If the value exceeds 0.05 m, a Re-[':r-based elongated phase begins to precipitate in a part of the alloy, making it extremely brittle and difficult to process. Furthermore, since the spinodal decomposition temperature decreases, it takes a long time for two-phase separation.

さらにFe富のα1相が少なくなり、永久磁石特性が劣
化する。従ってCr含有端は10〜35%の範囲に限定
した。
Furthermore, the Fe-rich α1 phase decreases, and the permanent magnet properties deteriorate. Therefore, the Cr content end was limited to a range of 10 to 35%.

CO;3〜35% COは、この合金系のスピルノダル分解温度をI−昇さ
せより短時間で2相分離を完了させると同時にキューリ
一温度をL昇させ、スピンダル分解時に印加する磁場の
効果をより一層高めるのに有効に寄り了ずろが、含有量
が3%に満たないと十分なスピノダル分解温度の上昇な
らびにキューリ一温度十肩による十分な磁場処理効果が
(号られす、一方35%を超えるとFe、Coの規則用
が部分的に析出してきて加工性が劣化する他、コストの
上昇を招く不利も加わるので、CO含有量は3〜35%
の範囲に限定した。
CO: 3 to 35% CO raises the spironodal decomposition temperature of this alloy system by I to complete two-phase separation in a shorter time, and at the same time raises the Curie temperature by L, reducing the effect of the magnetic field applied during spindal decomposition. However, if the content is less than 3%, a sufficient increase in the spinodal decomposition temperature and a sufficient magnetic field treatment effect due to the Curi temperature temperature of 35% If it exceeds 3% to 35%, the CO content is 3 to 35%.
limited to the range of

M:l、0〜10% ココニ記号MF表したTi、 Zr、 V、 Nb、 
Ta、 Mo。
M: l, 0 to 10% Ti, Zr, V, Nb, represented by Coconi symbol MF,
Ta, Mo.

W、 Mn、 CLI、 Si、 Sn、 P 、^1
およびBはそれぞれ、Feと合金化してα相を形成する
元素として均等であり、P e −Cr合金のT相ルー
プの拡大を防ぎ、冷却時のT→α変熊の範囲を狭小化す
るものである。
W, Mn, CLI, Si, Sn, P, ^1
and B are equally elements that alloy with Fe to form the α phase, prevent the expansion of the T phase loop of the P e -Cr alloy, and narrow the range of T→α change during cooling. It is.

この合金系においては過飽和冷却体としてのα相単相が
スピノダル分解前に必要であり、r相が混っていては良
好な永久磁石特性は得られない。従って単独使用及び併
用いずれの場合であっても、含有量が1.0%に満たな
いとT相が室温までの冷却の間に残留する結果、α相単
相の過飽和固溶体状態が実現できず、従ってスピノダル
分解を惹起させろことによってα1相とα2相のみに2
相分離させることが困鮒であり、一部r相が混在して磁
性劣化が生じる。一方10%を超えろと脆くなって加工
性が劣化ずろ他に、合金の飽和磁束密度が低下し、結果
として(t]tl)maxが劣化してしまうので、含有
量は1.0〜10%の範囲に限定した。
In this alloy system, a single α phase as a supersaturated cooling body is required before spinodal decomposition, and good permanent magnet properties cannot be obtained if the r phase is mixed. Therefore, whether used alone or in combination, if the content is less than 1.0%, the T phase will remain during cooling to room temperature, and a supersaturated solid solution state of a single α phase cannot be achieved. Therefore, by inducing spinodal decomposition, only α1 and α2 phases have 2
It is difficult to phase separate the carp, and some r-phase coexists, resulting in deterioration of magnetism. On the other hand, if it exceeds 10%, the alloy becomes brittle and the workability deteriorates.In addition, the saturation magnetic flux density of the alloy decreases, and as a result, (t]tl)max deteriorates, so the content should be 1.0 to 10%. limited to the range of

次にこの発明に従う合金薄板の製造要領を工程順に具体
的に説明する。
Next, the procedure for manufacturing a thin alloy plate according to the present invention will be explained in detail in the order of steps.

まず上記の如き好適成分組成範囲に調整した合金溶湯を
超急冷法により薄板化する。ここに超急冷法は、準ロー
ル法や双ロール法など従来公知のいずれの方法をも利用
できる。
First, a molten alloy adjusted to a suitable composition range as described above is made into a thin plate by an ultra-quench cooling method. As the ultra-quenching method, any conventionally known method such as a quasi-roll method or a twin-roll method can be used.

さてこの発明は、磁化容易軸を板面垂直方向に揃えるた
めに、溶湯を急冷凝固させたときにできる柱状晶組織を
利用するものであり、急冷薄帯の凝固組織が30%以上
の柱状晶を含むような結晶組織に制御することが肝要で
ある。
Now, this invention utilizes the columnar crystal structure formed when the molten metal is rapidly solidified in order to align the axis of easy magnetization in the direction perpendicular to the plate surface. It is important to control the crystal structure so that it contains

ここに急冷薄帯の柱状晶率を左右する因子としては、板
厚、冷却速度、ロールの熱伝導度、溶鋼とロール間の熱
伝導度などがある。
Factors that influence the columnar crystallinity of the quenched ribbon include plate thickness, cooling rate, thermal conductivity of the rolls, and thermal conductivity between the molten steel and the rolls.

たとえば同一の冷却ロールを用い、溶湯の射出圧力や射
出量が一定であるならば、得られる急冷薄帯の柱状晶率
は、板厚に対する冷却速度で一義的に決定される。
For example, if the same cooling roll is used and the injection pressure and injection amount of the molten metal are constant, the columnar crystallinity of the obtained quenched ribbon is uniquely determined by the cooling rate relative to the plate thickness.

従って上記の如き条件の下では、急冷薄帯製造時の冷却
ロール回転数(回転速度)と板厚との間、および板厚と
柱状晶率との間には、単純な関係を見出すことができる
。たとえば22Cr−15Co−Fe合金の場合におけ
る上記の関係は、第1図および第2図に示したとおりで
あり、板厚0.5mm以下の場合には103℃/sec
以上の冷却条件とすれば良い。
Therefore, under the above conditions, it is not possible to find a simple relationship between the number of rotations (rotational speed) of the cooling roll during production of the quenched ribbon and the plate thickness, and between the plate thickness and the columnar crystal ratio. can. For example, the above relationship in the case of 22Cr-15Co-Fe alloy is as shown in Figures 1 and 2, and when the plate thickness is 0.5 mm or less, the
The above cooling conditions may be used.

なお上記の条件では、柱状晶率を30%以」ユとするに
は(尋られる薄帯の板厚が0.5mm以下の場合に限ら
れるが、0.5mmを超える肉厚のものでは柱状晶率を
30%以−りとするには、上記した如き設定条件を10
4℃/sec以上の急冷速度のように変更すれば良い。
In addition, under the above conditions, in order to achieve a columnar crystal ratio of 30% or more (limited to cases where the thickness of the thin ribbon to be asked is 0.5 mm or less, it is necessary to obtain a columnar crystal ratio of 30% or more) (limited to cases where the thickness of the ribbon is 0.5 mm or less; In order to increase the crystallinity to 30% or more, the setting conditions as described above should be adjusted to 10%.
What is necessary is to change the quenching rate to 4° C./sec or more.

この発明において、磁化容易軸を板面垂直方向に揃える
ためには、溶湯を超急冷凝固させたときに出来ろ柱状晶
組織を利用しなければならないのは前述したとおりであ
り、ここにas−cast状態での柱状晶組織とは、(
1[]0)面が板面に平行で、かつ<001 >方向が
垂直な方位をもつ組織のことである。
In this invention, as mentioned above, in order to align the axis of easy magnetization in the direction perpendicular to the plate surface, it is necessary to utilize the columnar crystal structure formed when the molten metal is ultra-rapidly solidified. The columnar crystal structure in the cast state is (
It is a structure in which the 1[]0) plane is parallel to the plate surface and the <001> direction is perpendicular.

第3図に、板厚が0.3mmの22Cr−15Co−I
 Mn−Pe合金組成の急冷薄帯の顕微鏡断面組織写真
、また同図すにはその(2n[l)極点図を示す。as
−cast状態で90%以上が柱状晶である。かかる材
料を1100℃で10分間焼鈍すると第4図aに示した
ように結晶粒は粗大化して、板厚を貝通ずる巨大粒にな
る。
Figure 3 shows 22Cr-15Co-I with a plate thickness of 0.3 mm.
A microscopic cross-sectional structure photograph of a quenched ribbon of Mn--Pe alloy composition is shown, and the figure also shows its (2n[l) pole figure. as
-90% or more of the crystals in the cast state are columnar crystals. When such a material is annealed at 1100° C. for 10 minutes, the crystal grains become coarse and become giant grains that extend through the thickness of the plate, as shown in FIG. 4a.

このとき、極点図からみた集合組織は(100)<Qv
w>であるから、板面垂直方向には必然的に<001>
方位が揃うことになる。ここに<001>方向は、Fe
を代表とする様なりCC合金にとっては、磁化容易軸を
示し、熱論、この発明の合金系でも<001>方向が磁
化容易軸である。
At this time, the texture seen from the pole figure is (100)<Qv
w>, it is necessarily <001> in the direction perpendicular to the plate surface.
The directions will be aligned. Here, the <001> direction is Fe
For CC alloys, such as those represented by , the axis of easy magnetization is shown, and in thermal theory, the <001> direction is also the axis of easy magnetization for the alloy system of the present invention.

これに対して、同じ製造工程を経たとしても得られた急
冷薄帯の組織が第5図aに示したように柱状晶率が30
%未満、(等軸晶率が70%以−1−)の場合には、そ
の後に1100℃で10分間の焼鈍を施したとしても、
第6図aに示す様に結晶粒は板厚を貫通することはない
。また、第5図すの極点図からも明らかなように板面の
集合組織は、as−cast状態で(100) <Dv
w>ではあるが、焼鈍後では第6図すに示したようにラ
ンダムな方位になってしまう。従ってかような組織では
、<0[)1>方位は板面に対してランダムであって、
垂直方向を向いているわけではない。このような結晶粒
成長の挙動を示すのは、as−cast状態において、
板厚中心層に含まれる等軸晶の占める割合が大きいため
である。
On the other hand, the structure of the quenched ribbon obtained through the same manufacturing process has a columnar crystal ratio of 30 as shown in Figure 5a.
% (equiaxed crystallinity is 70% or more -1-), even if annealing is performed at 1100°C for 10 minutes,
As shown in FIG. 6a, the crystal grains do not penetrate through the thickness of the plate. Furthermore, as is clear from the pole figure in Figure 5, the texture of the plate surface is (100) < Dv in the as-cast state.
w>, but after annealing, the orientation becomes random as shown in FIG. Therefore, in such a structure, the <0[)1> orientation is random with respect to the plate surface,
It's not facing vertically. This behavior of grain growth is shown in the as-cast state.
This is because the proportion of equiaxed crystals contained in the thickness center layer is large.

ここにランダム方位でかつ板厚を貫通しない結晶粒がで
きるのは等軸晶の含有率が70%より多い場合が大部分
なので、柱状晶の割合が30%以上、等軸晶の割合は7
0%未満とすることが肝要なわけである。なお、このよ
うにして得られた板に対して、スキンパス程度の圧延を
加えることは、何ら支障をきたすものではない。
Here, crystal grains with random orientation and not penetrating the plate thickness are mostly formed when the content of equiaxed crystals is more than 70%, so the proportion of columnar crystals is 30% or more and the proportion of equiaxed crystals is 7.
Therefore, it is important to keep it below 0%. Note that applying rolling to a skin pass level to the plate obtained in this manner does not cause any problem.

その後上記の如くして柱状高率を30%以上に制御した
急冷薄帯に対し、800℃〜1300℃の温度範囲で再
結晶焼鈍を施し、結晶粒を成長させろ。ここに焼鈍温度
が800℃に満たないと、再結晶に長時間を要する不利
があり、一方1300℃を超えると合金組成によっては
表面が溶解する場合がある他、設備や操業の面からも好
ましくないので、焼鈍温度は800〜1300℃の範囲
に限定した。
Thereafter, the quenched ribbon whose columnar height ratio has been controlled to 30% or more as described above is subjected to recrystallization annealing in a temperature range of 800°C to 1300°C to grow crystal grains. If the annealing temperature is less than 800°C, there is a disadvantage that recrystallization takes a long time, whereas if it exceeds 1300°C, the surface may melt depending on the alloy composition, and it is also preferable from the standpoint of equipment and operation. Therefore, the annealing temperature was limited to a range of 800 to 1300°C.

このように、再結晶焼鈍の完了によって永久磁石素材が
できあがっているが、磁気特性はまだ十分とはいい難い
。そこでさらに磁場焼鈍と時効焼鈍を施すことによって
、永久磁石特性の向−1−を図るのである。
As described above, a permanent magnet material has been completed by completion of recrystallization annealing, but its magnetic properties are still far from satisfactory. Therefore, by further performing magnetic field annealing and aging annealing, the permanent magnet properties are improved.

こ乙で磁場焼鈍は、いわゆる初期のスピノダル分解を惹
起せしめることを目的として施すものであるが、焼鈍温
度が600℃に満たないとスピノダル分解に長時間を要
し不経済であり、他方750℃を超えるとα単相となっ
てスピノダル分解が困難になるとともに、この合金系の
キューリ一点に近づくために磁場を印加した効果が減殺
される。従って磁場焼鈍によるスピノダル分解は600
〜750℃の範囲で行なうものとした。このとき磁場の
印加方向は、板面に対して垂直方向とする必要がある。
Magnetic field annealing is performed for the purpose of inducing so-called initial spinodal decomposition, but if the annealing temperature is less than 600°C, spinodal decomposition takes a long time and is uneconomical; If it exceeds , the alloy becomes an α single phase, making spinodal decomposition difficult, and the effect of applying a magnetic field to approach the Curie point of this alloy system is diminished. Therefore, the spinodal decomposition due to magnetic field annealing is 600
The temperature was set to 750°C. At this time, the direction of application of the magnetic field must be perpendicular to the plate surface.

また磁場の強さは0.5kOe以」二程度であることが
望ましい。なお実操業においては、磁場を板面垂直方向
に印加できる連続炉等を用いてスピノダル分解を施すこ
とが好ましい。
Further, it is desirable that the strength of the magnetic field is about 0.5 kOe or more. In actual operation, it is preferable to perform spinodal decomposition using a continuous furnace or the like that can apply a magnetic field in a direction perpendicular to the plate surface.

ついで上記の磁場焼鈍の後またはそれに引続き、磁場焼
鈍温度以下で、磁場を加えずに時効焼鈍を施す。この時
効焼鈍は、スピノダル分解によって2相分離したそれぞ
れの相について平衡組成に到達させると同時に、Cr富
相の室温における非強磁性化を図るものである。ここに
磁場焼鈍温度を超える温度で焼鈍を施して平衡組成にし
た場合は、得られたCr富相は完全な非磁性相とはなら
ない。
Then, after or in succession to the magnetic field annealing described above, age annealing is performed at a temperature below the magnetic field annealing temperature without applying a magnetic field. This aging annealing is intended to reach an equilibrium composition for each phase separated into two phases by spinodal decomposition, and at the same time to make the Cr-rich phase non-ferromagnetic at room temperature. When annealing is performed at a temperature exceeding the magnetic field annealing temperature to obtain an equilibrium composition, the obtained Cr-rich phase does not become a complete nonmagnetic phase.

なおかような時効焼鈍において、2相分離後の各相の体
積は1:1の比率になっていることが望ましく、このよ
うにすることによって、きわめてすぐれた保磁力ひいて
は(B)I)ma×が得られる。
In such age annealing, it is desirable that the volume of each phase after two-phase separation is in a ratio of 1:1, and by doing so, extremely excellent coercive force and (B)I) ma × is obtained.

(実施例) 汰潰例 I Fes5Cr22−CO12−Mn+の組成になる合金
溶湯から、射出圧カニ  1.5 atm、  射出令
:  (’1.5kg/sと一定にし、ロール回転数を
(a) 120Orpm、  (b) 700rpmに
変化させる条件下の双ロール法によって、厚み0.3+
nm(薄板^)および0.5mm(薄板B)の薄板をそ
れぞれ作成した。
(Example) Sampling Example I From a molten alloy having the composition Fes5Cr22-CO12-Mn+, the injection pressure was 1.5 atm, the injection speed was kept constant at 1.5 kg/s, and the roll rotation speed was (a). 120 Orpm, (b) Thickness 0.3 + by the twin roll method under the conditions of changing to 700 rpm.
Thin plates of nm (thin plate^) and 0.5 mm (thin plate B) were respectively created.

これらの薄板のas−cast状態での柱状高率は、そ
れぞれ薄板A:約約8冗 た。
The columnar height of each of these thin plates in the as-cast state was about 8 for thin plate A.

ついでこれらの薄板A,Bに対し、1000℃,10分
間の再結晶焼鈍を施したのぢ、板面垂直方向に2 ko
eの磁場印加の下に660℃,10分間の焼鈍を施し、
引続いて磁場を加えずに600℃で5時間、575℃で
5時間、550℃で5時間ついで500℃で10時間の
多段時効焼鈍を施した。
These thin plates A and B were then subjected to recrystallization annealing at 1000°C for 10 minutes.
Annealed at 660°C for 10 minutes under the application of a magnetic field of e.
Subsequently, multi-stage aging annealing was performed at 600°C for 5 hours, at 575°C for 5 hours, at 550°C for 5 hours, and then at 500°C for 10 hours without applying a magnetic field.

かくして得られた両薄板の起磁力をガウスメータで測定
した結果、薄板Aは600G,  一方薄板Bは350
Gであった。ここに薄板Δについては、その磁化容易軸
が板面垂直方向に揃っていることが明白である。
As a result of measuring the magnetomotive force of both thin plates thus obtained using a Gaussmeter, thin plate A was 600G, while thin plate B was 350G.
It was G. It is clear that the axis of easy magnetization of the thin plate Δ is aligned in the direction perpendicular to the plate surface.

実施例 2 Feso Cr23−COIS−3itの組成になる合
金溶湯から射出圧カニ 1.6atm、射出量: 0.
6kg/sと一定にし、ロール回転数をそれぞれ(a)
300rpm、 (b) 600rpm。
Example 2 Injection pressure: 1.6 atm, injection amount: 0.
The rotation speed of each roll is kept constant at 6 kg/s (a)
(b) 600 rpm.

(C) 1200rpmと変化させる条件下に・厚み0
.20mm(薄板C)、 0.35mm(薄板D)およ
び0.52 mm (薄板B)の薄板をそれぞれ作成し
た。
(C) Under changing conditions of 1200 rpm・Thickness 0
.. Thin plates of 20 mm (thin plate C), 0.35 mm (thin plate D) and 0.52 mm (thin plate B) were prepared.

これらの薄板C,DおよびEの柱状晶率はそれぞれ95
.58および28%であった。
The columnar crystallinity of these thin plates C, D and E is 95, respectively.
.. 58 and 28%.

ついでこれらの薄板C,DおよびEに対し、980℃で
12分間の再結晶焼鈍を施したのち、板面垂直方向に2
koeの磁場印加の下に665℃、10分間の焼鈍を施
し、引続いて磁場を加えずに600℃で5時間、575
℃で5時間、550℃で5時間ついで500℃で10時
間の多段時効焼鈍を施した。
These thin plates C, D and E were then subjected to recrystallization annealing at 980°C for 12 minutes.
Annealing was performed at 665°C for 10 minutes under the application of a magnetic field of 575°C, followed by annealing at 600°C for 5 hours without applying a magnetic field.
Multi-stage aging annealing was performed at 550°C for 5 hours, then at 500°C for 10 hours.

かくして得られた各薄板の起磁力をガウスメータで測定
したところ、薄板CおよびDはいずれも600Gあった
のに対し、薄板Eは370Gにすぎなかった。
When the magnetomotive force of each thin plate thus obtained was measured using a Gaussmeter, the magnetomotive force of both thin plates C and D was 600G, while that of thin plate E was only 370G.

(発明の効果) か<シーC1この発明によれば、P e −Cr −C
o M系永久磁石につき、超急冷法に特有の結晶組織の
特長を積極的に利用することによって板面垂直方向に磁
化容易軸を揃えることができ、しかも磁場焼鈍における
磁場印加方向も板面垂直方向に一致させるので、板面垂
直方向における磁気特性がとりわけ優れた板状61!i
石を、T業的規模で容易に製造することができる。
(Effect of the invention) ka<C1 According to this invention, P e -Cr -C
o For M-based permanent magnets, the axis of easy magnetization can be aligned perpendicular to the plate surface by actively utilizing the characteristics of the crystal structure unique to the ultra-quenching method, and the magnetic field application direction during magnetic field annealing is also perpendicular to the plate surface. The plate shape 61 has particularly excellent magnetic properties in the direction perpendicular to the plate surface because the directions match! i
Stone can be easily produced on a commercial scale.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、冷却ロール回転数と板厚との関係を示したグ
ラフ、 第2図は、急冷薄帯の板厚と柱状晶率との関係を示した
グラフ、 第3図a、bは、柱状晶率が90%を超える22Cr−
15Co−IMn−Re合金急冷薄帯の顕微鏡断面組織
写真および(200)極点図、 第4図a、bは、上記薄帯に1100℃、10分間の焼
鈍を施したのちの顕微鏡断面組織写真および(200)
極点図、 第5図a、bは、柱状晶率が30%に満たない22Cr
−15Co−IMn−Fe合金急冷薄帯の顕微H断面m
 織写真および(200)極点図、 第6図a、1)は、上記薄帯に1100℃、10分間の
焼鈍を施したのらの顕微鏡断面組織写真および(200
)極点図、 第7図は、永久磁石の減磁曲線およびエネルギー積曲線
図である。
Figure 1 is a graph showing the relationship between cooling roll rotation speed and plate thickness. Figure 2 is a graph showing the relationship between plate thickness and columnar crystal percentage of the quenched ribbon. Figure 3 a and b are graphs showing the relationship between plate thickness and plate thickness. , 22Cr- with a columnar crystal ratio of over 90%
15Co-IMn-Re alloy rapidly solidified thin ribbon microscopic cross-sectional structure photograph and (200) pole figure. (200)
The pole figures, Figures 5a and b, are for 22Cr with a columnar crystal ratio of less than 30%.
-15Co-IMn-Fe alloy quenched ribbon microscopic H cross section m
Fig. 6a, 1) shows the microscopic cross-sectional structure photograph and (200) polar figure of the above ribbon after annealing at 1100°C for 10 minutes.
) Pole figure, Figure 7 is a demagnetization curve and an energy product curve diagram of a permanent magnet.

Claims (1)

【特許請求の範囲】 1、化学式:Fe_1_0_0_−_x_−_y_−_
zCr_xCo_yM_zここでM:Ti、Zr、V、
Nb、Ta、Mo、W、Mn、Cu、Si、Sn、P、
AlおよびBの うちから選んだ少なくとも1種 x:10〜35wt%、 y:3〜35wt% z:1.0〜10wt% で示される組成になる合金溶湯を、超急冷法によって急
冷凝固させて薄板とするに際し、該薄板の所望板厚に対
応させた冷却条件の調整によって、該薄板の結晶組織を
30%以上の柱状晶を含む組織とし、ついで該薄板に8
00〜1300℃の温度範囲で再結晶焼鈍を施してから
、600〜750℃の温度範囲において板面垂直方向へ
の磁場印加の下に焼鈍を施し、引続き磁場焼鈍温度以下
の温度で時効焼鈍を施すことを特徴とする、板面垂直方
向に磁化容易軸を有する永久磁石板の製造方法。
[Claims] 1. Chemical formula: Fe_1_0_0_-_x_-_y_-_
zCr_xCo_yM_z where M: Ti, Zr, V,
Nb, Ta, Mo, W, Mn, Cu, Si, Sn, P,
A molten alloy having a composition of at least one selected from Al and B, x: 10 to 35 wt%, y: 3 to 35 wt%, z: 1.0 to 10 wt%, is rapidly solidified by an ultra-quenching method. When forming a thin plate, the crystal structure of the thin plate is made to include 30% or more of columnar crystals by adjusting the cooling conditions corresponding to the desired thickness of the thin plate, and then the thin plate is
Recrystallization annealing is performed in the temperature range of 00 to 1300°C, then annealing is performed in the temperature range of 600 to 750°C under the application of a magnetic field in the direction perpendicular to the plate surface, and then aging annealing is performed at a temperature below the magnetic field annealing temperature. A method for producing a permanent magnet plate having an axis of easy magnetization in a direction perpendicular to the plate surface.
JP22380385A 1985-09-18 1985-10-09 Manufacture of permanent magnetic sheet having easily magnetized axis in direction vertical to sheet surface Pending JPS6283423A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP22380385A JPS6283423A (en) 1985-10-09 1985-10-09 Manufacture of permanent magnetic sheet having easily magnetized axis in direction vertical to sheet surface
EP19860305484 EP0216457A1 (en) 1985-09-18 1986-07-16 Method of producing two-phase separation type Fe-Cr-Co series permanent magnets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22380385A JPS6283423A (en) 1985-10-09 1985-10-09 Manufacture of permanent magnetic sheet having easily magnetized axis in direction vertical to sheet surface

Publications (1)

Publication Number Publication Date
JPS6283423A true JPS6283423A (en) 1987-04-16

Family

ID=16803962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22380385A Pending JPS6283423A (en) 1985-09-18 1985-10-09 Manufacture of permanent magnetic sheet having easily magnetized axis in direction vertical to sheet surface

Country Status (1)

Country Link
JP (1) JPS6283423A (en)

Similar Documents

Publication Publication Date Title
US8388766B2 (en) Anisotropic rare earth sintered magnet and making method
JP4698581B2 (en) R-Fe-B thin film magnet and method for producing the same
US6280536B1 (en) Fe based hard magnetic alloy having super-cooled liquid region
JPH11186016A (en) Rare-earth element-iron-boron permanent magnet and its manufacture
EP0323125B1 (en) Rare earth permanent magnet
JP3488358B2 (en) Method for producing microcrystalline permanent magnet alloy and permanent magnet powder
JP2774372B2 (en) Permanent magnet powder
EP0216457A1 (en) Method of producing two-phase separation type Fe-Cr-Co series permanent magnets
US4854979A (en) Method for the manufacture of an anisotropic magnet material on the basis of Fe, B and a rare-earth metal
JPS6283423A (en) Manufacture of permanent magnetic sheet having easily magnetized axis in direction vertical to sheet surface
US10546672B2 (en) Rare earth based magnet
JP3488354B2 (en) Method for producing microcrystalline permanent magnet alloy and isotropic permanent magnet powder
JPS6115944A (en) Rare earth magnet thin strip
JPH1064710A (en) Isotropic permanent magnet having high magnetic flux density and manufacture thereof
JP4043613B2 (en) Fe-based hard magnetic alloy with supercooled liquid region
US20050247376A1 (en) Magnetic materials containing praseodymium
JP3380575B2 (en) RB-Fe cast magnet
KR100826661B1 (en) R-Fe-B BASED THIN FILM MAGNET AND METHOD FOR PREPARATION THEREOF
JP2660917B2 (en) Rare earth magnet manufacturing method
WO2004068513A1 (en) Hard magnetic composition, permanent magnet powder, method for permanent magnet powder, and bonded magnet
JPH04308062A (en) Magnet alloy containing rare earth element and permanent magnet containing rare earth element
JPH11121215A (en) Manufacture of rare-earth magnetic powder
JPH0533095A (en) Permanent magnet alloy and its production
JPH01112703A (en) Manufacture of r-tm-b permanent magnet
JPS6115945A (en) Rare earth permanent magnet