JPS628041A - Infrared spectroscopic analysis - Google Patents
Infrared spectroscopic analysisInfo
- Publication number
- JPS628041A JPS628041A JP14586285A JP14586285A JPS628041A JP S628041 A JPS628041 A JP S628041A JP 14586285 A JP14586285 A JP 14586285A JP 14586285 A JP14586285 A JP 14586285A JP S628041 A JPS628041 A JP S628041A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- infrared
- specimen
- infrared absorption
- adhering surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野J
本発明は赤外分光分析法に関し、更に詳しくは、大気中
に浮遊するガス状、ミスト状、粉状の試料を極めて簡単
に分析する方法に関する。[Detailed Description of the Invention] [Industrial Application Field J] The present invention relates to an infrared spectroscopic analysis method, and more specifically, a method for extremely easily analyzing gaseous, misty, or powdery samples suspended in the atmosphere. Regarding.
[従来技術]
各種プラスチックのシート、フィルムなどを溶融成形し
て製造する際やプラスチックの加熱処理時又はプラスチ
ックを含めた各種廃棄物の燃焼処理時には、様々なガス
成分が発生する。これら成分は、プラスチック中に含有
せしめられた各種添加剤又は、プラスチックや添加剤の
熱分解などに □よって発生するものと考えられる。[Prior Art] Various gas components are generated when melt-molding and manufacturing various plastic sheets, films, etc., during heat treatment of plastics, or during combustion treatment of various wastes including plastics. These components are thought to be generated by various additives contained in plastics or by thermal decomposition of plastics and additives.
それゆえ、これらガス成分を迅速に分析することは、プ
ラスチックの物性低下、劣化の原因を究明するために必
要である。更には、これらガス成分の発生が引起す作業
環境の悪化、公害問題などに対し工有効な対処手段を講
じるためにも、これらガス成分の迅速かつ簡便な分析は
重要である。Therefore, it is necessary to quickly analyze these gas components in order to investigate the causes of deterioration and deterioration of physical properties of plastics. Furthermore, rapid and simple analysis of these gas components is important in order to take effective measures to deal with deterioration of the working environment and pollution problems caused by the generation of these gas components.
従来、これらガス成分の分析法の1つとしては、上記し
たプラスチック製造・処理工程で発生したガスから、溶
液捕集法、フィルタ法などによってガス成分を採取し、
このガス成分試料を濃縮1分離する前処理が必要であっ
た。Conventionally, one of the methods for analyzing these gas components is to collect gas components from the gases generated in the above-mentioned plastic manufacturing and processing processes using a solution collection method, a filter method, etc.
It was necessary to perform pretreatment to concentrate and separate this gas component sample.
[発明が解決しようとする問題点]
従来の赤外分光分析法においては、上記したように分析
対象試料に対する前処理が不可欠となる。このため、実
際の測定に先立ち、試料の採取に多大の時間と煩雑な操
作を要するとともに特別な採取装置が必要になる。[Problems to be Solved by the Invention] In the conventional infrared spectroscopic analysis method, pretreatment of the sample to be analyzed is essential as described above. Therefore, prior to actual measurement, it takes a lot of time and complicated operations to collect the sample, and a special sampling device is also required.
したがって、従来は、ガス成分の分析において迅速さに
欠け、しかも測定に要するコストが高くならざるを得な
かった。Therefore, in the past, analysis of gas components lacked speed, and the cost required for measurement was unavoidable.
本発明方法は、従来の赤外分光分析法における上記問題
点を解消し、迅速かつ安価にガス成分を分析する方法の
提供を目的とする。The method of the present invention solves the above-mentioned problems in conventional infrared spectroscopy and aims to provide a method for quickly and inexpensively analyzing gas components.
[問題点を解決するための手段]
本発明者は上記目的を達成するために鋭意研究を重ねた
結果、後述の試料採取法、フーリエ変換赤外分光光度計
を用いた反射法を適用すれば、実際の測定に先立つ試料
の前処理を省くことができるとの事実を見出し、本発明
を開発するに到った。[Means for solving the problem] As a result of intensive research to achieve the above object, the present inventor has found that by applying the sample collection method described below and the reflection method using a Fourier transform infrared spectrophotometer, discovered that it is possible to omit sample pretreatment prior to actual measurement, and developed the present invention.
すなわち、本発明の赤外分光分析法は、金属板表面に大
気中の浮遊試料を付着せしめて採取し、この試料付着面
にフーリエ変換赤外分光光度計を用いた反射法で試料の
赤外吸収スペクトルを測定し、試料付着面の金属板表面
との赤外吸収差スペクトルを測定することにより試料分
析することを特徴とする。That is, in the infrared spectroscopic analysis method of the present invention, a sample floating in the atmosphere is attached to the surface of a metal plate, and the sample is collected using a reflection method using a Fourier transform infrared spectrophotometer. The method is characterized in that the sample is analyzed by measuring the absorption spectrum and measuring the infrared absorption difference spectrum between the sample-attached surface and the metal plate surface.
用いる金属板としては1表面が平滑で光沢を有するステ
ンレス鋼板、アルミニウム板などが好適である。また、
例えばガラスの板の表面に、めっき法、蒸着法などの公
知の成膜法によって、アルミニウム、金のような金属の
平滑薄膜を形成したものであってもよい。Suitable metal plates to be used include stainless steel plates, aluminum plates, etc., which have one smooth and glossy surface. Also,
For example, a smooth thin film of metal such as aluminum or gold may be formed on the surface of a glass plate by a known film forming method such as plating or vapor deposition.
分析対象の試料は、大気中でガス状、ミスト状、粉状の
いずれかの形態で浮遊するものであればよい。The sample to be analyzed may be any one that floats in the air in the form of gas, mist, or powder.
常温、常圧下で固体若しくは液状形態にある試料の場合
は、上記した金属板にそのまま付着することができる。If the sample is in solid or liquid form at room temperature and pressure, it can be directly attached to the metal plate described above.
また、必要により金属板表面にゴム系、アクリル系、シ
リコン系さらにはロジン。In addition, if necessary, rubber, acrylic, silicone, or even rosin may be applied to the surface of the metal plate.
ロジンエステルなどの粘着付与樹脂を加えた粘着層で被
覆されたものを試料採取板として用いることもできる。A plate coated with an adhesive layer containing a tackifying resin such as rosin ester can also be used as a sample collection plate.
しかし、常温、常圧下でガス状形態にある試料は、その
ままでは金属板表面に付着せしめることが困難なので1
例えば、金属板表面に活性アルミナ、シリカゲル、活性
炭、ベントナイトなどの無機系吸着剤;デンプン、ろ紙
、イオン交換樹脂などの有機系吸着剤;のようなガス吸
着層を薄く形成して試料採取に供すれば試料を有効に表
面に付着せしめることができる。However, it is difficult to attach a sample that is in a gaseous state at room temperature and pressure to the surface of a metal plate.
For example, a thin gas adsorption layer such as an inorganic adsorbent such as activated alumina, silica gel, activated carbon, or bentonite; or an organic adsorbent such as starch, filter paper, or ion exchange resin may be formed on the surface of a metal plate for sample collection. By doing so, the sample can be effectively attached to the surface.
つぎに、この試料付着面の赤外吸収スペクトルを測定す
る。測定に際しては、コンピュータを内蔵していて、得
られたデータのフーリエ変換の演算を行なうフーリエ変
換分光光度計を用いた反射法が適用される。Next, the infrared absorption spectrum of this sample-attached surface is measured. For measurement, a reflection method is applied using a Fourier transform spectrophotometer that has a built-in computer and performs Fourier transform operations on the obtained data.
反射法としては、■試料性MWBに偏光子な介して赤外
線ビームを所定の入射角で入射し、付着面からの反射光
をスペクトル分析する高感度反射法、■プリズムを介し
て試料付着面を対向せしめるか又はプリズムを介して試
料付着面と反射板の面とを対向せしめ、プリズムに赤外
線ビームを入射しプリズム内で全反射を反復せしめた全
反射光をスペクトル分析する全反射法が適用される。こ
れら方法のうち、■の高感度反射法は好適な方法である
。The reflection method includes: 1) a high-sensitivity reflection method in which an infrared beam is incident on the sample MWB at a predetermined angle of incidence through a polarizer, and the spectrum of the reflected light from the attached surface is analyzed; The total internal reflection method is applied, in which the sample adhesion surface and the surface of the reflector are made to face each other or through a prism, and an infrared beam is incident on the prism, and the total reflection light is repeatedly totally reflected within the prism and the spectrum is analyzed. Ru. Among these methods, the high-sensitivity reflection method (2) is a preferred method.
この反射光から得られたスペクトル分析値は、金属板表
面(粘着層又は吸着層を含む場合有り)のみからの分析
値と付着する試料面からの分析値との和として記録され
る。したがって、この分析値から前者のスペクトル分析
値を差引いた赤外吸収差スペクトルは付着試料に特有の
スペクトルとして測定されることになる。The spectral analysis value obtained from this reflected light is recorded as the sum of the analysis value from only the metal plate surface (which may include an adhesive layer or adsorption layer) and the analysis value from the attached sample surface. Therefore, the infrared absorption difference spectrum obtained by subtracting the former spectrum analysis value from this analysis value will be measured as a spectrum specific to the adhered sample.
それゆえ、試料付着面の赤外吸収スペクトルを測定した
のち、これから試料を付着せしめない金属板表面の赤外
吸収スペクトルを、光度計に内蔵されたコンピュータを
演算せしめて差引き、試料の分析結果を表示する赤外吸
収差スペクトルを測定して、試料の分析を終了する。Therefore, after measuring the infrared absorption spectrum of the surface to which the sample is attached, the infrared absorption spectrum of the surface of the metal plate to which no sample is attached is subtracted using a computer built in the photometer, and the analysis results of the sample are obtained. The analysis of the sample is completed by measuring the infrared absorption difference spectrum that displays .
[発明の実施例]
実施例
市販のポリプロピレン樹脂ベレットヲ、T−タイ押出装
置(押出機の径50■■、ダイの411400ts)で
押出成形し厚み3■のシートを製造した。このとき、ダ
イの出口では発煙が認められた。[Examples of the Invention] Example Commercially available polypropylene resin pellets were extrusion-molded using a T-tie extrusion device (extruder diameter: 50 mm, die: 411,400 ts) to produce a sheet with a thickness of 3 mm. At this time, smoke was observed at the exit of the die.
この発煙個所に、アセトンで表面を洗浄したステンレス
鋼板を 1時間保持し、発煙物質を鋼板表面に付着せし
めた。A stainless steel plate whose surface had been cleaned with acetone was held in this smoking area for 1 hour to allow the fuming substance to adhere to the surface of the steel plate.
得られた試料板を、フーリエ変換赤外分光光度計(日本
電子■製のJIR−40に、分解能4.0cm’ 、積
算回数200回)にセットし、高感度反射法で赤外吸収
スペクトルを測定した。The obtained sample plate was set in a Fourier transform infrared spectrophotometer (JIR-40 manufactured by JEOL Ltd., resolution 4.0 cm', number of integrations 200 times), and the infrared absorption spectrum was measured using a high-sensitivity reflectance method. It was measured.
発煙個所に保持する前のステンレス鋼板表面の赤外吸収
スペクトルを予め測定しておき、これを前記の試料面ス
ペクトルから差引いて赤外吸収差スペクトルを測定した
。The infrared absorption spectrum of the surface of the stainless steel plate before being held at the smoking point was measured in advance, and this was subtracted from the sample surface spectrum to measure the infrared absorption difference spectrum.
それを図に示した0図から、発煙物質は高級脂肪酸であ
ることが判明した。From Figure 0, which shows this in a diagram, it was found that the smoke-producing substance was a higher fatty acid.
[発明の効果]
以上の説明で明らかなように、本発明方法は■試料の採
取が極めて容易であり、かつ制約を受けることがない、
■実際の分析に先立つ前処理が全く不要である。■それ
ゆえ、分析を迅速に進めることができる、などの効果を
奏し工業的価値は大である。とくに、各種プラスチック
の製造現場において、その工程で発生するガス成分、ミ
スト。[Effects of the Invention] As is clear from the above explanation, the method of the present invention has the following advantages: (1) Sample collection is extremely easy and there are no restrictions;
■No pretreatment is required prior to actual analysis. ■Therefore, it has great industrial value as it allows for quick analysis. In particular, gas components and mist generated during the manufacturing process of various plastics.
微粉などを迅速に分析しそれへの対策を溝する場合など
の分析方法としての実用性は高い。It is highly practical as an analysis method for quickly analyzing fine particles and developing countermeasures.
図は実施例における赤外吸収差スペクトルを等わす図で
ある。The figure is a diagram illustrating infrared absorption difference spectra in Examples.
Claims (1)
し、この試料付着面にフーリエ変換赤外分光光度計を用
いた反射法で試料の赤外吸収スペクトルを測定し、 試料付着面の金属板表面との赤外吸収差スペクトルを測
定することにより試料分析することを特徴とする赤外分
光分析法。 2、金属板表面が粘着層で被覆されている特許請求の範
囲第1項記載の赤外分光分析法。 3、金属板表面が薄いガス吸着層で被覆されている特許
請求の範囲第1項記載の赤外分光分析法。[Claims] 1. A sample floating in the atmosphere is attached to the surface of a metal plate and collected, and the infrared absorption spectrum of the sample is measured by a reflection method using a Fourier transform infrared spectrophotometer on the sample attachment surface. An infrared spectroscopic analysis method is characterized in that the sample is analyzed by measuring the infrared absorption difference spectrum between the sample-attached surface and the metal plate surface. 2. The infrared spectroscopic analysis method according to claim 1, wherein the surface of the metal plate is coated with an adhesive layer. 3. The infrared spectroscopic analysis method according to claim 1, wherein the metal plate surface is coated with a thin gas adsorption layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14586285A JPS628041A (en) | 1985-07-04 | 1985-07-04 | Infrared spectroscopic analysis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14586285A JPS628041A (en) | 1985-07-04 | 1985-07-04 | Infrared spectroscopic analysis |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS628041A true JPS628041A (en) | 1987-01-16 |
Family
ID=15394784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14586285A Pending JPS628041A (en) | 1985-07-04 | 1985-07-04 | Infrared spectroscopic analysis |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS628041A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4837631A (en) * | 1971-09-16 | 1973-06-02 |
-
1985
- 1985-07-04 JP JP14586285A patent/JPS628041A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4837631A (en) * | 1971-09-16 | 1973-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5017007A (en) | Apparatus and microbase for surface-enhanced raman spectroscopy system and method for producing same | |
US5693152A (en) | Molecular specific detector for separation science using surface enhanced raman spectroscopy | |
US7295308B1 (en) | Air sampling method and sensor system for spectroscopic detection and identification of chemical and biological contaminants | |
JP4933271B2 (en) | Handheld device with a disposable element for chemical analysis of multiple specimens | |
JP2007519004A5 (en) | ||
US6847446B2 (en) | Chemical analysis and detection by selective adsorbent sampling and laser induced breakdown spectroscopy | |
Matias et al. | A simple device for quantitative colorimetric diffuse reflectance measurements | |
JP2001255267A (en) | Two-dimensional imaging surface plasmon resonance measuring device and measuring method | |
Turpin et al. | Intercomparison of photoacoustic and thermal-optical methods for the measurement of atmospheric elemental carbon | |
CN102288574A (en) | Device and method for quantitatively analyzing concentration of multi-component oil fume | |
WO2019100231A1 (en) | Three dimensional hotspot raman detection chip based on shell isolation nano particles | |
Castleden et al. | Quantitative examination of thin-layer chromatography plates by photoacoustic spectroscopy | |
JPH01132935A (en) | Method and apparatus for analyzing film | |
Allen et al. | Recent advances in aerosol analysis by infrared spectroscopy | |
JPS628041A (en) | Infrared spectroscopic analysis | |
CN111751352A (en) | Solid substrate for detecting liquid sample by laser-induced breakdown spectroscopy and detection method | |
JP2012154718A (en) | Spectral analysis method and sampling unit for spectral analysis | |
CN101059434A (en) | Method for determining total carbon of alumyte | |
Rabasović et al. | Pulsed photoacoustic gas cell design for low pressure studies | |
CN113295652A (en) | High-flux array scanning type LSPR sensing detection system | |
JPH0545288A (en) | Method and device for judging degree of polymer hardening | |
JP2003014642A (en) | Chemical substance detection method and chemical substance detector | |
Kirkbright | Some applications of photoacoustic spectroscopy to the study of chemical systems in the condensed phase-a tutorial review | |
CN112881312B (en) | Detection device for simultaneously monitoring solution change and sensor solid/liquid interface change | |
US4495418A (en) | Method of standardizing IR breath alcohol device |