JPS6279812A - High-speed clarifier for polluted water - Google Patents

High-speed clarifier for polluted water

Info

Publication number
JPS6279812A
JPS6279812A JP21886985A JP21886985A JPS6279812A JP S6279812 A JPS6279812 A JP S6279812A JP 21886985 A JP21886985 A JP 21886985A JP 21886985 A JP21886985 A JP 21886985A JP S6279812 A JPS6279812 A JP S6279812A
Authority
JP
Japan
Prior art keywords
component
particle size
water
polluted water
whose particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21886985A
Other languages
Japanese (ja)
Inventor
Fujio Hotta
堀田 不二夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP21886985A priority Critical patent/JPS6279812A/en
Publication of JPS6279812A publication Critical patent/JPS6279812A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled clarifier capable of easily clarifying polluted water in a short time without necessitating a large-sized treating plant by allowing liparite, etc., whose particle size is appropriately regulated to react with pumice sedimentary rock and an inorg. flocculant and purifying and drying the reaction product. CONSTITUTION:An inorg. salt such as aluminum sulfate, hydrochloric acid or sulfuric acid, 1 or >=2 kinds among alkalis such as caustic soda are successively added to the fine powder of liparite consisting essentially of vitreous alkaline feldspar and wherein the particle size of >=70% of the powder is regulated to about 30-200mmu and the fine powder of pumice sedimentary rock consisting of vitreous plagioclase and whose particle size is controlled to about 30-200mmu. The reaction product is dried and purified to obtain the clarifier for polluted water. The clarifier is injected into polluted water and agitated and the formed deposit is removed to clarify the polluted water at high speed.

Description

【発明の詳細な説明】 (3−1)発明の概要 本発明は汚濁水を高速に清澄化する処理剤に係り、更に
詳細には破璃賀、アルカリ長石、斜長石を主成分とする
流紋Vj質噴出岩微粉である(A)成分 および/また
は 多孔性の彼璃質、斜長石を主成分とする浮岩質堆積
岩微粉であるCB)成分に、無atl!凝集剤、塩酸ま
たは硫酸、アルカリ類とから成る(C)成分のうちの1
または2以りを加え、反応屯縮合せしめた後、乾燥精製
した無機m性のシリカアルミニュウムから成る高速清澄
処理剤に関する。
Detailed Description of the Invention (3-1) Summary of the Invention The present invention relates to a treatment agent that rapidly clarifies polluted water, and more specifically, it relates to a treatment agent that rapidly clarifies polluted water, and more specifically, it relates to a treatment agent that clarifies polluted water at high speed. There is no atl! in the (A) component, which is a microscopic extrusive rock fine powder, and/or the CB) component, which is a floating sedimentary rock fine powder whose main components are porous helium and plagioclase. One of the components (C) consisting of a flocculant, hydrochloric acid or sulfuric acid, and alkalis
The present invention relates to a high-speed clarification agent made of inorganic silica aluminum which is dried and purified after adding two or more of them and condensing them through reaction.

(3−2)産業上の利用分野 本発明は上水の浄化処理、または食品、染色、化学、薬
品、澱粉、鍍金等の工業用排水の処理、病院、学校、ホ
テル、厨房等の産業排水、または生活排水の処理に際し
て、従来に比べて格段に効率のよい汚濁水の高速清澄処
理剤に関するものである。
(3-2) Industrial fields of application The present invention is applicable to the purification of water, or the treatment of industrial wastewater from food, dyeing, chemicals, pharmaceuticals, starch, plating, etc., and industrial wastewater from hospitals, schools, hotels, kitchens, etc. The present invention relates to a high-speed clarification agent for polluted water that is much more efficient than conventional methods when treating domestic wastewater.

(3−3)従来の技術 従来、上水、工業排水、産業排水等の浄化処理において
は、いずれの場合にも、篩分槽、沈殿槽、濾過槽等の設
備を設置し、その設備において、適宜吸着、凝集、活性
化等の処理操作を行なうことによって、清澄化が行なわ
れている。
(3-3) Conventional technology Conventionally, in the purification treatment of tap water, industrial wastewater, industrial wastewater, etc., equipment such as sieving tanks, sedimentation tanks, filtration tanks, etc. is installed, and the equipment Clarification is carried out by appropriately performing treatment operations such as adsorption, aggregation, and activation.

たとえば、上水の浄化処理においては、塩素によるマン
ガン、鉄の化学的分離または滅菌処理、ポリ塩化アルミ
ニュウム、硫酸アルミニュウム、塩化鉄等の凝集剤と、
消石灰、ソーダ灰等の凝集助剤による沈殿等重力利用の
物理的、化学的処理、汚泥、活性菌による生物学的処理
等を適宜組合わせることによって処理が行なわれている
。しかしながらこれ等の汚濁水を処理する従来の処理法
においてはいずれも大型の処理設備が必要で、大きな設
備費と、設置場所を必要とし、また処理にはかなりの詩
u■を必要とする欠点があった。
For example, in water purification treatment, chemical separation or sterilization of manganese and iron using chlorine, flocculants such as polyaluminum chloride, aluminum sulfate, iron chloride, etc.
Treatment is carried out by appropriately combining physical and chemical treatments using gravity, such as precipitation using coagulation aids such as slaked lime and soda ash, and biological treatments using sludge and active bacteria. However, all of these conventional treatment methods for treating polluted water require large-scale treatment equipment, requiring large equipment costs and installation space, and have the disadvantage that treatment requires considerable effort. was there.

(3−0発明の目的 本発明は汚濁水を清澄化する従来の処理法の以上述べた
欠点を改善し、大型の処理設備を必要とせず、容易にし
かも極めて短時間に汚濁水を清澄化する処理法を提供し
、併せて、災害時等における緊急用水確保のための簡便
な方法を提供することを目的としている。
(3-0 Purpose of the Invention The present invention improves the above-mentioned drawbacks of the conventional treatment methods for clarifying polluted water, and clears polluted water easily and in an extremely short time without requiring large-scale processing equipment. The purpose of this project is to provide a treatment method for water treatment, and also to provide a simple method for securing emergency water in times of disaster.

(3−5)発明の構成・作用 汚濁水の処理用として無機凝集剤が使用されたのはかな
り以前からであるが、産業、工業の発展に+tなって、
急速な発展、変遷を経ており、1980年代に英国、米
国で塩基性塩化アルミニュウムが発見され、我国におい
ては、その改良品が発明されて(特公昭47−2140
1)広く使用されている。
(3-5) Structure and function of the invention Inorganic flocculants have been used for the treatment of polluted water for quite some time, but with the development of industry,
Basic aluminum chloride was discovered in the United Kingdom and the United States in the 1980s, and an improved product was invented in Japan (Special Publication No. 47-2140).
1) Widely used.

また水ガラスに塩酸、硫酸アルミニュウム茅を加えて作
られる活性シリカ凝集剤等がある。
There are also activated silica flocculants made by adding hydrochloric acid and aluminum sulfate to water glass.

それらの特徴は加水分解およびイオンによる吸着、フロ
ック架橋、凝集による汚濁分の分離にある。
Their characteristics lie in the separation of contaminants through hydrolysis and ion adsorption, floc cross-linking, and coagulation.

本発明の発明者は全く新規な分野から従来の無機凝集剤
よりも効果を高める為、長年にわたり適用研究を重ね、
先願(昭和59年特許願第fi5078号)において、
汚濁水に前記した(A)成分CB)成分(C)成分を注
入し、水中にてその各成分が相互に反応し凝集沈降効果
を向上せしめる高速清澄処理法を提示したが(この処理
法を以下中にrsAcJ と呼ぶことにする。)、その
後適用研究を重ねた結果、更に卓越した処理剤を開発し
た。すなわち、破璃とアルカリ長石と斜長石とを酸性物
質に反応させることにより新規な処理剤の製造に成功し
、本発明を達成することを得たのである。
The inventor of the present invention has conducted application research for many years in order to improve the effectiveness of conventional inorganic flocculants from a completely new field.
In the earlier application (Patent Application No. fi5078 of 1982),
We have proposed a high-speed clarification treatment method in which the above-mentioned (A) component CB) component (C) component is injected into polluted water, and each component reacts with each other in the water to improve the coagulation and sedimentation effect. (hereinafter referred to as rsAcJ), as a result of repeated application research, an even more outstanding treatment agent was developed. In other words, the present invention was achieved by successfully producing a novel treatment agent by reacting quartzite, alkali feldspar, and plagioclase with an acidic substance.

すなわち、彼璃質はガラス真にソーダを含む正長石((
Ha、K)20 Al2036SiO;+)を成分とす
る。又アルカリ長石はカリを含むカリ長石(KA Is
 130s )とソーダを含むソーダ長石(NaAIS
i30a)が混合した成分となっている。また斜長石は
ソーダ石灰とも呼ばれ、ソーダを含むff長石(NaA
ISi302)と石灰を含む灰長石(CaA12SiO
s)が混合した成分となっている。これらの彼璃賀、ア
ルカリ長石を主成分とする粒度調整されたr波紋岩等微
粉J((A)成分)と破璃賀、斜長石を成分とする粒度
7A整されたY浮岩質堆積岩微粉j((B)成分)に無
機塩である硫酸アルミニュウム等、塩酸または硫酸、苛
性ソーダ等のアルカリ類((C)成分)のうちの1を加
え、またはその2以上を逐次加えると破璃質、アルカリ
長石、斜長石は酸の作用を受けて、それらを主成分とす
るr流紋岩等微粉Jおよびr浮岩質堆積岩微粉1に、あ
る種の反応が発生する。この反応はその初期は通常の化
学反応であるが、次いで反応生成物の重縮合反応が生ず
るものと考えられる。またこの一連の反応は完了するま
でに一定の時間を必要とするが、その途中において反応
生成物を乾燥精製すれば、反応は途中で停止し、安定し
た微粉状の物質を得ることができる。
That is, the helicoid is glassy and soda-bearing orthoclase ((
The components are Ha, K)20Al2036SiO;+). Alkali feldspar is potassium feldspar containing potassium (KA Is).
130s) and soda-containing soda feldspar (NaAIS)
i30a) is a mixed component. Plagioclase is also called soda lime, and contains ff feldspar (NaA
ISi302) and lime-bearing anorthite (CaA12SiO
s) is a mixed component. These Heriga, R ripple rock fine powder J ((A) component) whose main component is alkali feldspar, and Y floating rock sedimentary rock whose grain size is adjusted to 7A, whose main component is plagioclase. When one or more of the inorganic salts such as aluminum sulfate, hydrochloric acid, sulfuric acid, alkalis such as caustic soda (component (C)) are added to fine powder J (component (B)), or two or more of them are added sequentially , alkali feldspar, and plagioclase are subjected to the action of acid, and a certain reaction occurs in r-rhyolite, etc. fine powder J and r-floating sedimentary rock fine powder 1, which are mainly composed of them. This reaction is initially a normal chemical reaction, but then it is thought that a polycondensation reaction of the reaction products occurs. Further, this series of reactions requires a certain amount of time to complete, but if the reaction product is dried and purified during the reaction, the reaction can be stopped midway and a stable fine powder substance can be obtained.

各種の試験を行なった結果、この物質は極めて優れた汚
濁水の処理剤であることが判明したのである。すなわち
、この処理剤を汚濁水に投入し、攪拌すれば、前記した
rsAcJ法よりも更に優れた処理効果が得られるので
ある。この本発明に係る処理剤を以下rsAcsJ 、
処理法をrSAC5J法と呼ぶことにする。
As a result of various tests, this substance was found to be an extremely effective treatment agent for polluted water. That is, by adding this treatment agent to polluted water and stirring it, an even better treatment effect than the above-mentioned rsAcJ method can be obtained. The processing agent according to the present invention is hereinafter referred to as rsAcsJ,
The processing method will be referred to as the rSAC5J method.

次にこのrsAcsJの各成分について詳述する。Next, each component of this rsAcsJ will be explained in detail.

(A)成分 「流紋岩等微粉J :前記したように流紋
岩等は噴出岩の一種であり、破璃質にアルカリ長石、斜
長石を主成分とするものを指しており、アルカリ長石は
正長石、微斜長石、何機斜長石の総括名称である。また
「流紋岩等Jとは流紋岩、松脂岩、リソイド岩、真珠岩
、黒耀岩、浮岩、ランプロファイア−1讃岐岩等の噴出
岩である。IR,紋岩は金、銀、銅等の金属鉱床で、粉
砕製錬の工程中において前記粒度範囲のものが不要品と
して副産するため、原価が極めて安いという特典がある
(A) Component "Rhyolite, etc. Fine Powder J: As mentioned above, rhyolite is a type of extrusive rock, and refers to a clastic substance whose main components are alkali feldspar and plagioclase. is a general name for orthoclase, microcline, and plagioclase.Also, rhyolite, etc. J refers to rhyolite, rosinite, lithoidite, perlite, olivine, floating rock, and lamprophyre. 1.It is an extruded rock such as Sanuki Rock.IR, gristite is a metal deposit of gold, silver, copper, etc. During the crushing and smelting process, particles in the above particle size range are produced as unnecessary products, so the cost is extremely high. It has the advantage of being cheap.

CB)成分 r浮岩質堆積岩微粉J :浮岩質堆植岩は
破Ig賀、斜長石を主成分としている堆積岩を指すもの
であり、斜長石はソーダ石灰長石とも言い、pi長石、
灰曹石、中性長石、何次長石、亜灰長石、灰長石の総括
名称である。またr浮岩質堆積岩Jとは浮石質凝灰岩、
流紋岩質凝灰岩、凝灰岩質浮石および砂等の多孔性堆積
岩である。また浮石質凝灰岩を加工して植物育成床やみ
がき砂を製造する際に前記粒度範囲のものが規格外品と
して副産するため原価が極めて安いという点は流紋岩等
の場合と同様である。
CB) Component r Floating sedimentary rock fine powder J: Floating sedimentary rock refers to sedimentary rock whose main components are plagioclase, plagioclase is also called soda lime feldspar, pi feldspar,
It is a generic name for perovskite, neutral feldspar, multi-order feldspar, subanorthite, and anorthite. Also, floating rock sedimentary rock J is floating rock tuff,
It is a porous sedimentary rock such as rhyolitic tuff, tuffite floe, and sand. In addition, when processing floating stone tuff to produce plant growth beds or polishing sand, particles in the above particle size range are produced as substandard products and are extremely low in cost, similar to the case of rhyolite.

(C)成分 無機塩物質、塩酸または硫酸、苛性ソーダ
等アルカリ類二前記(A)(B)r&分と反応を起して
処理剤を作る作用を持つものであり。
Component (C) Inorganic salts, hydrochloric acid, sulfuric acid, caustic soda, and other alkalis have the effect of creating a processing agent by reacting with the above (A) and (B) r&.

無機塩物質で、安価で無害なものとしては、硫酸アルミ
ニュウム、ポリ塩化アルミニュウム、硫酸第一鉄、塩化
第二鉄、硫酸第二鉄、塩素化コツバラス等がある。また
上水運用の凝集剤として使用されている無機塩物質とし
てはJISK−1475で規格が定められているものが
ある。またアルカリとしては苛性ソーダ、水酸化カルシ
ュウム、炭酸ソーダ等がある。これらの物質のうちの1
を前記(A)(B)成分に加え、または2以上を逐次(
A)(B)成分に加える。
Inorganic salt substances that are inexpensive and harmless include aluminum sulfate, polyaluminum chloride, ferrous sulfate, ferric chloride, ferric sulfate, and chlorinated iron chloride. In addition, some inorganic salt substances used as flocculants for water supply operations are regulated by JISK-1475. Examples of alkalis include caustic soda, calcium hydroxide, and soda carbonate. one of these substances
is added to the above (A) and (B) components, or two or more are added sequentially (
A) Add to component (B).

以上説明した各成分を用い、前記した方法によって製造
したrsAcsJを汚濁水に加えて(汚濁水の性質如何
によっては適切な高分子凝集剤およびm年IIh剤を加
9刺、lf事ζ上い鈷里4< in自幻る。)pH,拌
すれば、従来法に比べてフロックの生成速度、沈降性は
きわめて大きくなり、また水質の炸化程度は格段に優れ
ている。
Using each component explained above, add rsAcsJ produced by the method described above to polluted water (depending on the properties of the polluted water, add an appropriate polymer flocculant and m2h agent, If the pH is adjusted and stirred, the rate of floc formation and sedimentation will be much higher than in the conventional method, and the level of water quality will be much better.

例えば、濁度lOo乃至17°の汚れた河川水等を処理
する場合、rsAcsjを使用して、規定のシリンダー
テスト法で転倒攪拌した後、処理水の全量を濁度2°ま
で低下させるに要する時間は従来法の約175〜111
5の短時間であり、また水質も格段に向上している。更
に本発明のrsAcsJ法は先願のrsAcJ法に比べ
ても、濁度の低下、水質の向上で著しく優れた特性を示
しているのである。
For example, when treating polluted river water with a turbidity of lOo to 17°, using rsAcsj and stirring it upside down using the specified cylinder test method, the amount of water required to reduce the total amount of treated water to a turbidity of 2° is The time is about 175 to 111 times compared to the conventional method.
5 in a short time, and the water quality has also improved significantly. Furthermore, the rsAcsJ method of the present invention exhibits significantly superior characteristics in terms of lower turbidity and improved water quality than the rsAcsJ method of the prior application.

このような事実は、当業者にとっても全く予想もできな
いことであり、従来何人もよくなし得なかったことであ
る。
This fact was completely unexpected even by those skilled in the art, and was something that no one had been able to accomplish in the past.

このような汚濁水の高速清澄化の作用機構は。What is the mechanism of action for this kind of high-speed clarification of polluted water?

末だ11らかではないが、次のように推測することがで
きる。すなわち、成分(A)(B)の主成分である彼P
A質アルカリ長石、斜長石が成分(C)に含まれる酸性
物質と作用し、陰イオン性形態のある種の重縮合珪酸の
ゾル及び硫酸アルミニュウムまたは塩化アルミニュウム
等重縮合体が生成され、その両特性である負電荷、正電
荷を共有するものと思われる。また重縮合珪酸の負電荷
は汚濁水中の金属分の吸着、沈降およびフロックの架橋
を促進し、さらにフロックを縮小する作用を行ない、ま
た硫酸アルミニュウム重縮合体の正電荷は汚濁水中の陰
性疎水コロイドのフロック凝集の作用を行なうものと考
えられる。
Although it is not clear, we can speculate as follows. That is, the main component of components (A) and (B) is P
A-grade alkali feldspar and plagioclase interact with the acidic substance contained in component (C), producing a sol of a certain type of polycondensed silicic acid in an anionic form and a polycondensate of aluminum sulfate or aluminum chloride, and both of them. It seems that they share the characteristics of negative and positive charges. In addition, the negative charge of polycondensed silicic acid promotes the adsorption of metals in polluted water, sedimentation, and cross-linking of flocs, and further reduces the size of flocs, and the positive charge of aluminum sulfate polycondensate acts as a negative hydrophobic colloid in polluted water. It is thought that the floc agglomeration effect is performed.

また更に処理剤(B)の多孔性浮岩組織は水に溶解して
いる不純物を強力に吸着する作用があるものと推測され
る0以上のような物理的、化学的作用によって汚濁水の
高速清澄化が達成されたものではないかと考えられる。
Furthermore, it is assumed that the porous floating rock structure of the treatment agent (B) has the effect of strongly adsorbing impurities dissolved in water. It is thought that clarification has been achieved.

実際にrsAcsJ法によって得られた凝集沈殿物を顕
微鏡で調べると、処理剤(A)(B)と(C)との反応
によって生成された微粉が核となり、岡囲に汚濁物フロ
ック凝集体が縮小結合しているのが見られる。フロック
の大きさも2.0mm前後で架橋も密になっており、r
sAcsJの効果がよく観察される。これに対して従来
法で行なった場合、凝集のフロックの大きさは約4〜7
mnnで塩化アルミニュウム角錐の間にからみ合い、凝
集およびフロックの架橋も粗であることが観察される。
When the flocculated precipitate actually obtained by the rsAcsJ method is examined under a microscope, the fine powder generated by the reaction between the treatment agents (A), (B), and (C) becomes the core, and the pollutant floc aggregates are formed in the outer wall. It can be seen that they are reduced and combined. The size of the flocs is around 2.0 mm and the crosslinking is dense, r
The effect of sAcsJ is often observed. On the other hand, when the conventional method is used, the size of the flocs is about 4 to 7.
In mnn, it is observed that the entanglement between aluminum chloride pyramids, agglomeration, and cross-linking of flocs are also coarse.

従来法では汚濁物を含む20〜1,000mp程度のア
ルミニュウム微細結合体は酸化した有機物の妨げ等もあ
り、沈降も浮」二もせず、長時間水中に浮遊するが、r
sAcsJはそれらすべての微細結合体の浮上を抑え、
木から分離沈降させている実態がよく観察される。
In the conventional method, fine aluminum aggregates of about 20 to 1,000 mp containing pollutants remain suspended in water for a long time without settling or floating due to interference from oxidized organic matter.
sAcsJ suppresses the levitation of all these micro-assemblies,
Separation and sedimentation from trees is often observed.

このrs A CSJを添加して水を清澄化する処理法
は従来の処理法とは処理時間的には逆行するものである
。すなわち、このrsAcsJの添加により強制沈下の
みをさせれば普通は水質の低下を生ずるのは当然である
。しかしながら以上述べたような本発明に係るrS A
 CSJ処理法では後述実施データの水質試験(第3表
、第5表)に示したように正電荷、負電荷を持つrs 
A CSJの特性は疎水性コロイドのみならず、金属分
等の不純物の吸収、吸着に大きな寄与をし、水質の向に
、濁度の低下を促進しているものと推定されるのである
This treatment method of adding rs A CSJ to clarify water is contrary to conventional treatment methods in terms of treatment time. That is, it is natural that if only forced settling is caused by the addition of rsAcsJ, the quality of the water will deteriorate. However, the rS A according to the present invention as described above
In the CSJ treatment method, as shown in the water quality tests (Tables 3 and 5) of the implementation data described below, rs
It is assumed that the characteristics of ACSJ make a large contribution to the absorption and adsorption of not only hydrophobic colloids but also impurities such as metals, and promote the reduction of turbidity in terms of water quality.

(C)成分と反応した粒度調整範囲外の(A)(B)成
分微粉(たとえば4 mg−10mp) ではフロック
の生成および架橋効果も小さく、酸化した有機物等の妨
げ等もあり、水中を浮遊しがちであり、また(C)成分
と反応した(A)(B)成分の粗大粒)(200mp以
−L)では物理的にも色比するため汚濁物の凝集吸着の
効果は低下する。
Fine powder of components (A) and (B) outside the particle size adjustment range that reacted with component (C) (for example, 4 mg-10 mp) has a small floc formation and crosslinking effect, and is also hindered by oxidized organic matter, etc., and does not float in water. Coarse particles of components (A) and (B) that have reacted with component (C) (200 mp or more - L) tend to have a physical color difference, and therefore the effect of aggregation and adsorption of pollutants is reduced.

これらの観察から成分(A)(B)の粒度調整した以外
の粒子は凝集剤の特性とする汚濁物の吸着、凝集、架橋
、フロック沈降の機能を低下させていることが判明する
From these observations, it is clear that the particles of components (A) and (B) other than those whose particle sizes have been adjusted deteriorate the functions of pollutant adsorption, flocculation, crosslinking, and floc settling, which are the characteristics of a flocculant.

またrsAcsJは乾燥状態で使用する。「5AC3J
は、水分による溶融固化等がない限り。
Further, rsAcsJ is used in a dry state. “5AC3J
Unless there is melting and solidification due to moisture, etc.

長期間性1Eは安定している。Long-term 1E is stable.

本発明に係る高速清澄処理法の対象となる水は上水、産
業排水、工業排水等であるが、ll’5AcSlの(A
)CB)言分の微鉛粒経し±一般汚渇水には30〜io
’omg程度が好ましく、高粘度汚濁水には30〜20
0mp程度(特例としては更に粒径の大なるもの)が適
している。rsAcsJにおける(A)(B)(C)成
分の配合は一般には重量比でl : l : l ((
C)成分としてJ l5K−1475に定める凝集剤を
使用した場合、以下特記する場合を除き、(C) I&
分としてはこれを使用している。)であるがこの比は下
記するような汚濁水の多様な種類により、または製造工
程における反応程度の変化によって変るので一概には言
えない。
The water targeted by the high-speed clarification treatment method according to the present invention is tap water, industrial wastewater, industrial wastewater, etc.
) CB) Fine lead grain size ± 30 to io for general dirty and drought water
'omg is preferable, and 30 to 20 for highly viscous polluted water.
Approximately 0mp (in special cases, particles with even larger particle sizes) are suitable. The composition of components (A), (B), and (C) in rsAcsJ is generally l : l : l ((
C) When a flocculant specified in J I5K-1475 is used as a component, unless otherwise specified below, (C) I&
I'm using this for now. ) However, this ratio cannot be generalized because it varies depending on the various types of polluted water as described below or due to changes in the degree of reaction in the manufacturing process.

rsAcsJの添加量は、被処理水の性質すなわち濁度
、懸濁粒子の大きさ、pH1電荷性、成分の種類等の外
処理濁度、処理装置の機構、処理用添加剤の有無その他
で一概に言うことはできない。
The amount of rsAcsJ added depends on the properties of the water to be treated, such as turbidity, size of suspended particles, pH 1 charge, external treatment turbidity such as types of components, mechanism of treatment equipment, presence or absence of treatment additives, etc. I can't tell you.

しかしながら、一般的には微細粒子@濁液に対してはf
s A CSJは約10〜10,000 p p m程
度であり、より具体的にいえば、下水汚泥に準するよう
な懸濁粒子の濃度が大きい場合には「5AcS1は約1
00〜10,000 p p mの範囲で使用する。
However, in general, for fine particles @ turbid liquid, f
sA CSJ is approximately 10 to 10,000 ppm, and more specifically, when the concentration of suspended particles is large, similar to that of sewage sludge, 5AcS1 is approximately 1
It is used in the range of 00 to 10,000 ppm.

地下水河川水等比較的低濁度原水の場合、「5AC3J
は10−1,000 p p m (7)範囲で使用す
る。
In the case of relatively low turbidity raw water such as groundwater and river water, "5AC3J
is used in the range of 10-1,000 ppm (7).

本発明の特筆すべき利用法としては、災害時の緊急用水
が考えられる。地震等の災害時に際して最も不自由する
のは水であるというのは定説であるが、災害時に風呂水
、池水、溜水等をrSAC31で処理した後、次亜塩素
酸ソーダを使用することによって後述木質試験(第3表
、第5表)で実証されるように簡単な飲用水が得られる
A notable use of the present invention is for emergency water use during disasters. It is a well-established theory that water is the most inconvenient thing in the event of a disaster such as an earthquake, but in the event of a disaster, bath water, pond water, accumulated water, etc. can be treated with rSAC31 and then treated with sodium hypochlorite. Easy drinking water can be obtained as demonstrated by the wood quality test (Tables 3 and 5) described below.

(3−8)実施例 以下に本発明の効果等を具体的に理解するために河川水
、池水および工場排水の高速清澄処理の実施例について
説明するが、これらはいずれも例示のためのものであり
、本発明がこの実施例のみに限定されることなく、他の
各種の水処理にも有効に実施できることは勿論である。
(3-8) Examples Examples of high-speed clarification of river water, pond water, and industrial wastewater will be described below in order to specifically understand the effects of the present invention, but these are for illustrative purposes only. Therefore, it goes without saying that the present invention is not limited to this embodiment and can be effectively implemented in various other water treatments.

[実施例1]  (第1表) 神奈川県鶴見用下流の表流水(濁度12.5°、pH7
,4)を採取しシリンダーテスト法で試験を行なった。
[Example 1] (Table 1) Surface water downstream of Tsurumi, Kanagawa Prefecture (turbidity 12.5°, pH 7
, 4) was sampled and tested using the cylinder test method.

シリンダーテスト法:250mμ用メスシリンダーに試
水を250m文を採取し、rsAcsjを原木に注入し
、また比較量rsAcJでは処理剤(A)(B)(C)
を原水に注入し急速転倒2分、緩速転e!46分を行な
い静1ii1.,30分後訓定した。この試験では処理
剤の添加量を変えてフロックの生成時間、大きさ、生成
量、および全濁度(液の上部、中部、下部より等間採取
して行なう、)を測定した。その結果は第1表に示す通
りである0表中rsAcsJ とあるのは本発明に係る
方法で、(A)(B)(C)各成分をl:l:1の重量
比で反応させて製造した処理剤である(以下の実施例に
おいてもこの製造法は同じである。)、またrsAcj
 とあるのは比較のために行なった方法で、処理剤(A
)CB)(C)を原水に注入して清澄化する処理法であ
り、処理剤(A)(B)(C)の配合比、成分、重量等
はrsAC3Jと同一の条件とした処理法である。また
処理剤(C)は水道用凝集剤(JISK−1475規格
品)を使用した。
Cylinder test method: Collect 250 m of sample water into a 250 mμ graduated cylinder, inject rsAcsj into the log, and use treatment agents (A), (B), and (C) for comparison amounts of rsAcJ.
Injected into raw water, rapidly overturned for 2 minutes, then slowly overturned e! 46 minutes and Shizuka 1ii1. , I trained 30 minutes later. In this test, the amount of treatment agent added was varied and the floc formation time, size, amount of floc formation, and total turbidity (sampled at equal intervals from the top, middle, and bottom of the liquid) were measured. The results are shown in Table 1. In Table 0, rsAcsJ is the method according to the present invention, in which each component (A), (B), and (C) is reacted at a weight ratio of 1:1:1. (This manufacturing method is the same in the following examples.), and rsAcj
This method was used for comparison purposes, using a processing agent (A).
) CB) (C) is injected into raw water to clarify it, and the mixing ratio, ingredients, weight, etc. of treatment agents (A), (B), and (C) are the same as those of rsAC3J. be. Further, as the treatment agent (C), a flocculant for water supply (JISK-1475 standard product) was used.

第1表 添加量の試験結果  水温22℃(フロックの
生成量は余液に対する沈降容tIi量%) 第1表の結果から、本条件下では、フロック余液濁度の
低下からして最適の添加量はrSAC3Jの100〜2
00ppm程度であると認められる。fsAcsJに係
る処理法が先願の処理法rsAcJに比べ、同一条件下
ではフロックの大きさおよび生成量が増大し更に濁度が
低下していることは処理剤(A)(B)(C)を水中に
て反応凝集させるrSAClの処理法よりも、あらかじ
め(A)(B)(C)反応せしめているrSAC3j法
の方がはるかに優れていることを示している。
Table 1: Addition amount test results Water temperature: 22°C (the amount of flocs produced is the sedimentation volume tIi amount % of the remaining liquid) From the results in Table 1, it is clear that under these conditions, the optimal amount is obtained in terms of reducing the floc residual liquid turbidity. The amount added is 100 to 2 of rSAC3J.
It is recognized that the amount is about 0.00 ppm. The fact that the treatment method related to fsAcsJ increases the size and amount of flocs produced and lowers the turbidity under the same conditions as compared to the treatment method rsAcJ of the previous application is due to treatment agents (A), (B), and (C). This shows that the rSAC3j method, in which (A), (B), and (C) are reacted in advance, is far superior to the rSACl treatment method in which the components are reacted and agglomerated in water.

[実施例2] (第2表、第3表) 実施例1の原水を使用し、試験方法は実施例1と同一条
件で処理剤の使用量を一定としく(A)成分1100p
p、(B)成分1100pp、(C)成分1100pp
、以下の実施例では特記するものを除き、すべてこのに
が使用されている。)。
[Example 2] (Tables 2 and 3) The raw water of Example 1 was used, the test method was the same as in Example 1, the amount of treatment agent used was constant, and (A) component 1100p.
p, (B) component 1100pp, (C) component 1100pp
, In the following examples, this is used in all cases except where specified. ).

rsAcsJ 、!:先願(7) I S A CJ 
オ、!: (/ 従来品((C)成分のみを用いたもの
)と比較して、処理水の経時尚度(第2表)および水質
(第3表)を測定した。
rsAcsJ,! : Prior application (7) I S A CJ
Oh! : (/ In comparison with a conventional product (using only the component (C)), the temporal stability (Table 2) and water quality (Table 3) of the treated water were measured.

第2表 経時濁度試験結果 水温=24℃ 濁度二余液濁度 第3表 水質試験結果 原水濁度 12.4° pH7,4 NoSA癌紙で濾過 第2表より明らかなようにrsAcsJを使用した結果
は従来の比較品凝集剤および先願のrSACJの高速処
理法よりも濁度の低下はより高速となり、しかも第3表
に示す通りその水質はCOD、TOC等で格段に清澄化
されている。
Table 2 Turbidity test results over time Water temperature = 24℃ Turbidity 2 Liquid turbidity Table 3 Water quality test results Raw water turbidity 12.4° pH 7,4 Filtered with NoSA cancer paper As is clear from Table 2, rsAcsJ The results showed that the turbidity decreased faster than the conventional comparative coagulant and the high-speed treatment method of rSACJ of the prior application, and as shown in Table 3, the water quality was significantly cleared in terms of COD, TOC, etc. ing.

[実施例3] (第4表、第5表) 部内にある自然池水で還元性汚濁物の発生度が最も高い
真夏に、東京都千代田区千鳥ケ淵池木(濁度48°、p
H8,8)、横浜市三渓園池水(7F3度27.5°p
H8,7)を採取し実施例2と同じ基準で試験を行なっ
た。この試験は緊急frK#4用水として池水を使用出
来るか否かをしらべるためのものである。
[Example 3] (Tables 4 and 5) In midsummer, when the occurrence of reducing pollutants is highest in the natural pond water in the school, Ikegi, Chidorigafuchi, Chiyoda-ku, Tokyo (turbidity 48°, p
H8, 8), Yokohama City Sankeien Ikemizu (7F 3 degrees 27.5 degrees p
H8,7) was collected and tested using the same criteria as in Example 2. This test was conducted to determine whether pond water can be used as emergency frK#4 water.

木質の重要な指標である溶存酸素の消費は水中の還元性
汚濁物質の多少に起因する。よって、本試験では、本発
明に係る高速清澄処理が木質中最も問題点となる還元性
汚濁物質に及ぼす影響をみるために、濁度試験に併せて
COD試験も行なった。
The consumption of dissolved oxygen, which is an important indicator of wood quality, is caused by the amount of reducing pollutants in the water. Therefore, in this test, a COD test was also conducted in addition to the turbidity test in order to see the effect of the high-speed fining treatment according to the present invention on reducing pollutants, which are the most problematic in wood.

まず第1の試験では被処理液の経時濁度を測定しその結
果を第4表に示した。
First, in the first test, the turbidity of the liquid to be treated was measured over time, and the results are shown in Table 4.

表に示すように本発明のrsAcsJは先願のrsAc
jよりも濁度低下において更に高速な清澄性が明確とな
り、本発明の目的通りの優れた特性を示している。
As shown in the table, rsAcsJ of the present invention is similar to the rsAcsJ of the earlier application.
It is clear that the clarification property is faster in terms of turbidity reduction than that of J, and exhibits excellent properties as intended by the present invention.

更に第2の試験では第1の原木を使用し試験の方法、処
理剤、水温等も第1の試験と同一条件で午 テストを行ない第4表に示す急速な汚濁低下が処理水の
有機物におよぼす木質の測定を行なった。
Furthermore, in the second test, a test was conducted using the first raw wood under the same conditions as the first test, including the test method, treatment agent, and water temperature. The wood quality was measured.

すなわち、静2130分後液をNoS A臨紙で濾過し
、未発1!1ニ係るrsAcsJ と先1mのrsAC
jの吐液と原水のCOD、 /fJ度およびpHを測定
した。
That is, after 2130 minutes, the liquid was filtered with NoSA paper, and rsAcsJ related to unreleased 1!1 and rsAC 1m ahead were filtered.
The COD, /fJ degree, and pH of the ejected liquid and raw water were measured.

結果は第5表に示す通りである。The results are shown in Table 5.

第4表 経時濁度試験 水温21”C濁度は余液 第5表 con木質試験 水温21℃ 」−表に示すとおりrS A CSJによって処理した
CODはrsAcjより極端に減少し、第5表に示すよ
うな急激な濁度に拘わらず、水質は格段に向上している
Table 4 Time-lapse turbidity test Water temperature 21"C Turbidity of leftover liquid Table 5 con Wood test Water temperature 21" - As shown in the table, COD treated by rS A CSJ was extremely reduced compared to rsAcj, and as shown in Table 5. Despite the sudden increase in turbidity, the water quality has improved significantly.

またrsAcsJではCODが原水の1/1Gに減少し
ている。更にCODの低い原水でそのCOD値を減少さ
せるには、非常に困難な事であるのに、本発明のような
簡単な操作でCODが1.8まで低下するとは驚異的で
ある。
Moreover, in rsAcsJ, COD is reduced to 1/1G of raw water. Furthermore, although it is extremely difficult to reduce the COD value of raw water with a low COD, it is surprising that the COD can be reduced to 1.8 with a simple operation such as the present invention.

また厚生省令飲料水質基準の過マンガン酸カリウム消費
f410m g / 1以下の規格はCOD値に換算し
て2.5ppm以下であるが、本試験の処理後の池水は
いずれも厚生省令飲料水質基準内であり、有機物につい
ては合格している。
In addition, the drinking water quality standards of the Ministry of Health and Welfare for potassium permanganate consumption f410mg/1 or less is 2.5 ppm or less when converted to COD value, but the pond water after treatment in this test was within the drinking water quality standards of the Ministry of Health and Welfare. , and passed the test for organic substances.

[実施例4] (第6表、第7表) 工業用水の製麺工場における実用例として井戸水(sJ
度2.4°、p H7,12) オヨび製造工程中の用
水(濁度180°、pH8,7)を採取してテストをし
た。原水中に含まれる鉄分が製品の品質を低下させ、ま
た製造の途中工程で80℃に維持し脱塩の必要があるた
め、これらを除くのにrSAC31が使用できるか否か
を確かめるためのものである。
[Example 4] (Tables 6 and 7) Well water (sJ
(turbidity 2.4°, pH 7.12) Water used during the oyobi manufacturing process (turbidity 180°, pH 8.7) was sampled and tested. This is to confirm whether rSAC31 can be used to remove iron contained in raw water, which reduces the quality of the product and requires desalination by maintaining the temperature at 80°C during the manufacturing process. It is.

(1)井戸水鉄分除去試験 実施例1と同様な配分比としたrsAcsjとrsAc
Jおよび従来品((C)成分のみのもの)をそれぞれ2
00pp P m使用し実施例1と同様な処理法を行な
い、静置30分後、鉄分の除去効果の測定を行なった(
第6表)0表示のようにrSAC3Jは従来の無機凝集
剤よりも更に除去効率が向上している。
(1) rsAcsj and rsAc with the same distribution ratio as well water iron removal test Example 1
2 each of J and conventional product (only component (C))
The same treatment method as in Example 1 was carried out using 00ppPm, and after 30 minutes of standing, the iron removal effect was measured (
As shown in Table 6), the removal efficiency of rSAC3J is further improved than that of conventional inorganic flocculants.

(2) 111分の除去試験 製造の途中工程における塩分除去については、前項(1
)と同様な方法でrsAcsJおよ・び従来品の(C)
成分はそれぞれ900pPmを使用し塩分除去効果の測
定を行なった(第7表)。
(2) 111-minute removal test Regarding salt removal during the manufacturing process, refer to the previous section (1).
) in the same manner as rsAcsJ and conventional product (C).
The salt removal effect was measured using 900 pPm of each component (Table 7).

第6表 井戸水の鉄分除却試験 水温18℃ 静置後30分 濁度全液 温7表 塩分の除却試験 処理水温度80℃で保温 静置後10分 濁度余液 前記表に示すように、rsAcsJは優れた塩分除去効
果を示しており、使用者の要望に充分応えているのであ
る。
Table 6: Well water iron removal test Water temperature: 18°C, 30 minutes after standing; Turbidity: Total liquid temperature: Table 7: Salt removal test: Treated water temperature: 80°C, 10 minutes after standing: Turbidity: Residual liquid As shown in the table above, rsAcsJ shows an excellent salt removal effect and fully meets the needs of users.

以」−の結果から明らかなように、従来の無機凝集剤は
陰性疎水コロイドの凝集の作用を主として行なってきた
が、rsAcsJでは従来の陰性疎水コロイドの凝集作
用を行なうと共に、被処理水中の金属、重金属類の吸着
沈降にも優れた特性を発揮しているのである。
As is clear from the results below, conventional inorganic flocculants have mainly been used to coagulate negative hydrophobic colloids, but rsAcsJ not only coagulates conventional negative hydrophobic colloids but also It also exhibits excellent properties in adsorption and precipitation of heavy metals.

以上の実施例が示すように本発明に係る水の処理法によ
れば、汚濁水を速やかに清澄化することが可能であり、
この実施例に示した以外の原水に対しても処理剤(A)
(B)(C)の配合量を適宜変更することによって前記
実施例と同様にきわめて良好な結果奄得ることができる
As shown in the above examples, according to the water treatment method according to the present invention, it is possible to quickly clarify polluted water,
Treatment agent (A) can also be used for raw water other than those shown in this example.
By suitably changing the blending amounts of (B) and (C), very good results can be obtained as in the above examples.

実施例に使用されている処理剤(A)はすべて粒径30
〜200gmのもの70%以上含有するごとく粒度調整
をしたものであるが、この粒度調整の範囲は概略の目安
を定めたものであって、この範囲を多少逸脱したもので
も本発明が有効に実施できるのは当然である。処理剤C
B)の粒径範囲の30〜200ppmも処理剤(A)の
場合と同様概略の[1安であって、多少逸脱したもので
も本発明は有効に実施できる。
The processing agent (A) used in the examples all had a particle size of 30.
The particle size has been adjusted so that it contains 70% or more of ~200 gm, but this particle size adjustment range is a rough guideline, and the present invention can be effectively implemented even if the particle size is slightly deviated from this range. Of course you can. Treatment agent C
The particle size range of 30 to 200 ppm in B) is also approximately 100 ppm as in the case of processing agent (A), and the present invention can be effectively carried out even if the particle size range is slightly deviated.

同様のことは処理剤rsAcsJの注入量についても言
うことができる0本発明においては注入量はlO〜10
,000p p mと限定しているがこれもまた概略の
目安を示したもので、原水の性状如何によっては、この
範囲を多少逸脱したものでも未発1!11が有効に実施
できる。
The same can be said about the injection amount of the processing agent rsAcsJ. In the present invention, the injection amount is lO~10
, 000 p p m, but this is also a rough guideline, and depending on the nature of the raw water, unreleased 1!11 can be effectively carried out even if it deviates somewhat from this range.

(3−7)発I」の効果 本発明は適宜粒度を調整した硫紋岩等、浮岩質堆積岩お
よび無機凝集剤を反応せしめて精製した無機凝集剤を汚
濁水に注入して攪拌し生成した沈殿物を除去することに
よって、汚濁水を高速に清澄処理することを可能として
おり、次に示すようなすぐれた効果を有するものである
(3-7) Effects of "Development I" The present invention is produced by injecting purified inorganic flocculant into polluted water and stirring it by reacting floating rock sedimentary rock such as sulfurite whose particle size has been adjusted as appropriate and an inorganic flocculant. By removing the precipitates, polluted water can be clarified at high speed, and has the following excellent effects.

■ 従来使用されている各種凝集剤に比べて凝集沈降時
間は大幅に短縮される。前記した河川水の例によれば、
従来法の115〜1/15の短時間で処理できる。
■ Compared to various flocculants used conventionally, flocculation and sedimentation time is significantly shortened. According to the example of river water mentioned above,
Processing time is 115 to 1/15 that of conventional methods.

■ 高速清澄処理が行なわれるにも拘わらず、従来使用
されている凝集剤の機能(有機物の除去、濁度の低下)
を更に向上し、濁度の低下は極めて促進される。
■ Despite high-speed clarification, the functions of conventionally used flocculants (removal of organic matter, reduction of turbidity)
This further improves the turbidity and reduces the turbidity significantly.

■ ケーキの含水率は低く剥離性も優れている。■ The moisture content of the cake is low and the peelability is excellent.

本発明に係る方法によって凝集沈降したケーキは含水率
が従来の凝集剤に比べ1/2以下と低く、剥離性、脱水
性も優れているため、沈降槽下部導管から容易に抜き取
ることができる。また抜き取られたケーキは自然乾繰で
容易に固化できるため処理が容易であるという特性を有
している。
The cake flocculated and settled by the method of the present invention has a water content as low as 1/2 or less compared to conventional flocculants, and has excellent peelability and dehydration properties, so it can be easily extracted from the lower conduit of the settling tank. In addition, the removed cake can be easily solidified by air drying, so it has the characteristic of being easy to process.

■ この処理剤rsAcsj安価である。すなわち、そ
の成分(A)(B)はそれぞれ硫紋岩等、浮岩質堆積岩
の微粉から成っているが、これらを原料としてみがき砂
や植物用の苗床を生産するに際し、また金、銀、銅の製
造に際してその製造工程の規格外品または不要品を篩で
粒度を選別するだけで容易に使用できるからである。
■ This processing agent rsAcsj is inexpensive. That is, the components (A) and (B) are respectively made of fine powder of floating rock such as sulfurite, but when producing polishing sand and plant nurseries using these as raw materials, gold, silver, This is because when producing copper, non-standard products or unnecessary products in the manufacturing process can be easily used by simply sorting the particle size with a sieve.

■ 腐敗物等の有機物を容易に液中から分離沈降せしめ
、沈降状態を維持する。
■ Easily separates and sediments organic matter such as putrefaction from the liquid, and maintains the sedimentation state.

■ 水処理設備を新設するに際して、末完IJ1に係る
方法によれば、攪拌、凝集、沈降、排出等の設備費、敷
地を大幅に節約することができる。
■ When constructing new water treatment equipment, the method related to Final IJ1 can significantly save equipment costs for agitation, flocculation, sedimentation, discharge, etc., as well as site space.

■ 現在可動中の水処理設備にも本発明に係る方法は容
易に利用でき、利用することによってその設備能力を増
大することができる。
(2) The method according to the present invention can be easily applied to water treatment equipment that is currently in operation, and by using it, the equipment capacity can be increased.

■ 特に本発明におけるrSAC3Jの水質高清澄性は
近年上水道水源にて発生している有機物汚染など、また
IC製造等の際に必要な純水処理等の面木処理剤として
の利用価値は多大である。
■ In particular, the high water quality and clarity of rSAC3J in the present invention has great utility as a surface wood treatment agent for the treatment of organic matter that has been occurring in tap water sources in recent years, as well as for the pure water treatment required during IC manufacturing. be.

■ この処理剤には脱塩効果、金属、重金属等の除去効
果がある。
■ This treatment agent has a desalination effect and a removal effect of metals, heavy metals, etc.

[相] 以上要するに水処理設備の性能を向上し、その
設備費を低減し、公害防除等に大きな貢献をもたらし、
また特に災害時における緊急用水の確保をきわめて容易
にする。
[Phase] In short, it improves the performance of water treatment equipment, reduces equipment costs, and makes a major contribution to pollution control.
It also makes it extremely easy to secure emergency water, especially in times of disaster.

特許出願人      堀田不二夫 (ほか1名)Patent applicant Fujio Hotta (1 other person)

Claims (5)

【特許請求の範囲】[Claims] (1)下記(A)成分を下記のように粒度調整をしたも
のおよび/または下記(B)成分を下記のように粒度調
整をしたものに、下記(C)成分のうちの1の所定量を
加え、または2以上のそれぞれの所定量を逐次加えて反
応せしめた後、乾燥精製して成る、汚濁水の高速清澄処
理剤。 (A)成分:玻璃質石基にアルカリ長石、斜長石を主成
分とする流紋岩質噴出岩微粉 粒度調整:30〜200mμのものを70%以上(B)
成分:玻璃質石基に斜長石を主成分とする浮岩質堆積岩
微粉 粒度調整:30〜200mμ (C)成分:ポリ塩化アルミニュウム等の無機塩物質、
塩酸または硫酸、苛性ソーダ、水酸化カルシュウム、炭
酸ソーダ等のアルカリ類
(1) Add a predetermined amount of one of the following (C) ingredients to the following (A) ingredient whose particle size has been adjusted as below and/or the following (B) ingredient whose particle size has been adjusted as below. A high-speed clarification treatment agent for polluted water, which is obtained by adding or sequentially adding two or more predetermined amounts of each, reacting, and then drying and purifying the reaction. (A) Component: Rhyolitic extrusive rock with vitreous stone base, alkali feldspar, and plagioclase as main components. Fine particle size adjustment: 70% or more of 30 to 200 mμ (B)
Ingredients: Floating sedimentary rock mainly composed of plagioclase in a vitreous stone base Fine particle size adjustment: 30-200 mμ (C) Component: Inorganic salt substances such as polyaluminum chloride,
Alkalies such as hydrochloric acid or sulfuric acid, caustic soda, calcium hydroxide, soda carbonate, etc.
(2)前記(A)成分を前記のように粒度調整をしたも
のと、前記(B)成分を前記のように粒度調整をしたも
のとの混合物に前記(C)成分の所定量を加えて反応せ
しめた後、乾燥精製して成る、特許請求の範囲第1項に
記載の汚濁水の高速清澄処理剤。
(2) A predetermined amount of the component (C) is added to a mixture of the component (A) whose particle size has been adjusted as described above and the component (B) whose particle size has been adjusted as described above. The agent for high-speed clarification of polluted water according to claim 1, which is obtained by drying and purifying after reacting.
(3)前記(A)成分を前記のように粒度調整をしたも
のに前記(C)成分の所定量を加えて反応せしめた後、
乾燥精製して成る、特許請求の範囲第1項に記載の汚濁
水の高速清澄処理剤。
(3) After adding a predetermined amount of the component (C) to the component (A) whose particle size has been adjusted as described above and causing the reaction,
The agent for high-speed clarification of polluted water according to claim 1, which is obtained by drying and purifying.
(4)前記(B)成分を前記のように粒度調整をしたも
のに前記(C)成分の所定量を加えて反応せしめた後、
乾燥精製して成る、特許請求の範囲第1項に記載の汚濁
水の高速清澄処理剤。
(4) After adding a predetermined amount of the component (C) to the component (B) whose particle size has been adjusted as described above and causing the reaction,
The agent for high-speed clarification of polluted water according to claim 1, which is obtained by drying and purifying.
(5)前記乾燥精製の後、携帯用に造粒して成る、特許
請求の範囲第1項ないし第4項のいずれかの一に記載の
汚濁水の高速清澄処理剤。
(5) The agent for high-speed clarification of contaminated water according to any one of claims 1 to 4, which is granulated for portable use after the drying and purification.
JP21886985A 1985-10-01 1985-10-01 High-speed clarifier for polluted water Pending JPS6279812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21886985A JPS6279812A (en) 1985-10-01 1985-10-01 High-speed clarifier for polluted water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21886985A JPS6279812A (en) 1985-10-01 1985-10-01 High-speed clarifier for polluted water

Publications (1)

Publication Number Publication Date
JPS6279812A true JPS6279812A (en) 1987-04-13

Family

ID=16726576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21886985A Pending JPS6279812A (en) 1985-10-01 1985-10-01 High-speed clarifier for polluted water

Country Status (1)

Country Link
JP (1) JPS6279812A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007216201A (en) * 2006-02-15 2007-08-30 Npo Machinami Ikuseikai Natural flocculation precipitant for water purification

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007216201A (en) * 2006-02-15 2007-08-30 Npo Machinami Ikuseikai Natural flocculation precipitant for water purification
JP4655279B2 (en) * 2006-02-15 2011-03-23 特定非営利活動法人まちなみ育成会 Natural material water purification coagulating sedimentation agent

Similar Documents

Publication Publication Date Title
US5393435A (en) Removal of organic contaminants from aqueous media
US6093328A (en) Method for removing toxic substances in water
US6120690A (en) Clarification of water and wastewater
US3455820A (en) Carbon treatment of raw sewage
US20180251383A9 (en) Non-metal-containing oxyanion removal from waters using rare earths
US20050236335A1 (en) Method and apparatus for removing contaminants from water
CN105384316A (en) Electronic industrial fluoride, ammonia and nitrogen-containing wastewater treatment method
US4612124A (en) Method of sewage treatment
CN108640233A (en) A kind of composite water disposal agent and its application
CN109592759A (en) A kind of board wastewater treatment agent and its preparation, application method
KR19980068155A (en) A coagulant
JP2003093804A (en) Purification agent for turbid wastewater and sludge
JPH0356104A (en) High speed clarifier for polluted water
JP2005199248A (en) Raw water treatment process
CN109626725A (en) A kind of method of sewage purification
WO2004045740A1 (en) Purification agent for wastewater and sludge water
JPS6279812A (en) High-speed clarifier for polluted water
CN105600944A (en) Flocculant for degreasing and settling waste water and preparation method of flocculant
RU2250877C1 (en) Method of natural and industrial wastewater purification
RU2122982C1 (en) Drinking water production process
JPH06335604A (en) Inorganic high speed clarification treating agent for dirty water
RU2132305C1 (en) Method of softening and purification of water
JPS60209214A (en) High-speed clarification process of filthy water
JP3232429B2 (en) How to purify raw water for tap water
FI95561C (en) Procedure for reducing the aluminum content in drinking water