JPS6283020A - Method of controlling switching regenerated adsorption tower - Google Patents

Method of controlling switching regenerated adsorption tower

Info

Publication number
JPS6283020A
JPS6283020A JP60224233A JP22423385A JPS6283020A JP S6283020 A JPS6283020 A JP S6283020A JP 60224233 A JP60224233 A JP 60224233A JP 22423385 A JP22423385 A JP 22423385A JP S6283020 A JPS6283020 A JP S6283020A
Authority
JP
Japan
Prior art keywords
adsorption
desorption
adsorption tower
valves
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60224233A
Other languages
Japanese (ja)
Inventor
Kazuhiro Matsumoto
和大 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP60224233A priority Critical patent/JPS6283020A/en
Publication of JPS6283020A publication Critical patent/JPS6283020A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To prevent fluidization and powdering of adsorbents, by making the direction of a gas flow in a packed layer in running downward at both of absorption and desorption operations and switching a valve at the time of adsorption and desorption to open and close an outlet and inlet valves simultaneously. CONSTITUTION:An adsorption tower A is adsorbing and an adsorption tower B is under regeneration. In order to switch the adsorption tower A to a regeneration mode and the adsorption tower B to an adsorption mode, V11 and V14, V12 and V13, V21 and V24, and V22 and V23 are simultaneously opened or closed at respective inlet and outlet, and a reduction ratio of a motor is adjusted such that a closing speed is for one min., and an opening speed is for two min., thereby effecting stable switching operations. Both adsorption and desorption are operated in such a manner that the gas flows downwardly, thereby preventing fluidization and powdering of the adsorbent.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、吸着剤を充填した2塔以上の吸着塔をバルブ
の切り替えで操作する吸着塔の制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an adsorption tower control method in which two or more adsorption towers filled with adsorbent are operated by switching valves.

〔従来の技術〕[Conventional technology]

LNGやLPG回収装置の様に深冷分離プロセスを伴な
うプラントでは氷結による装置トラブルを避けるため、
1四以下に水分を除去する必要がある。その他化学プラ
ントで触媒や吸着剤の性能に水分が悪影響を及ぼす場合
(例えばCo5orb法CuC/2 / AlCl3に
よるCO吸収分離法)にも前処理として水分の除去が行
われる。
In plants that involve cryogenic separation processes such as LNG and LPG recovery equipment, in order to avoid equipment troubles due to freezing,
It is necessary to remove moisture to below 14%. Moisture is also removed as a pretreatment in other chemical plants where moisture has an adverse effect on the performance of catalysts and adsorbents (for example, in the Co5orb method and the CO absorption separation method using CuC/2/AlCl3).

この様な場合、モレキュラ・シープなどの吸湿剤を充填
した脱湿塔を2塔以上設置し、これらを交互に切り換え
て、水分を吸着した吸収剤は200〜300℃の高温ガ
スを辿して再生させ、繰り返し使用するのが普通である
In such cases, two or more dehumidification towers filled with a moisture absorbent such as Molecular Sheep are installed, and these are switched alternately so that the absorbent that has absorbed moisture follows the high-temperature gas at 200 to 300°C. It is common to regenerate and use repeatedly.

一般にLNGプラントの脱湿用モレキュラ・シ、−ブは
、4A型の押出成型した3〜5%φ×5〜7%長さの円
柱型吸着剤が使用され、常温〜50°C位で吸着(6〜
12時間)し、2塔をバルブ操作で切り換えて、水分吸
着後のプロセスガスの一部を加熱炉で250〜300℃
まで加熱したガスを通して吸着した水分を追い出し、再
生し、冷却した後、バルブ操作で切り換えて再度吸着操
作を行うサイクル操作が組まれている。
Generally, a 4A-type extruded cylindrical adsorbent with a diameter of 3 to 5% and a length of 5 to 7% is used for dehumidification molecular cylinders in LNG plants, and adsorbs at room temperature to about 50°C. (6~
12 hours), then switch the two towers by valve operation, and heat a part of the process gas after water adsorption in a heating furnace at 250-300°C.
A cycle operation is set up in which the adsorbed moisture is expelled by passing gas heated to 100°C, regenerated, cooled, and then switched using a valve to perform the adsorption operation again.

天然ガス精製工程とその中に組み込まれている従来方式
のバルブ切換式充填塔式吸着脱湿システムの1例を第2
図に示す。第2図にお(・で、天然ガスは脱硫塔1でH
2Sを除去し、フラッシュ・ドラム2で同伴ミストを除
去した後、後流の深冷分離装置での氷結トラブルをさけ
るためにモレキュラ・シープなどの吸湿剤を充填した吸
着塔3を通してガス中の水分濃度が数−以下まで脱湿さ
れる。吸着操作は20〜30気圧常温〜35℃程で行わ
れる。吸着塔はA−B・・2塔以上が組み込まれ4〜1
2時間毎にバルブ操作で交互に切り換えられ、吸着再生
が交互に行われ繰り返し使用される。
The second example shows an example of a natural gas purification process and a conventional valve-switchable packed column adsorption/dehumidification system incorporated therein.
As shown in the figure. In Figure 2, the natural gas is
After removing 2S and entrained mist in the flash drum 2, the moisture in the gas is passed through an adsorption tower 3 filled with a moisture absorbent such as molecular sheep to avoid freezing problems in the downstream cryogenic separator. It is dehumidified until the concentration is below a few degrees. The adsorption operation is carried out at a temperature of 20 to 30 atm and room temperature to 35°C. The adsorption tower is A-B... 2 or more towers are incorporated and 4 to 1
It is alternately switched by operating a valve every two hours, and adsorption regeneration is performed alternately and used repeatedly.

再生操作は精製ガスの一部を後段のコンプレッサ−4中
段から抜き取り加熱炉5で250〜300℃に加熱し、
これを水分を吸着した吸着塔3に通すことによって吸着
剤を再生し、後、冷ガスで冷却し、繰り返し使用される
。これらの加熱ガスや冷ガスは冷却器6で冷却し、フラ
ッシュ・ドラム7で水を切った後、プロセスガスとして
脱硫塔1の前に戻される。この様にプロセスガスの一部
を加熱し再生ガスとして使用し、プロセスに戻す場合は
、再生操作は吸着操作より1〜3にり/−程圧力が高(
なる。
In the regeneration operation, a part of the purified gas is extracted from the middle stage of the compressor 4 in the latter stage and heated to 250 to 300°C in the heating furnace 5.
The adsorbent is regenerated by passing it through an adsorption tower 3 that has adsorbed water, and then it is cooled with cold gas and used repeatedly. These heated gases and cold gases are cooled by a cooler 6, drained by a flash drum 7, and then returned to the front of the desulfurization tower 1 as a process gas. In this way, when a part of the process gas is heated and used as regeneration gas and returned to the process, the regeneration operation requires 1 to 3 times higher pressure than the adsorption operation (
Become.

また、再生用ガスをプロセスに戻さずにプロセス内外の
一般の加熱用燃料ガスとして使用する場合も多く、この
場合操作圧力は数Kp/cn1Gから、10数Kf/c
rA aとなり、吸着操作と再生操作で著しく操作圧力
が異なり、バルブ操作で切り換え時に急激な圧力変動、
充填層の流動化が起り、吸着剤の粉化の原因となる。
In addition, the regeneration gas is often used as general heating fuel gas inside and outside the process without returning it to the process, and in this case the operating pressure ranges from several Kp/cn1G to several tens of Kf/c.
rA a, the operating pressure is significantly different between adsorption operation and regeneration operation, and sudden pressure fluctuations occur when switching with valve operation.
Fluidization of the packed bed occurs, causing powdering of the adsorbent.

従来は、第2図の例て示す様に一般に吸着操作は充填層
の上から下にプロセスガスを流して脱湿し、脱着(再生
)操作は上部から吸着した水分を出来るだけ効果的に脱
着するため、逆に充填層の下から上に高温(再生)ガス
を流して再生している。そして吸着/脱着の切り替えは
、電磁ソレノイド弁、空気作動弁、電動モータ駆動弁な
どを、出入口同時に開閉、又は次の操作の出口側になる
弁を先に開け、後、大口弁をあける等の弁操作をシーケ
ーンシャルに行なっており後述の吸着剤の流動化、粉化
の問題点には考りよがはられれていないのが普通である
Conventionally, as shown in the example in Figure 2, the adsorption operation generally dehumidifies the process gas by flowing it from the top to the bottom of the packed bed, and the desorption (regeneration) operation desorbs the moisture adsorbed from the top as effectively as possible. To do this, high-temperature (regeneration) gas is flowed from the bottom to the top of the packed bed for regeneration. To switch between adsorption and desorption, open and close electromagnetic solenoid valves, air-operated valves, electric motor-driven valves, etc. at the entrance and exit at the same time, or open the valve that will be the exit side for the next operation first, and then open the large-mouth valve. Normally, valve operations are performed sequentially, and no consideration is given to the problems of fluidization and powderization of the adsorbent, which will be described later.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

今、一般に使われている脱湿剤、モレキュラ・シープ3
%鎖の流動化開始速度を、ガスの種類や圧力によっても
異なるが、空塔速度で1.5〜20117secとする
と充填層上・下の空塔部分の容積によっても異なるが、
バルブ操作によっては、上向きのガス流れが起り、数1
0秒から数分の流動化現象が起ることが予想される。
Molecular Sheep 3, a commonly used dehumidifier
The fluidization start speed of the % chain varies depending on the type of gas and pressure, but if the superficial velocity is 1.5 to 20117 seconds, it will also vary depending on the volume of the superficial column above and below the packed bed.
Depending on the valve operation, an upward gas flow occurs, and the number
It is expected that the fluidization phenomenon will occur for 0 seconds to several minutes.

この流動化が繰り返し起るとモレキュラ・シープは磨耗
、粉化し、小さい粉が充填層の上部に吹き上げられ部分
的に堆積して、充填層での偏流や圧損上昇の原因となる
When this fluidization occurs repeatedly, the molecular sheep is worn out and powdered, and small powders are blown up and partially deposited on the top of the packed bed, causing uneven flow and increased pressure drop in the packed bed.

吸湿剤は長期間繰り返し使用している間に強度的にも弱
くなり、割れや粉化が起って充填層の通気抵抗が太き(
なったり、吸着及び再生ガス組成や温度によっては吸着
剤中に不純物が蓄積して吸着性能が低下して来る問題が
あり、プロセス条件によって太き(異なるが、従来はこ
れを吸湿剤の寿命として2〜6年位で新品に入れ替える
のが常である。。
Moisture absorbents weaken in strength when used repeatedly over a long period of time, cracking and powdering occur, increasing the ventilation resistance of the filled layer (
Depending on the adsorption and regeneration gas composition and temperature, impurities may accumulate in the adsorbent and the adsorption performance may deteriorate. It is customary to replace it with a new one every 2 to 6 years.

市販の脱湿用モレキュラ・シープは基礎試験の結果、吸
着・脱着の繰り返し操作で、その圧縮強度は相当低下(
300℃再生、50サイクルで約30%低下)すること
が認られ、再生温度や吸着剤によっては一部表面にひび
割れが認められた。しかし吸着剤の強度が低下したとし
ても充填層中で粉化な起すには一般的には■吸着塔本体
の振動、■ガス流による吸着剤の流動化、■ガス分散口
からのガスの吹きつけによる吸着剤の流動化、など吸着
剤の流動が起った場合、粉化が起ると考えられ、ひとた
び粉化が起ると粉による充填床の部分的閉塞によってガ
スの偏流が起り、ガス流速の速い部分で吸着剤の流動化
が起り一層粉化を促進すると考えられる。
As a result of basic tests, the compressive strength of commercially available molecular sheep for dehumidification is considerably reduced by repeated adsorption and desorption operations (
A decrease of about 30% after 300°C regeneration and 50 cycles was observed, and cracks were observed on some surfaces depending on the regeneration temperature and adsorbent. However, even if the strength of the adsorbent decreases, in order to cause it to powder in the packed bed, there are generally three things that can cause it to become powder: ■ Vibration of the adsorption tower body, ■ Fluidization of the adsorbent by gas flow, and ■ Gas blowing from the gas dispersion port. Powdering is thought to occur when adsorbent fluidization occurs, such as when adsorbent fluidizes due to soaking, and once powdering occurs, gas drift occurs due to partial blockage of the packed bed by powder. It is thought that fluidization of the adsorbent occurs in areas where the gas flow rate is high, further promoting pulverization.

本発明者はこの粉化原因を追求している内に、LNC)
プラントの脱湿塔の如く、2塔以上の脱湿塔をバルブ操
作で切換えて吸着/脱着を繰り返えすシステムで、吸着
/脱着が加圧下で行なわれ、吸着と脱着の操作圧が少し
異なる場合、この圧力差のためにバルブ操作によっては
一時部分的に塔内にガスの流れ(差圧・変動)が起り、
吸着剤を流動化させ粉化の原因になることを見(・出し
た。
While pursuing the cause of this powdering, the inventor discovered that LNC)
Like a dehumidification tower in a plant, this is a system in which adsorption/desorption can be repeated by switching between two or more dehumidification towers by operating a valve.Adsorption/desorption is performed under pressure, and the operating pressures for adsorption and desorption are slightly different. In this case, due to this pressure difference, a temporary partial flow of gas (differential pressure/fluctuation) occurs within the tower depending on the valve operation.
It was discovered that it fluidizes the adsorbent and causes powdering.

本発明は吸着剤の流動化、粉化を防止するだめの吸着塔
の制御方法を提供することを目的としたものである。
The object of the present invention is to provide a method for controlling an adsorption tower that prevents fluidization and powdering of an adsorbent.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

1)吸着剤を充填した2塔以上の吸着塔をバルブ切り替
え操作で、吸・脱着操作を交互に行ない、繰り返し使用
する吸・脱着システムに於いて、吸着、脱着操作共、運
転時の充填層内のガス流れの方向が上から下へ流れるよ
うにし、吸/脱着、または脱/吸着のバルブ切り替えは
出入口弁を同時に開閉することを特徴とする吸着塔の制
御方法。
1) In an adsorption/desorption system that uses two or more adsorption towers filled with adsorbent to alternately perform adsorption and desorption operations by switching valves, both adsorption and desorption operations are carried out in the packed bed during operation. A method for controlling an adsorption tower, characterized in that the direction of gas flow in the adsorption tower is from top to bottom, and valve switching for adsorption/desorption or desorption/adsorption is performed by simultaneously opening and closing inlet and outlet valves.

2)吸着剤を充填した2塔以上の吸着塔をバルブ切り替
え操作で吸脱着操作を交互に行ない、繰り返し使用する
吸・脱着システムに於いて、吸着操作圧と脱着操作圧が
異なる場合、その圧力差からバルブ切り替え時に1時的
に充填層を流れるガスの流れの方向が上から下方向にな
る側のバルブを先に開け、後に残りのバルブを開けるこ
とを特徴とする吸着塔の制御方法。
2) In an adsorption/desorption system where two or more adsorption towers filled with adsorbent are used repeatedly for adsorption and desorption operations by switching valves, if the adsorption operation pressure and desorption operation pressure are different, the pressure A method for controlling an adsorption tower, which is characterized in that when switching the valves, the valve on the side where the gas flow direction through the packed bed temporarily goes from top to bottom is opened first, and the remaining valves are opened later.

本発明の方法は、吸着剤の流動化、粉化の問題に対する
対策として、 1)吸着操作、脱着操作共に充填層のガス流れを、上か
ら下へ流れる様にする。
The method of the present invention takes measures against the problems of fluidization and powdering of the adsorbent, as follows: 1) The gas flow in the packed bed is made to flow from top to bottom in both adsorption and desorption operations.

2)吸/脱着又は脱/吸着のバルブの切換えは入口出口
弁を同時に開閉するか、吸着操作圧と脱着操作圧の差か
らバルブ切替え時に1時的に塔内を流れるガスの流れ方
向が上から下方向になる側のバルブを先に開け、後、残
りのバルブを開ける。
2) To switch the adsorption/desorption or desorption/adsorption valves, either open and close the inlet and outlet valves at the same time, or temporarily change the flow direction of the gas inside the column to an upward direction when switching the valves due to the difference between the adsorption operating pressure and the desorption operating pressure. Open the valve on the side facing downward first, then open the remaining valves.

方法である。これにより吸着剤の流動化を防ぐことが出
来、上記トラブルを防止出来る。
It's a method. This can prevent fluidization of the adsorbent and prevent the above-mentioned troubles.

〔作用〕[Effect]

1)吸着操作、脱着操作共に運転時の充填層のガスの流
れ方向は上から下へ流れる様に配管されている。
1) The piping is such that the flow direction of gas in the packed bed during both adsorption and desorption operations is from top to bottom.

脱着操作は250〜300℃の高温ガスで行われるので
上から下でも下から上でも殆んど効率は変らない。
Since the desorption operation is carried out using high-temperature gas at 250 to 300°C, the efficiency hardly changes whether it is from the top down or from the bottom up.

2)吸/脱着又は脱/吸着のバルブの切替えは入口出口
弁を同時に開閉するか、吸着操作圧と脱着操作圧の差か
らバルブ切替時に1時的に塔内を流れるガス流れの方向
が上から下方向になる側のバルブを先に開け、後、残り
のバルブを開ける。第1図は本発明の方法を適用した天
然ガス回収精製プロセスの例示図であるが、第1図の場
合、再生操作圧が、吸着操作圧より1〜3 Ky/cr
Aa高いので、吸着塔Aを再生操作が終ってVll l
 v、□、 VI3 、 VI4が皆、閉の状態から吸
着操作すなわち、第1図の状態に切り換える時には、先
ずVI4を開き、その後でVllを開く。又吸着塔Bを
吸着操作が終ってv2+ 。
2) To switch the adsorption/desorption or desorption/adsorption valves, either open and close the inlet and outlet valves at the same time, or temporarily change the direction of the gas flow inside the column upwards due to the difference between the adsorption operating pressure and desorption operating pressure when switching the valves. Open the valve on the side facing downward first, then open the remaining valves. FIG. 1 is an illustration of a natural gas recovery and purification process to which the method of the present invention is applied. In the case of FIG. 1, the regeneration operating pressure is 1 to 3 Ky/cr lower than the adsorption operating pressure.
Since Aa is high, Vll l after the regeneration operation of adsorption tower A is completed.
When v, □, VI3, and VI4 are all switched from the closed state to the suction operation, that is, to the state shown in FIG. 1, first VI4 is opened, and then Vll is opened. Also, after the adsorption operation in adsorption tower B is completed, it becomes v2+.

V221 V23 、 V24が清閑の状態から再生操
作すなわち、第1図の状態に切り替えるには先ず、V2
□を開き、後、V23を開くことによってバルブ切換え
時の1時的なガス流れを上から下に流すことが出来、流
動化現象や粉化を防ぐことが出来る。
V221 To switch from the quiet state of V23 and V24 to the playback operation, that is, the state shown in Figure 1, first
By opening □ and then opening V23, the temporary gas flow at the time of valve switching can be made to flow from top to bottom, and fluidization phenomenon and powdering can be prevented.

〔実施例〕〔Example〕

実施例 第1図に示す天然ガス精製装置において、下記
の様な操作条件の下で本発明の方法を適用した。
Example The method of the present invention was applied to the natural gas purification equipment shown in FIG. 1 under the following operating conditions.

操作条件 なお、切換バルブは、各バルブ共、電動モータ駆動の玉
形弁でバルブ開度と開孔比は1次の比例関係に近いもの
であった。
Operating conditions The switching valves were all globe-shaped valves driven by electric motors, and the valve opening degree and opening ratio were close to a first-order proportional relationship.

第1図におけるVllとv、 、 vセとVll及びV
21とV24゜■?2とV23とはそれ、ぞれ出入口同
時に開閉し、モータの減速比を調整して閉スピードは1
分間、開放スピードは2分間とすることによって安定に
切換え操作運転が出来た。
Vll and v in Figure 1, , vse, Vll and V
21 and V24゜■? 2 and V23 open and close the entrance and exit at the same time, and the closing speed is 1 by adjusting the motor reduction ratio.
By setting the opening speed to 2 minutes, stable switching operation was possible.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば吸着剤の流動化、粉化を防止でき
る。
According to the method of the present invention, fluidization and powdering of the adsorbent can be prevented.

なお、本発明は天然ガス(LN())回収・精製プラン
ト石油随伴ガス(LP())回収・精製プラントCO分
離・精製プラントその他、化学プロセスガスの脱湿装置
等の吸着塔の操作に適用できる。
The present invention is applicable to the operation of adsorption towers in natural gas (LN()) recovery and purification plants, petroleum-associated gas (LP()) recovery and purification plants, CO separation and purification plants, and other chemical process gas dehumidification equipment. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を適用した天然ガス回収精製プロ
セスの例示図、第2図は従来の方法を適用した天然ガス
回収精製プロセスの例示図である。 1・・・脱硫塔、3・・・吸着塔、4・・・コンプレッ
サー、5・・・加熱炉、6・・・冷却器、7・・・フラ
ッシュドラム
FIG. 1 is an illustration of a natural gas recovery and purification process to which the method of the present invention is applied, and FIG. 2 is an illustration of a natural gas recovery and purification process to which the conventional method is applied. 1... Desulfurization tower, 3... Adsorption tower, 4... Compressor, 5... Heating furnace, 6... Cooler, 7... Flash drum

Claims (1)

【特許請求の範囲】 1)吸着剤を充填した2塔以上の吸着塔をバルブ切り替
え操作で、吸・脱着操作を交互に行ない、繰り返し使用
する吸・脱着システムに於いて、吸着、脱着操作共、運
転時の充填層内のガス流れの方向が上から下へ流れるよ
うにし、吸/脱着、または脱/吸着のバルブ切り替えは
出入口弁を同時に開閉することを特徴とする吸着塔の制
御方法。 2)吸着剤を充填した2塔以上の吸着塔をバルブ切り替
え操作で吸脱着操作を交互に行ない、繰り返し使用する
吸・脱着システムに於いて、吸着操作圧と脱着操作圧が
異なる場合、その圧力差からバルブ切り替え時に1時的
に充填層を流れるガスの流れの方向が上から下方向にな
る側のバルブを先に開け、後に残りのバルブを開けるこ
とを特徴とする吸着塔の制御方法。
[Claims] 1) In an adsorption/desorption system that is repeatedly used, adsorption and desorption operations are performed alternately by switching valves between two or more adsorption towers filled with adsorbent. A method for controlling an adsorption tower, characterized in that the direction of gas flow in the packed bed during operation is from top to bottom, and valve switching for adsorption/desorption or desorption/adsorption is performed by simultaneously opening and closing inlet and outlet valves. 2) In an adsorption/desorption system where two or more adsorption towers filled with adsorbent are used repeatedly for adsorption and desorption operations by switching valves, if the adsorption operation pressure and desorption operation pressure are different, the pressure A method for controlling an adsorption tower, which is characterized in that when switching the valves, the valve on the side where the gas flow direction through the packed bed temporarily goes from top to bottom is opened first, and the remaining valves are opened later.
JP60224233A 1985-10-08 1985-10-08 Method of controlling switching regenerated adsorption tower Pending JPS6283020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60224233A JPS6283020A (en) 1985-10-08 1985-10-08 Method of controlling switching regenerated adsorption tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60224233A JPS6283020A (en) 1985-10-08 1985-10-08 Method of controlling switching regenerated adsorption tower

Publications (1)

Publication Number Publication Date
JPS6283020A true JPS6283020A (en) 1987-04-16

Family

ID=16810585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60224233A Pending JPS6283020A (en) 1985-10-08 1985-10-08 Method of controlling switching regenerated adsorption tower

Country Status (1)

Country Link
JP (1) JPS6283020A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174191A (en) * 2009-01-30 2010-08-12 Chiyoda Kako Kensetsu Kk Method for reducing oxygen consumption in natural gas treatment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174191A (en) * 2009-01-30 2010-08-12 Chiyoda Kako Kensetsu Kk Method for reducing oxygen consumption in natural gas treatment

Similar Documents

Publication Publication Date Title
JP2988625B2 (en) Temperature swing adsorption method
US5855650A (en) Purification of gases using solid adsorbents
KR100192697B1 (en) Purification of gases using solid absorbents
US3719025A (en) Resolving gas mixtures
US4950311A (en) Heaterless adsorption system for combined purification and fractionation of air
US6599347B2 (en) Process for treating a feed gas
JP4252668B2 (en) Gas purification method
CN108348839B (en) Method for regenerating adsorbent in combined pressure swing and temperature swing adsorption
US5647891A (en) Method and apparatus for heated, pressure-swing high pressure air dehydration
JP2007529297A (en) Method and apparatus for removing water and carbon dioxide from a gas mixture using pressure swing adsorption
JP2005515053A (en) Air purification system and method for maintaining a nitrogen / oxygen ratio by a regenerative purification unit
JPH0565206B2 (en)
CN113184850B (en) High-purity carbon dioxide gas purification method and device thereof
JPH10128059A (en) Two-stage adsorbing and separating equipment for recovering carbon dioxide from waste combustion gas and two-stage method for adsorbing and separating carbon dioxide
US10427090B2 (en) Control of swing adsorption process cycle time with ambient CO2 monitoring
CA1322972C (en) Heaterless adsorption system for combined purification and fractionation of air
JPS6283020A (en) Method of controlling switching regenerated adsorption tower
CN215161044U (en) High-purity carbon dioxide gas purification device
JPH01288313A (en) Gas separation process
JPS63171616A (en) Method for controlling valve of changeover adsorption tower
JPH09122432A (en) Gas separator using pressure swing adsorption process
RU2701016C2 (en) Method of producing oxygen by vpsa
Dube et al. Control of swing adsorption process cycle time with ambient CO 2 monitoring
CN1041333A (en) A kind of making nitrogen by pressure swing adsorption method and equipment
JPH0517135Y2 (en)