JPS6283329A - Method for welding glass fiber bundle - Google Patents

Method for welding glass fiber bundle

Info

Publication number
JPS6283329A
JPS6283329A JP60224092A JP22409285A JPS6283329A JP S6283329 A JPS6283329 A JP S6283329A JP 60224092 A JP60224092 A JP 60224092A JP 22409285 A JP22409285 A JP 22409285A JP S6283329 A JPS6283329 A JP S6283329A
Authority
JP
Japan
Prior art keywords
glass
glass fibers
bundle
stage
glass fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60224092A
Other languages
Japanese (ja)
Inventor
Kouji Tsumanuma
孝司 妻沼
Kazuo Sanada
和夫 真田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP60224092A priority Critical patent/JPS6283329A/en
Publication of JPS6283329A publication Critical patent/JPS6283329A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2856Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers formed or shaped by thermal heating means, e.g. splitting, branching and/or combining elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To produce an optical fiber without any inclusion of gases and impurities and which is uniform in the lengthwise direction by bundling glass fibers having larger diameter at both end parts than that at the central part, covering the bundle with a glass tube and successively heating and melting the bundle from the lower part to the upper part. CONSTITUTION:The glass fiber bundles are welded by the following stages 1-3. In the stage (1), a glass fiber 10 having larger diameter at both end parts 14 than that at the central part 12 is made. In the stage (2), the desired number of the glass fibers 10 obtained in the stage (1) are bundled in parallel and the bundle is covered with the glass tube 22. In the stage (3), the bundle of the glass fibers 10 covered with the glass tube 22 is vertically retained and successively heated and melted from the lower part to the upper part. By such a method, the shape of a wedge A is formed between the central parts 12 of the glass fibers 10 and the wedge A moves upward as the melt zone moves upward. Accordingly, the air between the central parts 12 is discharged through a clearance 26 and a hole 16.

Description

【発明の詳細な説明】 [産業上の利用分野] 細いガラス繊維を多数束ね、それを加熱溶着して、断面
における屈折率分布が複雑な光ファイバや、応力付与部
を持つ定偏波光ファイバを作る場合がある。
[Detailed Description of the Invention] [Industrial Application Field] By bundling a large number of thin glass fibers and heat-welding them, optical fibers with a complicated refractive index distribution in the cross section or polarization-constant optical fibers with stress applying parts can be produced. I may make it.

この発明は、そのような場合に利用することのできる、
ガラス繊維束の溶着方法に関するものである。
This invention can be used in such cases,
The present invention relates to a method for welding glass fiber bundles.

[従来の技術] ■ホットプレス法と称し、型の中にガラス繊維束スたし
、それを加執成形し、さらに線引き紡糸する方法や、 ■一端を真空ポンプに連通させたガラス管内にガラスm
raを充填密封し、線引き紡糸する方法、などがある。
[Prior technology] - Called the hot press method, there is a method in which glass fiber bundles are placed in a mold, processed and formed, and then drawn and spun. - Glass is placed in a glass tube with one end connected to a vacuum pump. m
There are methods such as filling and sealing RA and drawing and spinning it.

[発明が解決しようとする問題点] 多数の細いガラス繊維を相互に並行して密閉状態に溶融
結合しなければならない場合に、ガラス繊維とガラス繊
維との間が離れたままになっていたり、あるいはその間
にガスその他の不純物を閉じこめてしまったりして、往
往にして不連続繊維となる場合が多い、そのような場合
、その不連続性がガラス繊維の光伝導性質に良くない影
響を与えて、不良品となってしまうことが多い。
[Problems to be Solved by the Invention] When a large number of thin glass fibers must be fused and bonded in parallel to each other in a sealed state, the glass fibers may remain separated from each other, Alternatively, gas and other impurities may be trapped between the glass fibers, often resulting in discontinuous fibers. , often resulting in defective products.

[問題点を解決するための手段] この発明は1束ねるガラス繊維を従来のように全長にわ
たって同じ太さのものを使用するのではなく、第1図(
L)のように、両端部14が中央部12よりも太い径の
構造を持つガラス繊維10を使用することを最大の特徴
とする。
[Means for Solving the Problems] This invention does not use glass fibers with the same thickness over the entire length as in the past, but instead uses glass fibers with the same thickness over the entire length as in the conventional case.
The main feature is that the glass fiber 10 having a structure in which both end portions 14 have a larger diameter than the central portion 12, as shown in L), is used.

そして、同図(b)〜(d)のように、前記構造の多数
のガラス繊維10を束ねて、その上にガラス管22をか
ぶせ、それを垂直状態に保持し、下部から上方に向って
順次加熱溶融してゆくことにより、上記の問題の解決を
図ったものである。
Then, as shown in FIGS. 6(b) to 7(d), a large number of glass fibers 10 having the above-mentioned structure are bundled, a glass tube 22 is placed on top of the bundle, the glass tube 22 is held in a vertical state, and the glass fibers 10 are stacked upward from the bottom. The above problem is solved by successively heating and melting the materials.

[その説明コ (1)第1図(a)のように、ガラス繊維10の中央部
12は両端部14より細くしである。後記のように実際
に使用するのは中央部12だけである。中央部12と両
端部14との半径差は、0.2〜0.51++s程度で
よい。
[Explanation (1) As shown in FIG. 1(a), the center portion 12 of the glass fiber 10 is thinner than both end portions 14. As will be described later, only the central portion 12 is actually used. The radius difference between the center portion 12 and both end portions 14 may be approximately 0.2 to 0.51++s.

このようなガラス繊維10を作るには、■エツチングに
より中央部lまたけ細くする、■中央部12の両端に、
それより太い両端部141継ぎ足す、などの方法による
In order to make such a glass fiber 10, ■ make the center part L thinner by etching, and ■ make the center part 12 thinner at both ends.
A method such as adding thicker end portions 141 is used.

(2)このようなガラス繊維10を多数作り、同図(b
)のように、それらが同径の場合は六方稠密に、また異
径の場合は互いに密着させて並行に配列する。
(2) A large number of such glass fibers 10 are made and
) If they have the same diameter, they are arranged in a hexagonal dense arrangement, and if they have different diameters, they are arranged in parallel in close contact with each other.

それから同図(C)のように1両端部14のみを加熱融
着し、支持用のガラスロッド20を溶着し、ガラス管2
2をかぶせてガラスロッド20との間を封着24し、上
部に空気抜き用の孔16を設ける。
Then, as shown in the same figure (C), only the two ends 14 are heat-sealed, the glass rod 20 for support is welded, and the glass tube 2
2 to seal the space between the glass rod 20 and the glass rod 20, and provide an air vent hole 16 in the upper part.

(3)それから、加熱炉30により、下部から上方に向
って順次加熱して、ガラス管?zごと溶融一体化してゆ
く。
(3) Then, the heating furnace 30 sequentially heats the glass tube from the bottom upward. The whole z melts and becomes one.

そうすると、溶融一体化した部分と、まだ溶融しない部
分との境では、同図(d)のように、ガラスロッド10
の中央部12同士がクサビ形Aを形成する。そして、溶
融部が上方に移動するにつれて、このクサビ形Aも上方
に移動してゆくから、中央部12間にある空気は、隙間
26と上記の孔16を通って排出される。
Then, at the boundary between the melted and integrated part and the unmelted part, as shown in FIG.
The central portions 12 of the two form a wedge shape A. As the melting portion moves upward, this wedge shape A also moves upward, so that the air present between the central portions 12 is discharged through the gap 26 and the hole 16 described above.

したがって、ガラス繊維10間にガスその他の不純物を
閉じ込めることなく、きれいな連続界面を有するものが
得られる。
Therefore, it is possible to obtain a glass fiber 10 having a clean continuous interface without trapping gas or other impurities between the glass fibers 10.

(4)そして最後に同図(e)の溶着体40が得られる
。上記のように、その両端部分は切除し中央部42のみ
を母材として用い、それから線引きにより所要の光ファ
イバを得る。
(4) Finally, the welded body 40 shown in FIG. 4(e) is obtained. As described above, both end portions are cut off and only the central portion 42 is used as a base material, and then the desired optical fiber is obtained by drawing.

[応用例] 第2図のように、上記同様な構造を持つ、屈折率の高い
材質のガラス繊維10a(たとえばVAD法によるGI
型)を中心とし、外側に、目的の屈折率分布を持つよう
に、屈折率の低い材質のガラス繊維10b(たとえばプ
ラズマ法によるFドープ繊維)で囲むように配列し、そ
れを適当な石英管22に入れ、溶融一体化する。これに
より、大NAの光伝導繊維が得られる。
[Application Example] As shown in FIG.
The glass fibers 10b made of a material with a low refractive index (for example, F-doped fibers made by plasma method) are arranged so as to have the desired refractive index distribution at the center, and are surrounded by a suitable quartz tube. 22 and melted and integrated. As a result, a photoconductive fiber with a large NA can be obtained.

また、第3図のように、VAD法などにより作製したガ
ラスramをコア10cとし、熱膨張係数の異なるガラ
ス繊維を応力付与部10dとし、その他は純粋石英のガ
ラス繊維10eを配置し、それらに石英管22をかぶせ
、融解一体化することにより、応力付与型の定偏波光フ
ァイバを製造することができる。
Further, as shown in FIG. 3, a core 10c is a glass RAM fabricated by a VAD method, a stress-applying part 10d is a glass fiber having a different coefficient of thermal expansion, and glass fibers 10e made of pure quartz are arranged for the rest. By covering the quartz tube 22 and melting and integrating it, a stress-applied type polarization constant optical fiber can be manufactured.

[発明の効果J 両端部14が中央部12よりも太い径の構造を持つガラ
ス繊維10を所望本数だけ並行に束ね、その上にガラス
管22をかぶせ、それを垂直状態に保持し、下部から上
方に向って順次加熱溶融してゆくので、上記のように、
両端部14の細い径の部分は相互に一定間隔を保ちクサ
ビ形Aを形成しながら融接する。
[Effect of the Invention J A desired number of glass fibers 10 having a structure in which both ends 14 have a larger diameter than the center part 12 are bundled in parallel, a glass tube 22 is placed on top of the bundle, the glass tube 22 is held in a vertical state, and As it heats and melts in an upward direction, as shown above,
The narrow diameter portions of both ends 14 are fusion-welded while maintaining a constant distance from each other and forming a wedge shape A.

したがって、ガスや不純物の閉じこめもなく、長さ方向
に、均一な光学繊維を製造することができる。
Therefore, an optical fiber that is uniform in the length direction can be manufactured without trapping gas or impurities.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(e)は本発明の実施例の方法を工程順
に示した説明図、 第2図と第3図は応用例の説明図である。 10ニガラス繊維  12:中央部 14:両端部    16:孔
FIGS. 1(a) to (e) are explanatory diagrams showing the method of the embodiment of the present invention in the order of steps, and FIGS. 2 and 3 are explanatory diagrams of applied examples. 10 Glass fiber 12: Center part 14: Both ends 16: Hole

Claims (1)

【特許請求の範囲】 両端部14が中央部12よりも太い径の構造を持つガラ
ス繊維10を作る工程、 前記構造のガラス繊維10を所望本数だけ並行に束ね、
その上にガラス管22をかぶせる工程、ガラス管22を
かぶせたガラス繊維10の束を垂直状態に保持し、下部
から上方に向って順次加熱溶融してゆく工程、 を備えることを特徴とする、ガラス繊維束の溶着方法。
[Claims] A step of making a glass fiber 10 having a structure in which both end portions 14 have a larger diameter than the central portion 12, a step of bundling a desired number of glass fibers 10 having the above structure in parallel;
It is characterized by comprising the following steps: a step of covering the glass tube 22 thereon, a step of holding the bundle of glass fibers 10 covered with the glass tube 22 in a vertical state, and sequentially heating and melting it from the bottom upwards. Method for welding glass fiber bundles.
JP60224092A 1985-10-08 1985-10-08 Method for welding glass fiber bundle Pending JPS6283329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60224092A JPS6283329A (en) 1985-10-08 1985-10-08 Method for welding glass fiber bundle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60224092A JPS6283329A (en) 1985-10-08 1985-10-08 Method for welding glass fiber bundle

Publications (1)

Publication Number Publication Date
JPS6283329A true JPS6283329A (en) 1987-04-16

Family

ID=16808419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60224092A Pending JPS6283329A (en) 1985-10-08 1985-10-08 Method for welding glass fiber bundle

Country Status (1)

Country Link
JP (1) JPS6283329A (en)

Similar Documents

Publication Publication Date Title
US5261018A (en) Optical-coupler reinforcing material and optical-coupler reinforcing method
FI77217B (en) FOERFARANDE FOER FRAMSTAELLNING AV EN POLARISATIONSBEVARANDE OPTISK FIBER.
US7245807B2 (en) Optical fiber and method for making an optical fiber
US3455667A (en) Method of making optical couplers
US4551162A (en) Hollow tube method for forming an optical fiber
KR20050013206A (en) Methods and preforms for drawing microstructured optical fibers
US3148967A (en) Process for making optical image transfer device
US3902879A (en) Method of making optical fiber with porous cladding
GB2191873A (en) Fibre-optic light guide which is resistant to high temperatures in its end-face region
JPS6283329A (en) Method for welding glass fiber bundle
JP3745895B2 (en) Manufacturing method of base material for polarization optical fiber
JPS59217632A (en) Manufacture of multi-core fiber preform
JPS62162633A (en) Production of image guide
JPS63291829A (en) Production of optical fiber
US3222152A (en) Solder sealing glass members
KR100496448B1 (en) method of prevention of water generation in the jacketing tube during RIT and apparatus thereof
JP2585286B2 (en) Manufacturing method of optical fiber and preform for optical fiber
JPS6146415B2 (en)
JPH0723228B2 (en) Method of manufacturing constant polarization optical fiber
JPH03242339A (en) Preparation of axially symmetrical optical fiber preform
JPS6151765B2 (en)
JPH1039148A (en) Production of ribbon-like multicore fiber
JPS61158835A (en) Parent material for optical fiber
KR100528752B1 (en) Method of and apparatus for overcladding a optical preform rod
JP3816128B2 (en) Method for producing radiation-resistant tape-type multi-core fiber