JPS628091B2 - - Google Patents

Info

Publication number
JPS628091B2
JPS628091B2 JP60132149A JP13214985A JPS628091B2 JP S628091 B2 JPS628091 B2 JP S628091B2 JP 60132149 A JP60132149 A JP 60132149A JP 13214985 A JP13214985 A JP 13214985A JP S628091 B2 JPS628091 B2 JP S628091B2
Authority
JP
Japan
Prior art keywords
methanol
dimethyl carbonate
benzene
azeotrope
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60132149A
Other languages
Japanese (ja)
Other versions
JPS61291545A (en
Inventor
Yoshuki Harano
Tadayoshi Mitani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP60132149A priority Critical patent/JPS61291545A/en
Publication of JPS61291545A publication Critical patent/JPS61291545A/en
Publication of JPS628091B2 publication Critical patent/JPS628091B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は炭酸ジメチルをヒドロキシ化合物例
えばフエノールでエステル交換反応する事により
炭酸エステル例えば炭酸ジフエニルを製造する方
法に関するものであり、炭酸エステル、例えば炭
酸ジフエニルはポリカーボネートの合成原料とし
て使用され、工業的に非常に重要である。 (従来技術及びその問題点) エステル交換反応触媒の存在下、炭酸ジメチル
をヒドロキシ化合物でエステル交換し炭酸エステ
ルを製造する方法に関しては、例えば特許公報昭
56−42577等により公知である。エステル交換反
応触媒の存在下炭酸ジメチルをヒドロキシ化合物
でエステル交換し炭酸エステルを製造するエステ
ル交換反応は平衡反応であり、反応を進行させる
ためには生成するメタノールか又は生成する炭酸
エステルを逐次除去する必要がある。この様な反
応には通常反応器に蒸留塔を付加した反応蒸留塔
を用い塔底部の反応器で反応を行ないながら塔頂
部より生成する炭酸エステルより沸点の低いメタ
ノールを留去する反応蒸留法が採用される。しか
しながら本エステル交換においては生成するメタ
ノールが原料である炭酸ジメチルと共沸混合物を
形成するため留去するメタノールと共に原料であ
る炭酸ジメチルも留去され効率的に問題がある。 この問題を解決するための方法として特開昭54
−48732に記載されている様にメタノールとの共
沸剤を添加する事により炭酸ジメチルの留去を防
止する方法が提案されている。この様な系での一
般的な共沸物形成剤の選定は(1)メタノールとの共
沸温度がメタノールと炭酸ジメチルとの共沸温度
よりも低くかつ炭酸ジメチルの分離を容易にする
ためその温度差が大である事、(2)エネルギー的な
観点よりメタノールとの共沸物中のメタノールの
濃度が高い事、等により行なわれるが更に本エス
テル交換反応においてはその反応速度が非常に遅
いためバツチ式で実施されるのが通常である事か
ら、原料炭酸ジメチルの使用効率を良くするとい
う観点より蒸留塔内に出来るだけ炭酸ジメチルを
ホールドしない様な共沸物形成剤、即ち(4)その沸
点が炭酸ジメチルよりも低い事、(5)炭酸ジメチル
と共沸物を形成しない事も共沸物形成剤の選定の
際に重要な因子となる。 しかしながら前記選定条件の(4)項迄を満足する
ほとんどの共沸物形成剤は炭酸ジメチルとも共沸
物を形成する。 従つて実際的には炭酸ジメチルとの共沸物中の
炭酸ジメチルの濃度が出来るだけ低い。(メタノ
ール、炭酸ジメチル、共沸物形成剤の三成分共沸
の場合は三成分共沸物中の炭酸ジメチルの濃度が
出来るだけ低い)共沸物形成剤が好ましい。特開
昭54−48732に記載されている共沸物形成剤はこ
の点において問題がある。例えば前記共沸物形成
剤の選定条件のほとんどを満足する。n−ヘキサ
ンは炭酸ジメチルとの共沸物において約20重量パ
ーセントもの炭酸ジメチルを含有しこの結果反応
蒸留塔の蒸留塔内、即ち非反応帯に多量の炭酸ジ
メチルをホールドする事となる。更にメタノー
ル、n−ヘキサン、炭酸ジメチルの三成分共沸が
存在するものと考えられ、留出液中に多量の炭酸
ジメチルが含有される。従つて反応終了時の未反
応炭酸ジメチルが多くなり効率が悪い。 (発明の目的) 従つて本発明の目的はエステル交換反応触媒の
存在下、炭酸ジメチルをヒドロキシ化合物でエス
テル交換する事により炭酸エステルを製造する方
法において生成するメタノールをより効率的に除
去し回収する方法を見い出す事であり、更に詳し
くはメタノールとの共沸物形成剤としてその共沸
温度がメタノールと炭酸ジメチルとの共沸温度よ
りも多くかつその差が大であり、共沸物中のメタ
ノールの濃度が高く、更に炭酸ジメチルとの共沸
物中の炭酸ジメチルの濃度が低い共沸物形成剤を
見い出す事にある。 (発明の構成) 即ち、本発明はエステル交換反応触媒の存在下
炭酸ジメチルをヒドロキシ化合物でエステル交換
する事により、炭酸エステルを製造する方法にお
いて、ベンゼンをメタノールとの共沸物形成剤と
して使用しメタノールをベンゼンとの混合物とし
て留去する事により成る。本発明に用いるヒドロ
キシ化合物は一般式 R(−−OH) m(式中Rはアルキル基又はアリール基、mは
1以上の整数) で示される有機化合物であり例えばメタノール、
プロパノール、アリルアルコールブタノール等の
脂肪族アルコール、シクロヘキサノール、メチル
シクロヘキサノール等の脂環式アルコールおよび
フエノール、クレゾール等が挙げられる。勿論2
種以上のヒドロキシ化合物を併用する事も可能で
ある。 (発明の効果) 本発明の方法はエステル交換反応触媒の存在
下、炭酸ジ−メチルをヒドロキシ化合物でエステ
ル交換する事により炭酸エステルを製造する方法
においてベンゼンをメタノールとの共沸物形成剤
として用いる事により、メタノールを容易に効果
的に除去し回収する事が出来、より経済的に炭酸
エステルを製造する事が可能となる。 即ち本発明で用いるベンゼンはメタノールと共
沸物を形成する事によりその共沸温度は58℃
(760mmHg)を示し、メタノールと炭酸ジメチル
の共沸温度64℃(760mmHg)との間に蒸留分離
するに充分な沸点差を持つ事から原料である炭酸
ジメチルがほとんど反応系外に取り出される事が
なく効率的に反応を実施する事が出来る。又メタ
ノールとベンゼンの共沸物中のメタノールの濃度
も38.4重量パーセントと高いので当反応蒸留塔及
びメタノールやベンゼンの分離回収工程において
エネルギー的な負荷が少なく経済的である。更に
ベンゼンの沸点は炭酸ジメチルの沸点よりも低く
ベンゼンと炭酸ジメチルの共沸物中の炭酸ジメチ
ルの濃度が1重量パーセントと他の共沸物形成剤
に比較し格段に低い事から原料炭酸ジメチルの蒸
留塔内へのホールド量が少なくその結果仕込炭酸
ジメチルのほとんどが蒸留塔底部の反応帯に存在
するため仕込炭酸ジメチルを有利に効率的に反応
せしめる事が可能である。反応蒸留塔より留去し
て得られるメタノールとベンゼンの共沸物は公知
の方法により容易に分離回収する事が可能であ
る。例えば水で向流抽出する事により容易にベン
ゼンとメタノール、水混合物に分離する事が出
来、得られたベンゼンはそのまま反応蒸留に供給
する事も可能である。向流抽出に必要とする水は
メタノールが非常に水に抽出されやすい事から比
較的少量で抽出する事が出来、その結果高濃度の
メタノール水溶液として得る事が出来る。従つて
メタノールと水の分離を公知の一般的分離操作例
えば蒸留分離で行なつたとしてもエネルギー的な
負荷は少ない。更に分離した水を再度向流抽出に
使用する事も出来、非常に経済的にメタノールを
回収する事が出来る。 (問題点の解決手段) 以下第1図により本発明を更に詳しく説明する
が本発明を何ら限定するものではない。 エステル交換反応触媒、炭酸ジメチル、及びヒ
ドロキシ化合物例えばフエノール、場合によつて
はメチルフエニルカーボネートの様な中間生成物
が原料仕込み導管1を介して反応蒸留塔3に導入
する。反応蒸留操作は回分式でも連続式でも可能
であるが、炭酸ジメチルをフエノールでエステル
交換する様な場合は、その反応速度が遅いため、
連続式で行なうと大きな設備を必要とするので回
分式で行なう方が好ましい。 反応蒸留塔は反応速度を高める目的で加圧下で
操作される通常その圧力は0〜10atm、好ましく
は1〜5atmで操作するのが良い。これより高圧
下での実施は炭酸ジメチルの分解や不純物の生成
を招くので好ましくない。メタノールとの共沸物
形成剤であるベンゼンはベンゼン仕込み導管2を
介して反応蒸留塔3に導入される。ベンゼンを導
入する位置は反応蒸留塔3のどの部分に導入して
も良いが、メタノールの反応帯からの除去効率を
考慮すると出来るだけ反応帯に近い位置、即ち反
応蒸留塔の下部の方に導入するのが好ましい。又
ベンゼンの導入は反応蒸留を連続式あるいは回分
式のいずれで行なう場合も反応を開始する前に反
応蒸留塔3の蒸留部のホールド量に相当する量を
導入し、以後は反応蒸留実施中に連続的又は半回
分的に導入するのが好ましい。この際の導入量は
反応蒸留塔3の蒸留部の下部より2〜5段目の温
度がベンゼンの沸点より2〜5℃高い温度を維持
する様に逐次導入するのが好ましく過剰なベンゼ
ンの導入は反応温度の低下を招き反応速度を遅く
するので好ましくない。従つて回分式で反応蒸留
を実施する場合においても原料の導入時に全量の
ベンゼンを導入する事は同様の理由で好ましくな
い。 反応蒸留塔下部の反応帯で生成したメタノール
は蒸留部でベンゼンとの共沸物を形成し反応蒸留
部の上部より塔頂ガス抜き取り導管5を介して取
り出され凝縮器6により凝縮される。凝縮液の一
部は還流液導管7を介して反応蒸留塔の上部に還
流される残りの凝縮液は留出液導管8を介して留
出液として取り出される。その際の留出量は反応
蒸留塔上部の温度がメタノールとベンゼンの共沸
物温度より高くならない様に取り出すのが好まし
くその結果蒸留部の操作条件にもよるが留出液中
の炭酸ジメチルの濃度は1重量パーセント以下に
する事が可能となる。 生成した炭酸ジフエニル、中間生成物、未反応
のフエノール、炭酸ジメチル及びエステル交換反
応触媒は反応液抜き取り導管4を介して取り出さ
れ分留精製される。反応蒸留を回分式で実施する
場合は反応終了後そのまま反応蒸留塔を使用して
分留精製を行なう事も可能である。 留出液導管8を介して取り出された留出液はメ
タノール、ベンゼンの共沸物であり向流抽出器9
の下部に導入され、水仕込み導管10を介して導
入される水と接触する事によりメタノールが水側
に抽出される。この際水仕込み導管10より導入
される水の量は向流抽出器の能力にもよるが導入
されるメタノール、ベンゼン共沸物の量に対し
0.1〜3.0重量倍好ましくは0.2〜10重量倍を導入す
る。メタノールを水側に抽出した後の抽出残分と
して得られるベンゼンを主体とする液は向流抽出
器の操作条件にもよるが通常0.07〜0.1重量パー
セントの水、未抽出のメタノール及び留出液導管
8より導入されたメタノール、ベンゼン共沸物中
に含有されている炭酸ジメチルのほとんどを含有
しており抽出残分抜き取り導管11を介して取り
出される。この抽出残分はそのまま、あるいは通
常の公知の分離方法例えば蒸留により水やメタノ
ールを分離した後ベンゼン仕込み導管2を介し再
び反応蒸留塔に導入される。補充ベンゼン導管1
7より損失したベンゼンに相当する新しいベンゼ
ンが補充される。ベンゼン、メタノール共沸物よ
りメタノールを抽出して得られる抽出液はメタノ
ールと水を主体とし、極微量の炭酸ジメチル及び
ベンゼンを含有し向流抽出器下部より抽出液抜き
取り導管12を介して取り出される。 この抽出液はそのまま又は公知の方法例えば蒸
留等により微量に含有するベンゼンや、炭酸ジメ
チルを分離した後、分離器13に導入される。分
離器13により分離されたメタノールはメタノー
ル抜き取り導管15を介して回収される。又同様
に分離された水は水抜き取り導管14を介して取
り出され補充水導管16を介して補充される水と
ともに再び向流抽出器9に導入される。 実施例 1 塔径20cm、20段の蒸留塔と接続された130の
反応缶にフエノール75.3Kg炭酸ジメチル19.8Kg、
ベンゼン2.0Kgエステル交換触媒8molを仕込み加
熱を行なつた。蒸留塔下部より5段目の温度が82
〜85℃の間で維持される様、反応缶内にベンゼン
を仕込んだ。留出液は塔頂温度が58℃〜59℃で維
持される様に抜き取りながら36時間の反応を行な
つた。反応蒸留中のベンゼンの仕込量は17.5Kgで
ある。反応蒸留中に留出した液は10.9Kgであり、
その組成はメタノール37.6重量パーセント、ベン
ゼン61.8重量パーセント、炭酸ジメチル0.54重量
パーセントであつた。塔頂温度が150℃になる迄
未反応の炭酸ジメチル、ベンゼン、メタノールの
追い出し蒸留を行なつて得られた留出液は24.6Kg
でありその組成はメタノール6.6重量パーセン
ト、ベンゼン51.8重量パーセント、炭酸ジメチル
41.6重量パーセントであつた。反応缶より蒸留塔
を切り離し減圧下10Torrで缶温150℃迄単蒸留を
行ない得られた留出液は63.2Kgであり、フエノー
ル92.6重量パーセント、炭酸メチルフエニル5.7
重量パーセント、炭酸ジフエニル1.6重量パーセ
ントより成る。 更に缶温210℃迄単蒸留を行ない、得られた留
出液はフエノール2.2重量パーセント、炭酸メチ
ルフエニル0.4重量パーセント、炭酸ジフエニル
97.4重量パーセントであつた。炭酸ジメチルの反
応率は48.4パーセント、炭酸メチルフエニルと炭
酸ジメチルの選択率は95%であつた。 実施例 2 塔径38mm、20段のオールダーシヨウ塔の下部に
セツトした1フラスコにフエノール754g、炭
酸ジメチル180g、ベンゼン40g、ジブチルスズ
オキサイド7.5gを仕込み加熱を行なつた。塔頂
よりメタノール、ベンゼン共沸物を58℃〜59℃で
留去しながら塔下部のフラスコ内温度が165℃と
なる様にフラスコ内にベンゼンを仕込んだ。 24時間の反応期間中に仕込んだベンゼン量は
138gである。 留去した留出液は133gでありその組成はメタ
ノール37.6重量パーセント、ベンゼン61.9重量パ
ーセント、炭酸ジメチル0.51重量パーセントであ
つた。同塔を用いて分留を実施、常圧下で留去し
た初期の留出物は157gでその組成はメタノール
2.0重量パーセント、ベンゼン61.0重量パーセン
ト、炭酸ジメチル37.0重量パーセントであつた。
更に塔頂圧力10Torrで分留を行ない得られたフ
エノール、炭酸メチルフエニル、炭酸ジフエニル
は各々597g、151g、72gであつた。 従つて仕込んだ炭酸ジメチルの反応率は67.3パ
ーセントであり炭酸メチルフエニルの炭酸ジフエ
ニルは98パーセントであつた。 比較例 1 実施例2と同様の塔のフラスコにフエノール
753g、炭酸ジメチル180g、n−ヘキサン40g、
ジブチルススオキサイド7.5gを仕込み加熱を行
なつた。塔頂よりメタノール、n−ヘキサン共沸
物を50℃〜51℃で留出しながら塔下部のフラスコ
内温度が165℃となる様にフラスコ内にn−ヘキ
サンを仕込んだ。24時間の反応期間中に仕込んだ
n−ヘキサンは151gであつた。 留去した留出液は141gでありその組成はメタ
ノール24.5重量パーセント、n−ヘキサン66.8重
量パーセント、炭酸ジメチル8.6重量パーセント
であつた。同塔を用いて分留を実施、常圧下で留
去した初期の留出物は221gであり、その組成は
メタノール0.3重量パーセント、n−ヘキサン
56.3重量パーセント、炭酸ジメチル43.4重量パー
セントであつた。更に塔頂圧力10Torrで分留を
行ないフエノール642g、炭酸メチルフエニル111
g、炭酸ジフエニル40gを得た。炭酸ジメチルの
反応率は46.7パーセント、炭酸メチルフエニル、
炭酸ジフエニルの選択率は98パーセントであつ
た。 実施例 3 塔径38mm、20段のオールダーシヨウ塔の下部に
セツトした500mlフラスコにシクロヘキサノール
201g、炭酸ジメチル45.5g、ベンゼン40g、テ
トラメトキシチタネート0.35gを仕込み加熱を行
なつた。 塔頂よりメタノール、ベンゼンの共沸物を58℃
〜59℃で留去しながら、塔頂より17段目の温度が
82℃〜85℃になる様にベンゼンを仕込んだ。8時
間反応を行なつた後塔頂温度が160℃になる迄追
い出し蒸留を実施した。8時間の反応蒸留中に仕
込んだベンゼンは41gである。留去した留出液は
65gでその組成はメタノール36.0重量パーセン
ト、ベンゼン63.5重量パーセント、炭酸ジメチル
0.5重量パーセントであつた。又、8時間の反応
蒸留後の追い出し蒸留により得た留出液は47gで
ありその組成はメタノール10.0重量パーセント、
ベンゼン84.2重量パーセント、炭酸ジメチル4.1
重量パーセント、シクロヘキサノール1.7重量パ
ーセントであつた。フラスコ内に残つた液は216
gでありその組成はシクロヘキサノール52.1重量
パーセント、炭酸メチルシクロヘキシル5.9重量
パーセント、炭酸ジシクロヘキシル41.8重量パー
セントであつた。炭酸ジメチルの反応率は95パー
セントである。 実施例 4 実施例3と同様の塔のフラスコにアリルアルコ
ール116.6g、炭酸ジメチル45.9g、ベンゼン50.3
g、テトラメトキシチタネート0.35gを仕込み加
熱を行ない、実施例3と同様に9.5時間反応を行
ない、塔頂温度が98℃になる迄追い出し蒸留を行
なつた。各液の量及び組成を表−1に示した。炭
酸ジメチルの反応率は93.8パーセントであつた。 【表】
Detailed Description of the Invention (Field of Industrial Application) This invention relates to a method for producing a carbonic ester, such as diphenyl carbonate, by transesterifying dimethyl carbonate with a hydroxy compound, such as phenol. Diphenyl is used as a raw material for polycarbonate synthesis and is of great industrial importance. (Prior art and its problems) Regarding the method of transesterifying dimethyl carbonate with a hydroxy compound in the presence of a transesterification reaction catalyst to produce a carbonate ester, for example, Patent Publication Showa et al.
56-42577 etc. Transesterification The transesterification reaction in which dimethyl carbonate is transesterified with a hydroxy compound to produce carbonic ester in the presence of a transesterification catalyst is an equilibrium reaction, and in order to proceed with the reaction, the methanol produced or the carbonic ester produced must be sequentially removed. There is a need. For such reactions, a reactive distillation method is generally used in which a reactive distillation column is added to the reactor, and methanol, which has a boiling point lower than the carbonate ester produced at the top of the column, is distilled off while the reaction is carried out in the reactor at the bottom of the column. Adopted. However, in this transesterification, the methanol produced forms an azeotrope with the raw material dimethyl carbonate, so the raw material dimethyl carbonate is also distilled off together with the methanol, which poses a problem in terms of efficiency. As a method to solve this problem,
-48732, a method has been proposed for preventing the distillation of dimethyl carbonate by adding an azeotrope with methanol. The general selection of an azeotrope forming agent in such a system is as follows: (1) The azeotropic temperature with methanol is lower than the azeotropic temperature between methanol and dimethyl carbonate, and it facilitates the separation of dimethyl carbonate. This is done due to the large temperature difference and (2) high concentration of methanol in the azeotrope with methanol from an energy standpoint, but furthermore, the reaction rate in this transesterification reaction is extremely slow. Therefore, from the viewpoint of improving the usage efficiency of the raw material dimethyl carbonate, an azeotrope-forming agent that does not hold as much dimethyl carbonate in the distillation column as possible, that is, (4) The fact that its boiling point is lower than that of dimethyl carbonate and (5) that it does not form an azeotrope with dimethyl carbonate are also important factors when selecting an azeotrope-forming agent. However, most azeotrope-forming agents that satisfy up to item (4) of the selection conditions above also form an azeotrope with dimethyl carbonate. Therefore, in practice, the concentration of dimethyl carbonate in the azeotrope with dimethyl carbonate is as low as possible. (In the case of a three-component azeotrope of methanol, dimethyl carbonate, and an azeotrope-forming agent, an azeotrope-forming agent in which the concentration of dimethyl carbonate in the three-component azeotrope is as low as possible) is preferred. The azeotrope forming agent described in JP-A-54-48732 has a problem in this respect. For example, it satisfies most of the selection conditions for the azeotrope forming agent. n-hexane contains about 20 percent by weight of dimethyl carbonate in the azeotrope with dimethyl carbonate, and as a result, a large amount of dimethyl carbonate is retained in the distillation column of the reactive distillation column, that is, in the non-reaction zone. Furthermore, it is thought that a three-component azeotrope of methanol, n-hexane, and dimethyl carbonate exists, and a large amount of dimethyl carbonate is contained in the distillate. Therefore, there is a large amount of unreacted dimethyl carbonate at the end of the reaction, resulting in poor efficiency. (Objective of the Invention) Therefore, the object of the present invention is to more efficiently remove and recover methanol produced in a method for producing carbonic ester by transesterifying dimethyl carbonate with a hydroxy compound in the presence of a transesterification catalyst. More specifically, as an azeotrope forming agent with methanol, its azeotropic temperature is higher than that of methanol and dimethyl carbonate, and the difference is large, and methanol in the azeotrope The object of the present invention is to find an azeotrope-forming agent that has a high concentration of dimethyl carbonate and a low concentration of dimethyl carbonate in the azeotrope with dimethyl carbonate. (Structure of the Invention) That is, the present invention uses benzene as an azeotrope-forming agent with methanol in a method for producing a carbonic ester by transesterifying dimethyl carbonate with a hydroxy compound in the presence of a transesterification catalyst. It consists of distilling off methanol as a mixture with benzene. The hydroxy compound used in the present invention is an organic compound represented by the general formula R(--OH) m (wherein R is an alkyl group or an aryl group, and m is an integer of 1 or more), such as methanol,
Examples include aliphatic alcohols such as propanol and allyl alcohol butanol, alicyclic alcohols such as cyclohexanol and methylcyclohexanol, phenol, and cresol. Of course 2
It is also possible to use more than one type of hydroxy compound in combination. (Effects of the Invention) The method of the present invention uses benzene as an azeotrope forming agent with methanol in a method for producing carbonic ester by transesterifying dimethyl carbonate with a hydroxy compound in the presence of a transesterification catalyst. As a result, methanol can be easily and effectively removed and recovered, making it possible to produce carbonate ester more economically. That is, benzene used in the present invention forms an azeotrope with methanol, so the azeotropic temperature is 58°C.
(760 mmHg), and there is a sufficient boiling point difference between the azeotropic temperature of methanol and dimethyl carbonate, 64°C (760 mmHg), for distillation separation, so that almost all of the raw material dimethyl carbonate is taken out of the reaction system. The reaction can be carried out efficiently without any problems. Furthermore, since the concentration of methanol in the azeotrope of methanol and benzene is as high as 38.4% by weight, the energy load in the reaction distillation column and in the separation and recovery process of methanol and benzene is small, making it economical. Furthermore, the boiling point of benzene is lower than that of dimethyl carbonate, and the concentration of dimethyl carbonate in the azeotrope of benzene and dimethyl carbonate is 1% by weight, which is much lower than other azeotrope forming agents. Since the amount of dimethyl carbonate held in the distillation column is small and, as a result, most of the charged dimethyl carbonate exists in the reaction zone at the bottom of the distillation column, it is possible to react the charged dimethyl carbonate advantageously and efficiently. The azeotrope of methanol and benzene obtained by distillation from the reactive distillation column can be easily separated and recovered by a known method. For example, it can be easily separated into a mixture of benzene, methanol, and water by countercurrent extraction with water, and the obtained benzene can also be supplied as it is to reactive distillation. The water required for countercurrent extraction can be extracted in a relatively small amount because methanol is very easily extracted by water, and as a result, a highly concentrated methanol aqueous solution can be obtained. Therefore, even if methanol and water are separated by a known general separation operation such as distillation, the energy burden is small. Furthermore, the separated water can be used again for countercurrent extraction, making it possible to recover methanol very economically. (Means for Solving Problems) The present invention will be explained in more detail below with reference to FIG. 1, but the present invention is not limited in any way. The transesterification catalyst, dimethyl carbonate, and intermediate products such as hydroxy compounds such as phenol and optionally methyl phenyl carbonate are introduced into the reactive distillation column 3 via the feed line 1. Reactive distillation operations can be carried out either batchwise or continuously, but in cases such as transesterification of dimethyl carbonate with phenol, the reaction rate is slow.
Since a continuous method requires large equipment, a batch method is preferable. The reactive distillation column is operated under pressure for the purpose of increasing the reaction rate, and the pressure is usually 0 to 10 atm, preferably 1 to 5 atm. Carrying out the reaction under higher pressure is not preferable because it may lead to decomposition of dimethyl carbonate or generation of impurities. Benzene, which is an azeotrope-forming agent with methanol, is introduced into a reactive distillation column 3 via a benzene feed conduit 2. Benzene may be introduced at any part of the reactive distillation column 3, but considering the removal efficiency of methanol from the reaction zone, it is introduced at a position as close to the reaction zone as possible, that is, toward the bottom of the reactive distillation column. It is preferable to do so. In addition, benzene is introduced in an amount equivalent to the hold amount in the distillation section of the reactive distillation column 3 before starting the reaction, regardless of whether the reactive distillation is carried out continuously or batchwise. Preference is given to continuous or semi-batchwise introduction. In this case, it is preferable to introduce an excessive amount of benzene so that the temperature of the second to fifth stages from the bottom of the distillation section of the reactive distillation column 3 is maintained at a temperature 2 to 5 degrees Celsius higher than the boiling point of benzene. is not preferable because it causes a decrease in the reaction temperature and slows down the reaction rate. Therefore, even when carrying out reactive distillation in a batch manner, it is not preferable to introduce the entire amount of benzene at the time of introducing the raw materials for the same reason. Methanol produced in the reaction zone at the bottom of the reactive distillation column forms an azeotrope with benzene in the distillation section, is taken out from the top of the reactive distillation section via the top gas extraction conduit 5, and is condensed in the condenser 6. A portion of the condensate is refluxed via the reflux line 7 to the upper part of the reactive distillation column, and the remaining condensate is taken off as distillate via the distillate line 8. In this case, it is preferable to take out the distillate amount so that the temperature at the top of the reactive distillation column does not become higher than the azeotrope temperature of methanol and benzene. The concentration can be reduced to 1% by weight or less. The produced diphenyl carbonate, intermediate products, unreacted phenol, dimethyl carbonate, and transesterification reaction catalyst are taken out via the reaction liquid withdrawal conduit 4 and purified by fractional distillation. When reactive distillation is carried out batchwise, it is also possible to carry out fractional distillation purification using a reactive distillation column directly after the reaction is completed. The distillate taken out via the distillate conduit 8 is an azeotrope of methanol and benzene, and is passed through the countercurrent extractor 9.
Methanol is extracted to the water side by contact with water introduced through the water feed conduit 10. At this time, the amount of water introduced from the water supply pipe 10 depends on the capacity of the countercurrent extractor, but it is relative to the amount of methanol and benzene azeotrope introduced.
0.1 to 3.0 times by weight, preferably 0.2 to 10 times by weight, is introduced. The benzene-based liquid obtained as the extraction residue after methanol is extracted to the water side usually contains 0.07 to 0.1% by weight of water, unextracted methanol, and distillate, depending on the operating conditions of the countercurrent extractor. Most of the dimethyl carbonate contained in the methanol and benzene azeotrope introduced through conduit 8 is contained, and the extraction residue is taken out through conduit 11. This extraction residue is introduced into the reactive distillation column again via the benzene feed conduit 2 either as it is or after water and methanol have been separated by a conventional separation method such as distillation. Replenishment benzene conduit 1
7, new benzene corresponding to the benzene lost is replenished. The extract obtained by extracting methanol from the benzene-methanol azeotrope is mainly composed of methanol and water, contains extremely small amounts of dimethyl carbonate and benzene, and is taken out from the bottom of the countercurrent extractor via the extract extraction conduit 12. . This extract is introduced into the separator 13 either as it is or after separating trace amounts of benzene and dimethyl carbonate by a known method such as distillation. The methanol separated by separator 13 is recovered via methanol withdrawal conduit 15. Similarly, the separated water is withdrawn via the water withdrawal conduit 14 and introduced again into the countercurrent extractor 9 together with water which is replenished via the make-up water conduit 16. Example 1 75.3 kg of phenol and 19.8 kg of dimethyl carbonate were placed in 130 reaction vessels connected to a 20-stage distillation column with a column diameter of 20 cm.
2.0 kg of benzene and 8 mol of transesterification catalyst were charged and heated. The temperature of the fifth stage from the bottom of the distillation column is 82
Benzene was charged into the reactor to maintain the temperature between ~85°C. The distillate was reacted for 36 hours while being withdrawn so as to maintain the top temperature at 58°C to 59°C. The amount of benzene charged during reactive distillation was 17.5 kg. The amount of liquid distilled during reactive distillation was 10.9 kg.
Its composition was 37.6% by weight of methanol, 61.8% by weight of benzene, and 0.54% by weight of dimethyl carbonate. The distillate obtained by purging unreacted dimethyl carbonate, benzene, and methanol until the top temperature reached 150°C was 24.6 kg.
Its composition is 6.6% by weight of methanol, 51.8% by weight of benzene, and dimethyl carbonate.
It was 41.6% by weight. The distillation column was separated from the reaction vessel and simple distillation was carried out under reduced pressure at 10 Torr until the vessel temperature reached 150°C.The distillate obtained was 63.2 kg, containing 92.6% by weight of phenol and 5.7% by weight of methylphenyl carbonate.
weight percent, consisting of 1.6 weight percent diphenyl carbonate. Further, simple distillation was carried out at a temperature of 210℃, and the resulting distillate contained 2.2% by weight of phenol, 0.4% by weight of methylphenyl carbonate, and diphenyl carbonate.
It was 97.4% by weight. The reaction rate of dimethyl carbonate was 48.4%, and the selectivity between methylphenyl carbonate and dimethyl carbonate was 95%. Example 2 754 g of phenol, 180 g of dimethyl carbonate, 40 g of benzene, and 7.5 g of dibutyltin oxide were charged into a flask set at the bottom of a 20-stage older-shot column with a column diameter of 38 mm and heated. While methanol and benzene azeotrope were distilled off from the top of the tower at 58°C to 59°C, benzene was charged into the flask so that the temperature inside the flask at the bottom of the tower was 165°C. The amount of benzene charged during the 24 hour reaction period was
It is 138g. The distillate was 133 g, and its composition was 37.6% by weight of methanol, 61.9% by weight of benzene, and 0.51% by weight of dimethyl carbonate. Fractional distillation was carried out using the same column, and the initial distillate that was distilled off under normal pressure was 157g, and its composition was methanol.
2.0% by weight, benzene 61.0% by weight, and dimethyl carbonate 37.0% by weight.
Further, fractional distillation was carried out at a top pressure of 10 Torr, and the amounts of phenol, methylphenyl carbonate, and diphenyl carbonate obtained were 597 g, 151 g, and 72 g, respectively. Therefore, the reaction rate of the charged dimethyl carbonate was 67.3%, and the reaction rate of methylphenyl carbonate to diphenyl carbonate was 98%. Comparative Example 1 Phenol was added to a flask in the same column as in Example 2.
753g, dimethyl carbonate 180g, n-hexane 40g,
7.5 g of dibutyl soot oxide was charged and heated. While methanol and n-hexane azeotrope were distilled off from the top of the column at 50°C to 51°C, n-hexane was charged into the flask so that the temperature inside the flask at the bottom of the column was 165°C. 151 g of n-hexane was charged during the 24 hour reaction period. The distillate was 141 g, and its composition was 24.5 percent by weight of methanol, 66.8 percent by weight of n-hexane, and 8.6 percent by weight of dimethyl carbonate. Fractional distillation was carried out using the same column, and the initial distillate that was distilled off under normal pressure was 221 g, and its composition was 0.3% by weight of methanol, n-hexane,
56.3% by weight, and 43.4% by weight of dimethyl carbonate. Furthermore, fractional distillation was carried out at a tower top pressure of 10 Torr to produce 642 g of phenol and 111 g of methyl phenyl carbonate.
g, and 40 g of diphenyl carbonate were obtained. The reaction rate of dimethyl carbonate is 46.7%, methyl phenyl carbonate,
The selectivity for diphenyl carbonate was 98%. Example 3 Cyclohexanol was placed in a 500 ml flask set at the bottom of a 20-stage older-shot column with a column diameter of 38 mm.
201 g, dimethyl carbonate 45.5 g, benzene 40 g, and tetramethoxy titanate 0.35 g were charged and heated. Methanol and benzene azeotrope from the top of the column at 58℃
While distilling at ~59℃, the temperature at the 17th stage from the top of the column rose.
Benzene was added so that the temperature was between 82°C and 85°C. After 8 hours of reaction, purging distillation was carried out until the top temperature reached 160°C. 41 g of benzene was charged during 8 hours of reactive distillation. The distillate that was distilled off is
65g, its composition is 36.0% by weight of methanol, 63.5% by weight of benzene, and dimethyl carbonate.
It was 0.5% by weight. In addition, the distillate obtained by purging distillation after 8 hours of reactive distillation weighed 47 g, and its composition was methanol 10.0% by weight,
Benzene 84.2% by weight, dimethyl carbonate 4.1%
The weight percent of cyclohexanol was 1.7 weight percent. The liquid remaining in the flask is 216
The composition was 52.1% by weight of cyclohexanol, 5.9% by weight of methylcyclohexyl carbonate, and 41.8% by weight of dicyclohexyl carbonate. The conversion rate of dimethyl carbonate is 95 percent. Example 4 In a flask in the same column as in Example 3, 116.6 g of allyl alcohol, 45.9 g of dimethyl carbonate, and 50.3 g of benzene were added.
g and 0.35 g of tetramethoxy titanate were charged, heated, and reacted for 9.5 hours in the same manner as in Example 3, followed by expulsion distillation until the top temperature reached 98°C. The amounts and compositions of each liquid are shown in Table 1. The conversion rate of dimethyl carbonate was 93.8%. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施態様を示す工程図であ
る。 1……原料仕込み導管、2……ベンゼン仕込み
導管、3……反応蒸留塔、4……反応液抜き取り
導管、5……塔頂ガス抜き取り導管、6……凝縮
器、7……還流液導管、8……留出液導管、9…
…向流抽出器、10……水仕込み導管、11……
抽残液抜き取り導管、12……抽出液抜き取り導
管、13……分離器、14……水抜き取り導管、
15……メタノール抜き取り導管、16……補充
水導管、17……補充ベンゼン導管。
FIG. 1 is a process diagram showing one embodiment of the present invention. 1... Raw material feeding conduit, 2... Benzene feeding conduit, 3... Reactive distillation column, 4... Reaction liquid withdrawal conduit, 5... Tower gas removal conduit, 6... Condenser, 7... Reflux liquid conduit , 8... distillate conduit, 9...
...Countercurrent extractor, 10...Water charging conduit, 11...
Raffinate extraction conduit, 12...Extract liquid extraction conduit, 13...Separator, 14...Water removal conduit,
15... Methanol extraction conduit, 16... Replenishment water conduit, 17... Replenishment benzene conduit.

Claims (1)

【特許請求の範囲】[Claims] 1 エステル交換反応触媒の存在下、炭酸ジメチ
ルをヒドロキシ化合物でエステル交換する事によ
り、炭酸エステルを製造する方法において、メタ
ノールとの共沸物形成剤としてベンゼンを使用
し、メタノールをベンゼンとの混合物として留去
する事を特徴とする炭酸エステルの製造方法。
1 A method for producing carbonic esters by transesterifying dimethyl carbonate with a hydroxy compound in the presence of a transesterification reaction catalyst, in which benzene is used as an azeotrope forming agent with methanol, and methanol is mixed with benzene. A method for producing carbonate ester, characterized by distillation.
JP60132149A 1985-06-18 1985-06-18 Production of carbonic acid ester Granted JPS61291545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60132149A JPS61291545A (en) 1985-06-18 1985-06-18 Production of carbonic acid ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60132149A JPS61291545A (en) 1985-06-18 1985-06-18 Production of carbonic acid ester

Publications (2)

Publication Number Publication Date
JPS61291545A JPS61291545A (en) 1986-12-22
JPS628091B2 true JPS628091B2 (en) 1987-02-20

Family

ID=15074501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60132149A Granted JPS61291545A (en) 1985-06-18 1985-06-18 Production of carbonic acid ester

Country Status (1)

Country Link
JP (1) JPS61291545A (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07108938B2 (en) * 1987-06-18 1995-11-22 出光石油化学株式会社 Disc substrate made of polycarbonate
ES2054488T3 (en) * 1989-12-28 1994-08-01 Asahi Chemical Ind PROCEDURE FOR THE CONTINUOUS MANUFACTURE OF AROMATIC CARBONATES.
JPH0791236B2 (en) * 1989-12-28 1995-10-04 旭化成工業株式会社 Continuous production method for aromatic carbonates
JPH0768182B2 (en) * 1990-02-21 1995-07-26 旭化成工業株式会社 Continuous production method of diaryl carbonate
DE4226755A1 (en) * 1992-08-13 1994-02-17 Bayer Ag Process for the continuous production of diaryl carbonates from dialkyl carbonates
DE4226756A1 (en) * 1992-08-13 1994-02-17 Bayer Ag Process for the production of dicarbonates
US6093842A (en) * 1998-09-25 2000-07-25 General Electric Company Process for continuous production of carbonate esters
WO2005123657A1 (en) 2004-06-17 2005-12-29 Asahi Kasei Chemicals Corporation Process for producing aromatic carbonate
JP4224510B2 (en) 2004-07-13 2009-02-18 旭化成ケミカルズ株式会社 Industrial production of aromatic carbonates
EA010066B1 (en) 2004-08-25 2008-06-30 Асахи Касеи Кемикалз Корпорейшн Process for producing high-purity diphenyl carbonate on commercial scale
US7884251B2 (en) 2004-09-17 2011-02-08 Asahi Kasei Chemicals Corporation Industrial process for separating out by-produced alcohols
US7622601B2 (en) 2004-10-14 2009-11-24 Asahi Kasei Chemicals Corporation Process for production of high-purity diaryl carbonate
TWI321561B (en) 2004-12-21 2010-03-11 Asahi Kasei Chemicals Corp Method for producing aromatic carbonate
RU2372322C2 (en) 2004-12-24 2009-11-10 Асахи Касеи Кемикалз Корпорейшн Method of producing aromatic carbonate
TW200740731A (en) 2006-02-22 2007-11-01 Shell Int Research Process for the preparation of alkanediol
TWI382979B (en) 2006-02-22 2013-01-21 Shell Int Research Process for the production of alkylene carbonate and use of alkylene carbonate thus produced in the manufacture of an alkane diol and a dialkyl carbonate
TWI383976B (en) 2006-02-22 2013-02-01 Shell Int Research Process for the production of dialkyl carbonate and alkanediol
TWI378087B (en) 2006-02-22 2012-12-01 Shell Int Research Process for the preparation of an alkanediol and a dialkyl carbonate
WO2012091458A2 (en) * 2010-12-28 2012-07-05 주식회사 케이오씨솔루션 Novel method for preparing allyl carbonate compound and resin composition for optics using same
CN104086421B (en) * 2014-07-15 2016-07-20 陕西延长石油(集团)有限责任公司 Method and the device of diphenyl carbonate prepared by a kind of fixing bed coupling rectification tower

Also Published As

Publication number Publication date
JPS61291545A (en) 1986-12-22

Similar Documents

Publication Publication Date Title
JPS628091B2 (en)
US5659072A (en) Process for the manufacture of alkyl acrylates by direct esterification
US6841700B2 (en) Method for producing anhydrous formic acid
US5662780A (en) Process for purifying acetic acid
ES2153291A1 (en) Process for preparing esters of carboxylic acids
WO1997023445A1 (en) Process for continuously preparing dialkyl carbonates and diols
JPS6327333B2 (en)
US6713649B1 (en) Method for production of formic acid
CA1135281A (en) Production of anhydrous or substantially anhydrous formic acid
EP0010953B1 (en) Process for the preparation of methacrylic acid esters
JP2006206497A (en) Method for producing dialkyl carbonate and diol
US7241916B2 (en) Process for producing methacrylic ester
US8940925B2 (en) Method for purifying the azeotropic fraction generated during the synthesis of N,N-dimethyl aminoethyl acrylate
US20030050506A1 (en) Method for cleaning off-gas flows
JP4042870B2 (en) Process for continuous production of aromatic carbonates
JP3571761B2 (en) Method for producing diphenyl carbonate
JP2003342236A (en) Method for producing dimethyl carbonate
JPH09308801A (en) Reaction distilling apparatus and reaction distilling method
JPH07304713A (en) Production of aromatic carbonic acid ester
JPH05186391A (en) Method for purifying ethyl acetate
JP2733034B2 (en) Method for producing carboxylic acid ester
JP2733036B2 (en) Method for producing carbonate ester
JP4356342B2 (en) Purification method of ethylene glycol
JP2733035B2 (en) Method for producing carbonate ester
US4006190A (en) Production of hydroxyl compounds