JPS628050A - Method and apparatus for measuring concentration of oxidizable substance in liquid to be inspected - Google Patents

Method and apparatus for measuring concentration of oxidizable substance in liquid to be inspected

Info

Publication number
JPS628050A
JPS628050A JP60146685A JP14668585A JPS628050A JP S628050 A JPS628050 A JP S628050A JP 60146685 A JP60146685 A JP 60146685A JP 14668585 A JP14668585 A JP 14668585A JP S628050 A JPS628050 A JP S628050A
Authority
JP
Japan
Prior art keywords
electrode
positive electrode
measurement
concentration
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60146685A
Other languages
Japanese (ja)
Other versions
JPH042903B2 (en
Inventor
Hiroshi Kojima
浩 小島
Takashi Matsuda
隆 松田
Masakuni Hori
堀 正邦
Kosei Ono
小野 更生
Mitsuaki Tawara
田原 光明
Masayasu Mukoyama
向山 正保
Tatsuo Osawa
大沢 辰夫
Osami Shimozono
下薗 修身
Taiichi Noguchi
野口 泰一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ION DENKYOKU KENKYUSHO KK
NIPPON FUIRUKON KK
Nippon Filcon Co Ltd
Original Assignee
ION DENKYOKU KENKYUSHO KK
NIPPON FUIRUKON KK
Nippon Filcon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ION DENKYOKU KENKYUSHO KK, NIPPON FUIRUKON KK, Nippon Filcon Co Ltd filed Critical ION DENKYOKU KENKYUSHO KK
Priority to JP60146685A priority Critical patent/JPS628050A/en
Publication of JPS628050A publication Critical patent/JPS628050A/en
Publication of JPH042903B2 publication Critical patent/JPH042903B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To effectively remove contamination adhered to the surface of a measuring positive pole during measurement, by immersing the measuring positive pole, a measuring negative pole and an electrolytic polishing electrode in a liquid to be inspected and constituting a galvanic cell of the positive pole, the negative pole and the liquid to be inspected. CONSTITUTION:A measuring positive pole 2, a measuring negative pole 1 and an electrolytic polishing electrode 3 are immersed in a liquid 4 to be inspected. At this time, a galvanic cell is formed of the positive pole 2, the negative pole 1 and the liquid 4 to be inspected and the positive pole 2 and the negative pole 1 are connected to an ammeter 5 to measure a current value. Because this current value is proportional to the concn. of an oxidizable substance, said concn. can be calculated. After the measurement of concn. for a predetermined time, the position of a change-over switch SW is changed over from AB to AC. Whereupon, the positive pole 2 is connected to the electrolytic electrode 3 through a power source 6 and the electrolytic polishing on the surface of the positive pole 2 is performed to remove scale. After a predetermined time, if the position of the switch SW is changed over from AC to AB, electrolytic polishing is finished and measurement is again continued.

Description

【発明の詳細な説明】 本発明は、被検液中の酸化性物質の濃度を測定する方法
と、この方法を実施する丸めの装置に関し、特に被検液
中に正極と負極を浸漬してガルバニ電池を構成しその間
に流れる電流が酸化性物質の濃度に比例することを利用
して濃度を求める測定方法とその方法の実施に用いる装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the concentration of oxidizing substances in a test liquid and a rounding device for carrying out this method, and particularly relates to a method for measuring the concentration of oxidizing substances in a test liquid, and in particular to a method for measuring the concentration of oxidizing substances in a test liquid. The present invention relates to a measuring method for determining the concentration of an oxidizing substance by making use of the fact that the current flowing between the galvanic cells is proportional to the concentration of the oxidizing substance, and the apparatus used to carry out the method.

従来の技術 被検液中の次亜塩素酸等の酸化性物質の濃度を測定する
従来の方法は、被検液中に正極と負極を浸漬してガルバ
ニ電池を構成し、溶液中の酸化性物質の濃度に比例して
変化する電流値を測定する方法である。
Conventional technology The conventional method for measuring the concentration of oxidizing substances such as hypochlorous acid in a test solution consists of immersing a positive electrode and a negative electrode in the test solution to form a galvanic cell. This method measures the current value, which changes in proportion to the concentration of a substance.

発明が解決しようとする問題点 このガルバニ電池として、正極に白金電極、負極に銀電
極を用いると、汚れにより白金電極側に被膜ができて出
力が低下する。この低下を回復させる手段としては電極
を布等で研磨するしかなかつ九。このような洗浄方法で
は完全な回復は望めず、すぐに又出力低下が起る。従っ
て、測定誤差が大きくなり、長時間の自動測定は困難で
ある。
Problems to be Solved by the Invention When a platinum electrode is used as the positive electrode and a silver electrode is used as the negative electrode in this galvanic cell, a film is formed on the platinum electrode side due to contamination, resulting in a decrease in output. The only way to recover from this decline is to polish the electrode with a cloth or the like. With such a cleaning method, complete recovery cannot be expected, and the output will soon drop again. Therefore, measurement errors become large and automatic measurement over a long period of time is difficult.

本発明は、上述の問題点を解決した濃度測定方法と装置
を提供することを目的とする。
An object of the present invention is to provide a concentration measuring method and apparatus that solve the above-mentioned problems.

問題点を解決するための手段 即ち、本発明は、 (1)「被検液中に測定用正極と測定用負極と電解研磨
用の電極とを浸漬し、正極と負極と被検液とによりガル
バニ電池を構成し、正極と負極を電流計に接続すること
により電流計に流れる電流値を測定し、該電流値が被検
液中の酸化性物質の濃度に比例することを利用して該濃
度を測定し、所定時間の測定の後、正極と電流計との接
続を切9、正極を直流電源を介して電解研磨用の電極に
接続し、電解研磨用電極をプラス極として所定時間通電
することにより、測定中に正極表面に形成された被膜を
除去する電解研磨を行ない、ついで正極と直流電源との
接続を切り、再び正極と電流計とを接続して測定を行な
うことを特徴とする被検液中の酸化性物質の濃度測定方
法。」を提供することにより上記問題点を解決した。
Means for solving the problems, that is, the present invention is as follows: By configuring a galvanic cell and connecting the positive and negative electrodes to an ammeter, the current value flowing through the ammeter is measured. Measure the concentration, and after measuring for a predetermined time, disconnect the positive electrode and the ammeter 9, connect the positive electrode to the electrolytic polishing electrode via a DC power supply, and apply electricity for a predetermined time using the electrolytic polishing electrode as the positive electrode. By doing so, electrolytic polishing is performed to remove the film formed on the surface of the positive electrode during measurement, and then the connection between the positive electrode and the DC power source is cut off, and the measurement is performed by connecting the positive electrode and the ammeter again. The above problem was solved by providing a method for measuring the concentration of oxidizing substances in a test liquid.

更に本発明は、上記測定方法を実施するための装置をも
提供する。即ち、本発明は、(2)「合成樹脂製の細長
い中空の棒状体と、該棒状体の軸線方向に間隔を置いて
該棒状体の表面に露出するように該棒状体により夫々保
持された測定用負極と測定用正極と電解研磨用電極と、
前記中空部を通電、−喝を測定用負極に接続し他端を電
流計の第1端子に接続する第1導線と、一端を測定用正
極に接続し他端を切替え器を介して電流計の第2端子に
接続する第2導線と、一端を電解研磨用電極に接続し直
流電源を介して他端に切替え用端子を設けた第5導線と
からなる被検液中の酸化性物質の濃度測定装置。」を提
供する。
Furthermore, the present invention also provides an apparatus for carrying out the above measurement method. That is, the present invention provides (2) "an elongated hollow rod-like body made of synthetic resin; A negative electrode for measurement, a positive electrode for measurement, an electrode for electrolytic polishing,
The hollow part is energized, and the first conductor wire is connected to the negative electrode for measurement and the other end is connected to the first terminal of the ammeter, and one end is connected to the positive electrode for measurement and the other end is connected to the ammeter via a switch. oxidizing substances in the test liquid, consisting of a second conductive wire connected to the second terminal of Concentration measuring device. "I will provide a.

好ましい実施態様の説明 次に、本発明の好ましい実施態様について添付図面を参
照して説明する。第1図は、本発明の測定方法と装置の
原理を示す概略図である。第1図において、次亜塩素酸
等の酸化性物質を含んだ被検液4が槽7の中に入ってお
り、この被検液4の中に測定用正極2(好ましくは白金
製)と測定用負極1(好ましくは銀製)と電解研磨用電
極3(好ましくは白金製)とを浸漬する。そうすると、
正極2と負極1と被検液4とによりガルバニ電池が形成
されるので、正極2と負極1を電流計5に接続すると電
流が流れ、電流計に表われた電流値は被検液中の酸化性
物質の濃度に比例するので電流値から濃度を求めること
ができる。
DESCRIPTION OF PREFERRED EMBODIMENTS Preferred embodiments of the present invention will now be described with reference to the accompanying drawings. FIG. 1 is a schematic diagram showing the principle of the measuring method and apparatus of the present invention. In FIG. 1, a test liquid 4 containing an oxidizing substance such as hypochlorous acid is contained in a tank 7, and a measuring positive electrode 2 (preferably made of platinum) is contained in the test liquid 4. The measurement negative electrode 1 (preferably made of silver) and the electropolishing electrode 3 (preferably made of platinum) are immersed. Then,
A galvanic cell is formed by the positive electrode 2, the negative electrode 1, and the test liquid 4, so when the positive electrode 2 and the negative electrode 1 are connected to the ammeter 5, a current flows, and the current value displayed on the ammeter is the value of the current in the test liquid. Since it is proportional to the concentration of the oxidizing substance, the concentration can be determined from the current value.

測定中の電流は矢印(→)で示すように、正極2→A→
B→端子E2→電流計5→端子E1→負極1である。
The current during measurement is as shown by the arrow (→), positive electrode 2 → A →
B → terminal E2 → ammeter 5 → terminal E1 → negative electrode 1.

この測定を続けると、正極2の表面に金属イオンが析出
し、正極にスケールが付着する。
If this measurement is continued, metal ions will precipitate on the surface of the positive electrode 2, and scale will adhere to the positive electrode.

従って正極の白金による触媒作用が経時的に阻害されて
ぐる。
Therefore, the catalytic action of platinum at the positive electrode is inhibited over time.

一方負極1では銀がイオン化し常に活性状態にある為、
正極のようにスケールの付着はない。
On the other hand, in negative electrode 1, silver is ionized and always in an active state, so
Unlike the positive electrode, there is no scale adhesion.

この測定を続けると、正極2の表面に金属イオンが析出
して酸化状態になり、負極1は環元状態になる。従って
、正極側にスケールが付き易く汚れてくるので、この正
極の性能を回復するには汚れを除去する必要がある。こ
のために、本発明では次のような電解研磨法を用いる。
When this measurement is continued, metal ions are deposited on the surface of the positive electrode 2 and become in an oxidized state, and the negative electrode 1 becomes in a cyclic state. Therefore, the positive electrode side tends to accumulate scale and become dirty, so it is necessary to remove the dirt in order to restore the performance of the positive electrode. For this purpose, the following electropolishing method is used in the present invention.

即ち、所定時間の濃度測定の後、第1図の切替えスイッ
チSWの位置をABの位置からACの位置へ切替える。
That is, after measuring the concentration for a predetermined period of time, the position of the changeover switch SW shown in FIG. 1 is changed from the AB position to the AC position.

すると、正極2と電流計5との接続が遮断され、正極2
が直流電源6(好ましくは電池)を介して電解研磨用電
極3に接続されて矢印(呻)で示すように電流が電極3
−直流電源6→C→A→正極2へ流れ、正極表面の電解
研磨が行なわれ、スケールが除去され、測定性能が10
0%回復する。この場合、電解研磨用電極3をプラス極
とする。所定の時間の電解研磨の後、スイッチ5Wt−
ACの位置からABの位置を切替えると、電解研磨は終
シ、再び測定が続行される。
Then, the connection between the positive electrode 2 and the ammeter 5 is cut off, and the positive electrode 2
is connected to the electrolytic polishing electrode 3 via a DC power source 6 (preferably a battery), and the current flows to the electrode 3 as shown by the arrow.
- Flows from DC power supply 6 → C → A → positive electrode 2, electrolytic polishing of the positive electrode surface is performed, scale is removed, and the measurement performance is 10
Recovers 0%. In this case, the electrolytic polishing electrode 3 is used as a positive electrode. After electrolytic polishing for a predetermined time, the switch 5Wt-
When the AB position is switched from the AC position, the electrolytic polishing ends and the measurement is continued again.

スイッチSWの位置をABからACへ、及びACからA
Bへ切替えるには、自動的に行なうことができ、特に2
4時間タイマーを用いて行なうのが好ましい。例えば、
直流電源として4ボルトの電池を用い、1日1回30分
間電解研磨を行なうこと罠よυ、連続的に濃度・の測定
を人手をかけることなく続行することができる。
Switch SW position from AB to AC and from AC to A
Switching to B can be done automatically, especially when
Preferably, this is done using a 4 hour timer. for example,
By using a 4-volt battery as a DC power source and performing electrolytic polishing once a day for 30 minutes, concentration measurements can be continued without any human intervention.

本発明の上述の測定方法を実施するための装置は、第1
図に示す装置でもよいが、第1図の正極2、導線?、端
子E2と、負極1、導線8、端子E1と、電極3、導線
10とを1つの組立体に組み込んだ電極組立体を用いる
のが好都合である。第2図は、このような組立体を示し
ている。即ち、合成樹脂製の細長い吊空の棒状体11と
、該棒状体の軸線方向に間隔を置いて該棒状体の表面に
露出するように該棒状体により夫々保持された測定用負
極1′と測定用正極2と電解研磨用電極3′とを有する
。第5図は、第2図の電極組立体の縦断面図を示す。測
定用負極1′は、合成樹脂棒状体11の外周に銀製の板
を巻き付けて固定したものでもよいが、好ましくは、合
成樹脂棒状体の中空部12と連通する中空部15を有す
る銀製棒状体1′とし、該銀製棒状体1′の軸線方向両
端に堆ねじ14と15を形成したものがよい。この雄ね
じ14.15に対応する雌ねじを合成樹脂棒状体に形成
し、この雌ねじと雄ねじ14.15とを係合させること
により銀製棒状体1′を合成樹脂棒状体11に固定する
のがよい。このように構成することにより、負極1′の
溶は出しにより寿命に至るまでの時間を長くすることが
できる。
The apparatus for carrying out the above-mentioned measuring method of the present invention includes the first
The device shown in the figure may be used, but the positive electrode 2 in Figure 1 and the conductor? , terminal E2, negative electrode 1, conductor 8, terminal E1, electrode 3, conductor 10 are advantageously used in one assembly. FIG. 2 shows such an assembly. That is, a long and thin hanging rod-shaped body 11 made of synthetic resin, and negative electrodes 1' for measurement held by the rod-shaped bodies so as to be exposed on the surface of the rod-shaped body at intervals in the axial direction of the rod-shaped body. It has a positive electrode 2 for measurement and an electrode 3' for electrolytic polishing. FIG. 5 shows a longitudinal cross-sectional view of the electrode assembly of FIG. 2. The measurement negative electrode 1' may be a silver plate wrapped around the outer circumference of a synthetic resin rod-shaped body 11 and fixed thereto, but preferably a silver rod-shaped body having a hollow part 15 communicating with the hollow part 12 of the synthetic resin rod-shaped body. 1', and screws 14 and 15 are preferably formed at both ends in the axial direction of the silver rod-shaped body 1'. It is preferable to form a female thread corresponding to the male thread 14.15 in the synthetic resin rod-like body, and to fix the silver rod-like body 1' to the synthetic resin rod-like body 11 by engaging the female thread with the male thread 14.15. With this configuration, it is possible to lengthen the time it takes for the negative electrode 1' to elute and reach the end of its life.

測定用正極2′と電解研磨用電極3′とは、白金製とす
るのがよく、白金は高価であるので、同一表面積を最少
体積でうるため細い白金線を用いて、これを合成樹脂棒
状体11の表面圧巻きつけるのがよい。
The positive electrode 2' for measurement and the electrode 3' for electrolytic polishing are preferably made of platinum.Since platinum is expensive, in order to obtain the same surface area with a minimum volume, a thin platinum wire is used, and this is made into a synthetic resin rod shape. It is preferable to wrap it around the surface of the body 11.

第2図と第3図に示すように、棒状体の軸線方向に見て
、正極2′を負極1′と電極3′との中間に位置決めす
るのが好ましい。その理由は、測定中に正極2′と負極
1′との間で被検液中を通れる電流の径路に電極3′が
存在しないこと、及び電解研磨中に正極2′と電極5′
との間で被検液中を流れる電流の径路に負極1′が存在
せず、夫々邪魔にならないためである。
As shown in FIGS. 2 and 3, the positive electrode 2' is preferably positioned intermediate the negative electrode 1' and the electrode 3' when viewed in the axial direction of the rod-shaped body. The reason for this is that electrode 3' does not exist in the path of the current that can pass through the test liquid between positive electrode 2' and negative electrode 1' during measurement, and that electrode 3' does not exist in the path of the current that can pass through the test liquid between positive electrode 2' and negative electrode 1' during electropolishing.
This is because the negative electrode 1' does not exist in the path of the current flowing in the test liquid between the two and does not get in the way.

作用例 (イ)測定時の電気の流れ 正極(白金電極): 2 HOd、 + 4 e −+ 2 HCfl + 
2 (0)M++e  −一→M・・・金属が析出し正
極に付溶液中の金属イオン      着する負極(銀
電極): 4Ag→4Ag+4e−・・・銀がイオン化し活性状態
にある (口)洗浄(電解研磨)時の電気の流れ正極(白金電極
): M→M”+e−・・・付着し九Mが溶解して極金属イオ
ン      が洗浄される 電極(白金電極): M + e −M 実施例 水泳プールにおいて、プール循環p過装置のポンプの吸
入側と吐出側との間にバイパス回路を設け、そのバイパ
ス回路内に本発明の装置を投入し、残留塩素濃度を測定
した。
Example of action (a) Flow of electricity during measurement Positive electrode (platinum electrode): 2 HOd, + 4 e −+ 2 HCfl +
2 (0) M++e -1 → M...Metal is precipitated and attached to the positive electrode.Metal ions in the solution are deposited on the negative electrode (silver electrode): 4Ag→4Ag+4e-...Silver is ionized and in an active state (mouth) Electricity flow during cleaning (electrolytic polishing) Positive electrode (platinum electrode): M→M”+e-...Electrode (platinum electrode) where the attached 9M is dissolved and the polar metal ions are cleaned: M + e- M Example In a swimming pool, a bypass circuit was provided between the suction side and the discharge side of the pump of the pool circulation system, and the device of the present invention was placed in the bypass circuit, and the residual chlorine concentration was measured.

第4図はその測定結果を示すグラフである。FIG. 4 is a graph showing the measurement results.

横軸は時刻(24時制)で、縦軸は残留塩素濃度(pp
m)を表わす。
The horizontal axis is the time (24 hour system), and the vertical axis is the residual chlorine concentration (pp.
m).

残留塩素濃度は、正極と負極との間を流れる電流の値を
電流計で読み、その電流値に比例する濃度を計算で求め
てもよいが、電流計に濃度の目盛を付けておくのが便利
である。
The residual chlorine concentration can be determined by reading the value of the current flowing between the positive and negative electrodes with an ammeter and calculating the concentration proportional to the current value, but it is better to have a concentration scale on the ammeter. It's convenient.

本発明の電極を用いて記碌計に表われた濃度の値を1指
示値”と言い、被測定液中の残留塩素をオルトトリジン
比色測定器にて測定した値を1測定値“と言うことにす
る。
The concentration value displayed on the recording meter using the electrode of the present invention is called "1 indicated value", and the value measured by the orthotolidine colorimeter of residual chlorine in the liquid to be measured is called "1 measured value". I'll decide.

第4図において、実線A→Bの間は指示値=測定値であ
る。24時から30分間4ボルトの直流電圧を正極と電
極との間に加えて電解研磨を行なうと、指示値が急上昇
してC(濃度1.0付近)に達し、その後約2時間30
分の間指示値が降下し、実線C,Dに沿って推移する。
In FIG. 4, between the solid line A and B is the indicated value=measured value. When electrolytic polishing is performed by applying a DC voltage of 4 volts between the positive electrode and the electrode for 30 minutes starting from 24:00, the indicated value suddenly rises to C (concentration around 1.0), and then for about 2 hours 30 minutes.
The indicated value decreases for minutes and changes along solid lines C and D.

一点鎖@B−Dは測定値を示し、従ってC→Dの指示値
とB、Dの測定値とは一致しない。
The single-dot chain @B-D indicates the measured value, so the indicated value of C→D and the measured values of B and D do not match.

然し、この電解研磨を水質変動の少ない夜中の24時頃
行なうごとにより、この間はある程度無視できる範囲に
ある。実線D→Eは、指示値=測定値である。電解研磨
を行なわない場合は、指示値が破線のようなカーブB−
F−Gとなり、測定値と指示値との間に差即ち誤差が表
われる。
However, since this electrolytic polishing is carried out around 24:00 in the middle of the night when there is little variation in water quality, this period can be ignored to some extent. The solid line D→E indicates the indicated value=measured value. If electrolytic polishing is not performed, the indicated value will be curve B- as shown by the broken line.
FG, and a difference or error appears between the measured value and the indicated value.

発明の効果 本発明は、上述のような構成と作用を有するので、測定
中に測定用正極の表面に付着した汚れが、正極と電極と
の間に直流電圧を印加することにより効果的に除去され
、測定用電極間の測定性能を100%回復することがで
き、従来技術に見られるような誤差がない。
Effects of the Invention Since the present invention has the above-described structure and operation, dirt adhering to the surface of the positive electrode for measurement during measurement can be effectively removed by applying a DC voltage between the positive electrode and the electrode. It is possible to recover 100% of the measurement performance between the measurement electrodes, and there is no error seen in the prior art.

また、この電解研磨と測定とのサイクルをタイマーを用
いて自動的に切替えることにより、長時間の連続運転が
可能である。
Further, by automatically switching the cycle between electrolytic polishing and measurement using a timer, continuous operation for a long time is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の測定方法の原理を示す概略図である
。 第2図は、本発明の電極組立体の一実施態様を示す立面
側面図である。 第3図は、第2図の縦断面図である。 第4図は、本発明の方法を用いて測定した結果を示すグ
ラフである。 2.2′・・・・・・・・・・・・測定用正極1.1・
・・・・・・・・・・・測定用負極3.3・・・・・・
・・−・・・電解研磨用電極8、9.10・・・導線 El、E2・・・・・・端子
FIG. 1 is a schematic diagram showing the principle of the measuring method of the present invention. FIG. 2 is an elevational side view of one embodiment of the electrode assembly of the present invention. FIG. 3 is a longitudinal sectional view of FIG. 2. FIG. 4 is a graph showing the results measured using the method of the present invention. 2.2′・・・・・・・・・Positive electrode for measurement 1.1・
......Negative electrode for measurement 3.3...
... Electrolytic polishing electrode 8, 9.10... Conductor wire El, E2... Terminal

Claims (1)

【特許請求の範囲】 1、被検液中に測定用正極と測定用負極と電解研磨用の
電極とを浸漬し、正極と負極と被検液とによりガルバニ
電池を構成し、正極と負極を電流計に接続することによ
り電流計に流れる電流値を測定し、該電流値が被検液中
の酸化性物質の濃度に比例することを利用して該濃度を
測定し、所定時間の測定の後、正極と電流計との接続を
切り、正極を直流電源を介して電解研磨用の電極に接続
し、電解研磨用電極をプラス極として所定時間通電する
ことにより、測定中に正極表面に形成された被膜を除去
する電解研磨を行ない、ついで正極と直流電源との接続
を切り、再び正極と電流計とを接続して測定を行なうこ
とを特徴とする被検液中の酸化性物質の濃度測定方法。 2、濃度測定と電解研磨との切替えをタイマーを用いて
行なうことを特徴とする特許請求の範囲第1項に記載の
酸化性物質の濃度測定方法。 3、前記直流電源が電池である、特許請求の範囲第1項
又は第2項に記載の濃度測定方法。 4、前記酸化性物質が次亜塩素酸である特許請求の範囲
第1項に記載の方法。 5、合成樹脂製の細長い中空の棒状体と、該棒状体の軸
線方向に間隔を置いて該棒状体の表面に露出するように
該棒状体により夫々保持された測定用負極と測定用正極
と電解研磨用電極と、前記中空部を通り、一端を測定用
負極に接続し他端を電流計の第1端子に接続する第1導
線と、一端を測定用正極に接続し他端を切替え器を介し
て電流計の第2端子に接続する第2導線と、一端を電解
研磨用電極に接続し直流電源を介して他端に切替え用端
子を設けた第3導線とからなる被検液中の酸化性物質の
濃度測定装置。 6、測定用負極が、合成樹脂棒状体の中空部と連通する
中空部を有する銀製の棒状体であり、該銀製棒状体の軸
線方向両端に雄ねじを有し、該雄ねじに対応する雌ねじ
を合成樹脂棒状体に形成し、雄ねじと雌ねじとを係合さ
せることにより銀製棒状体を合成樹脂棒状体に固定した
ことを特徴とする特許請求の範囲第5項に記載の濃度測
定装置。 7、測定用正極と電解研磨用電極とが、合成樹脂製棒状
体の外周に巻きつけられた白金線からなる特許請求の範
囲第5項又は第6項に記載の濃度測定装置。 8、測定用正極が、合成樹脂製棒状体の軸線方向にみて
、測定用負極と電解研磨用電極との中間に位置決めされ
ている特許請求の範囲第5項に記載の濃度測定装置。 9、前記合成樹脂製棒状体が、塩化ビニール樹脂製であ
る特許請求の範囲第5項に記載の濃度測定装置。
[Scope of Claims] 1. A positive electrode for measurement, a negative electrode for measurement, and an electrode for electrolytic polishing are immersed in a test liquid, a galvanic cell is constituted by the positive electrode, a negative electrode, and the test liquid, and the positive electrode and the negative electrode are By connecting to an ammeter, the value of the current flowing through the ammeter is measured, and the concentration is measured using the fact that the current value is proportional to the concentration of the oxidizing substance in the test liquid. After that, the positive electrode is disconnected from the ammeter, the positive electrode is connected to the electrolytic polishing electrode via a DC power supply, and the electrolytic polishing electrode is used as the positive electrode and current is applied for a predetermined period of time to prevent formation on the positive electrode surface during measurement. The concentration of oxidizing substances in the test liquid is measured by electropolishing to remove the coated film, then disconnecting the positive electrode from the DC power source, and then connecting the positive electrode to the ammeter again. Measuring method. 2. The method for measuring the concentration of an oxidizing substance according to claim 1, characterized in that switching between concentration measurement and electrolytic polishing is performed using a timer. 3. The concentration measuring method according to claim 1 or 2, wherein the DC power source is a battery. 4. The method according to claim 1, wherein the oxidizing substance is hypochlorous acid. 5. An elongated hollow rod-shaped body made of synthetic resin, and a negative electrode for measurement and a positive electrode for measurement held by the rod-shaped body so as to be exposed on the surface of the rod-shaped body at intervals in the axial direction of the rod-shaped body. An electrolytic polishing electrode, a first conductor that passes through the hollow part and connects one end to the negative electrode for measurement and the other end to the first terminal of the ammeter, and one end to the positive electrode for measurement and the other end to the switching device. in the test liquid, consisting of a second conductor connected to the second terminal of the ammeter via the 2nd conductor, and a third conductor connected to the electrolytic polishing electrode at one end and provided with a switching terminal at the other end via a DC power supply. A device for measuring the concentration of oxidizing substances. 6. The negative electrode for measurement is a silver rod-shaped body having a hollow part communicating with the hollow part of the synthetic resin rod-shaped body, and the silver rod-shaped body has a male thread at both ends in the axial direction, and a female thread corresponding to the male thread is synthesized. 6. The concentration measuring device according to claim 5, wherein the silver rod is formed into a resin rod and is fixed to the synthetic resin rod by engaging a male thread and a female thread. 7. The concentration measuring device according to claim 5 or 6, wherein the measuring positive electrode and the electrolytic polishing electrode are made of a platinum wire wound around the outer periphery of a synthetic resin rod. 8. The concentration measuring device according to claim 5, wherein the measuring positive electrode is positioned between the measuring negative electrode and the electrolytic polishing electrode when viewed in the axial direction of the synthetic resin rod. 9. The concentration measuring device according to claim 5, wherein the synthetic resin rod is made of vinyl chloride resin.
JP60146685A 1985-07-05 1985-07-05 Method and apparatus for measuring concentration of oxidizable substance in liquid to be inspected Granted JPS628050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60146685A JPS628050A (en) 1985-07-05 1985-07-05 Method and apparatus for measuring concentration of oxidizable substance in liquid to be inspected

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60146685A JPS628050A (en) 1985-07-05 1985-07-05 Method and apparatus for measuring concentration of oxidizable substance in liquid to be inspected

Publications (2)

Publication Number Publication Date
JPS628050A true JPS628050A (en) 1987-01-16
JPH042903B2 JPH042903B2 (en) 1992-01-21

Family

ID=15413265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60146685A Granted JPS628050A (en) 1985-07-05 1985-07-05 Method and apparatus for measuring concentration of oxidizable substance in liquid to be inspected

Country Status (1)

Country Link
JP (1) JPS628050A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5133128A (en) * 1989-09-14 1992-07-28 Dai-Ichi Seiki Co., Ltd. Drive control system for exchange arm
FR2678734A1 (en) * 1991-07-05 1993-01-08 Ponselle Mesure Sarl Improvement to the continuous measurement of the redox potential of waste water
JPH0972879A (en) * 1995-09-05 1997-03-18 Kubota Corp Electrode type sensor
JP2008058025A (en) * 2006-08-29 2008-03-13 Omega:Kk Residual chlorine concentration meter
JP2011027584A (en) * 2009-07-27 2011-02-10 Horiba Advanced Techno Co Ltd Water quality measuring device
JP2020034408A (en) * 2018-08-29 2020-03-05 株式会社 堀場アドバンスドテクノ Electrochemical measurement device and method for cleaning the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5133128A (en) * 1989-09-14 1992-07-28 Dai-Ichi Seiki Co., Ltd. Drive control system for exchange arm
FR2678734A1 (en) * 1991-07-05 1993-01-08 Ponselle Mesure Sarl Improvement to the continuous measurement of the redox potential of waste water
JPH0972879A (en) * 1995-09-05 1997-03-18 Kubota Corp Electrode type sensor
JP2008058025A (en) * 2006-08-29 2008-03-13 Omega:Kk Residual chlorine concentration meter
JP2011027584A (en) * 2009-07-27 2011-02-10 Horiba Advanced Techno Co Ltd Water quality measuring device
JP2020034408A (en) * 2018-08-29 2020-03-05 株式会社 堀場アドバンスドテクノ Electrochemical measurement device and method for cleaning the same

Also Published As

Publication number Publication date
JPH042903B2 (en) 1992-01-21

Similar Documents

Publication Publication Date Title
Graf et al. Intracellular sodium activity and sodium transport in Necturus gallbladder epithelium
WO1987006925A1 (en) Method and device for ionizing liquid
JPS628050A (en) Method and apparatus for measuring concentration of oxidizable substance in liquid to be inspected
JP3361237B2 (en) Residual chlorine measuring method and apparatus and residual chlorine detecting probe
JP3390154B2 (en) Residual chlorine meter and water purification device using it
JP3284350B2 (en) Electrolytic ionic water generator
EP0552208B1 (en) Electrokinetic potential measurement
JP3447158B2 (en) Electrode type sensor
JP2783725B2 (en) Moisture measurement method
US5416406A (en) Electric charge metering device and method
CN106770593A (en) It is a kind of with purging system based on the two poles of the earth system water quality detection system
EP0608037B1 (en) Method and apparatus for on-line monitoring the quality of a purified metal sulphate solution
JP2001174430A (en) Composite sensor for measuring concentration and ph of hypochlorous acid
JP3917297B2 (en) Residual chlorine meter and liquid sterilizer using this residual chlorine meter
JP4365086B2 (en) Concentration measuring device and concentration measuring method
US4612094A (en) Electrical conditioning of a platinum electrode useful in measurement in hypochlorite
JP3328215B2 (en) Residual chlorine measuring device
JPS62182294A (en) Apparatus for reducing inverse current in electrolytic cell
JP2528025Y2 (en) Electrode for conductivity measurement
JPS6130175Y2 (en)
JPH0827297B2 (en) Cleaning solution for probe for probe card and cleaning apparatus using the same
JPH0330851Y2 (en)
JP4549114B2 (en) Electrochemical sensor and conductivity cell
US20230280309A1 (en) Systems, Devices, and Methods for Electrochemical Water Analysis
JP5181352B2 (en) Method and apparatus for measuring residual free chlorine concentration

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term