JPS627980B2 - - Google Patents

Info

Publication number
JPS627980B2
JPS627980B2 JP14330878A JP14330878A JPS627980B2 JP S627980 B2 JPS627980 B2 JP S627980B2 JP 14330878 A JP14330878 A JP 14330878A JP 14330878 A JP14330878 A JP 14330878A JP S627980 B2 JPS627980 B2 JP S627980B2
Authority
JP
Japan
Prior art keywords
reaction tube
sponge
reaction
liquid
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14330878A
Other languages
Japanese (ja)
Other versions
JPS5570743A (en
Inventor
Kohei Kasai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP14330878A priority Critical patent/JPS5570743A/en
Publication of JPS5570743A publication Critical patent/JPS5570743A/en
Publication of JPS627980B2 publication Critical patent/JPS627980B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

【発明の詳細な説明】 本発明は洗浄後の反応管内に残つた水滴等を容
易に除去することができる機能を含む自動化学分
析方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic chemical analysis method that includes a function of easily removing water droplets and the like remaining in a reaction tube after washing.

周知の如く、自動化学分析方法は分析すべき試
料、例えば多数の血清試料を順次一つづつ反応管
に分注し、そして、その反応容器に反応試薬と希
釈液とを注入して反応を進め、その反応した試料
(以後これを検体と称する)を光に当ててその透
過光量を測定して行くことにより、分析を行う方
法である。
As is well known, the automated chemical analysis method involves dispensing the sample to be analyzed, such as a large number of serum samples, one by one into a reaction tube, and then injecting a reaction reagent and a diluent into the reaction container to proceed with the reaction. This is a method of analysis in which the reacted sample (hereinafter referred to as a specimen) is exposed to light and the amount of transmitted light is measured.

第1図に従来の装置の概略構成を示し、その作
用と共に前記自動化学分析方法を具体的に説明す
る。1は恒温液Wを満たした液槽、2は液槽1の
上下部を通るように配設された移送可能な無終端
ベルト、3はこのベルト2に所定間隔毎に設置さ
れた検体収納用試験管形の複数個の反応管であ
り、この反応管3はベルト2の移動と共に図中矢
印A方向に移送され、液槽1の上面側に送られ
て、その底面が恒温液W内に浸漬されることによ
つて保温され、液槽1の末端側に送られる。ここ
で、15は液槽1の前記末端上部近傍に設けられ
た吸引管であり、この吸引管15の位置に到達し
た反応管3内の検体を吸引するもので、図示しな
い駆動機構によりこの吸引管15は矢印B−C方
向に移動操作される。9はこの吸引管15によつ
て吸引された検体の分析を行う透明中空円柱状の
フローセルであり、検体はフローセル9内を通過
した後、排出管9aを経て外部に廃棄される。1
0はこのフローセル9を一定温度に保つためこの
フローセル9の円周面側に保温液を循環させるた
めの保温槽であり、11はこの保温槽10に保温
液を送るパイプ、12はこのパイプ11の中間に
接続されたポンプ、13はこのパイプ11の保温
槽10の送り込み側部分に設けられた保温液加熱
用ヒータ、14は前記フローセル9内の検体をそ
の透過光量から分析する光度計で、白色光を発光
する光源及びこの白色光から分析対象に応じた特
定波長の光を抽出するフイルタ及びこのフイルタ
にて抽出された光を集光してフローセル9内の検
体に照射するレンズ並びに検体透過後の光量を検
出する検出器等より成る。ここで所定の分析が行
われ、分析終了後の反応管3は前述のように液槽
1の末端に送られ、そして、ベルト2に沿つて液
槽1の下部側に逆さの状態で廻されることにな
る。この逆さの状態になる途中で、反応管3内の
残留液体は排液槽4内に排出され、その洗浄後、
乾燥に供される。即ち、逆さの状態で送られてき
た反応管3は先ず、下方から洗浄液を吐出する吐
出ノズル5によつて内部が洗浄され、次に純水吐
出ノズル6によつて再洗浄され、その後ヒータ7
の加熱或いは温風吐出ノズル8からの温風によつ
て乾燥されて前記洗浄時に付着した水滴等が除去
され、しかる後再び液槽1の上面に送られ検体が
注入され分析に供される。
FIG. 1 shows a schematic configuration of a conventional apparatus, and the above-mentioned automatic chemical analysis method will be specifically explained along with its operation. 1 is a liquid tank filled with constant-temperature liquid W; 2 is a transferable endless belt that is disposed so as to pass above and below the liquid tank 1; 3 is a sample storage device that is installed on this belt 2 at predetermined intervals. The reaction tubes 3 are a plurality of test tube-shaped reaction tubes, and as the belt 2 moves, the reaction tubes 3 are transferred in the direction of the arrow A in the figure, and are sent to the upper surface side of the liquid tank 1, so that the bottom surface thereof is placed in the constant temperature liquid W. It is kept warm by being immersed and sent to the end side of the liquid tank 1. Here, 15 is a suction tube provided near the upper end of the liquid tank 1, and is used to aspirate the sample in the reaction tube 3 that has reached the position of this suction tube 15, and this suction is performed by a drive mechanism (not shown). The tube 15 is operated to move in the direction of arrow B-C. Reference numeral 9 denotes a transparent hollow cylindrical flow cell for analyzing the sample aspirated through the suction tube 15. After passing through the flow cell 9, the sample is disposed of outside via the discharge tube 9a. 1
0 is a heat-retaining tank for circulating a heat-retaining liquid around the circumferential surface of the flow cell 9 in order to keep the flow cell 9 at a constant temperature, 11 is a pipe for sending the heat-retaining liquid to the heat-retaining tank 10, and 12 is the pipe 11. 13 is a heater for heating the heat-retaining liquid provided on the feeding side of the heat-retaining tank 10 of the pipe 11; 14 is a photometer that analyzes the sample in the flow cell 9 from the amount of transmitted light; A light source that emits white light, a filter that extracts light of a specific wavelength according to the analysis target from this white light, a lens that collects the light extracted by this filter and irradiates it onto the sample in the flow cell 9, and a sample that passes through the sample. It consists of a detector that detects the amount of light afterward. Here, a predetermined analysis is performed, and after the analysis is completed, the reaction tube 3 is sent to the end of the liquid tank 1 as described above, and then turned upside down along the belt 2 to the lower side of the liquid tank 1. It turns out. During this inversion, the remaining liquid in the reaction tube 3 is discharged into the drain tank 4, and after cleaning,
Served for drying. That is, the inside of the reaction tube 3 sent upside down is first cleaned by the discharge nozzle 5 that discharges cleaning liquid from below, then re-cleaned by the pure water discharge nozzle 6, and then the heater 7
The sample is dried by heating or hot air from the hot air discharge nozzle 8 to remove water droplets adhering to the liquid during the cleaning process, and then sent to the upper surface of the liquid tank 1 again, where a sample is injected and used for analysis.

ところで、前記方法の如く洗浄後の反応管3を
乾燥させる手段としてヒータ7を使用する場合に
は大容量のヒータ加熱用電源を必要とし消費電力
が大きくなるため好ましくないという問題があ
り、又、温風8を使用する場合には、装置内部が
高温多湿になり電気接点等に悪影響を与えたり恒
温液の温度制御に悪影響を及ぼすという問題があ
る。
By the way, when the heater 7 is used as a means for drying the reaction tube 3 after washing as in the method described above, there is a problem that a large-capacity power source for heating the heater is required, which increases power consumption, which is not preferable. When hot air 8 is used, there is a problem that the inside of the device becomes hot and humid, which adversely affects electrical contacts and the like, and adversely affects temperature control of the constant temperature liquid.

前記問題点を緩和させ得る乾燥手段として、第
2図に示すように、真空ポンプ16によつて吸引
作用を行う吸引ノズル17を反応管3内に挿入
し、反応管3の内壁の水滴を吸い取る方法があ
る。この方法によれば、反応管3を完全に乾燥さ
せることはできないが反応に影響を与えない程度
まで内部水滴の量を微量にすることができると共
に反応管を逆さにする必要が無い等の利点があ
る。しかし、反応管が横に複数個並置されるよう
な多項目分析を行うような場合は、これに応じて
真空ポンプの能力を高める必要が生じ、これに伴
つて排気音や振動が大きくなる等の新たな問題が
生ずる。
As a drying means that can alleviate the above-mentioned problems, as shown in FIG. 2, a suction nozzle 17 that performs a suction action using a vacuum pump 16 is inserted into the reaction tube 3 to suck up water droplets on the inner wall of the reaction tube 3. There is a way. According to this method, although it is not possible to completely dry the reaction tube 3, it is possible to reduce the amount of water droplets inside to the extent that it does not affect the reaction, and there are advantages such as there is no need to turn the reaction tube upside down. There is. However, when performing multi-item analysis where multiple reaction tubes are placed side by side, it is necessary to increase the capacity of the vacuum pump accordingly, which increases exhaust noise and vibrations. A new problem arises.

本発明は前記問題点を解決し、大がかりな加熱
乾燥を行わずに洗浄後に反応管に残つた水滴を除
去すると共に、多項目分析に最適な前記水滴除去
機能を備えた自動化学分析方法を提供することを
目的とするものである。
The present invention solves the above problems and provides an automatic chemical analysis method that removes water droplets remaining in the reaction tube after washing without extensive heating and drying, and is equipped with the water droplet removal function that is optimal for multi-item analysis. The purpose is to

以下実施例により本発明を具体的に説明する。 The present invention will be specifically explained below using Examples.

第3図は本発明分析方法に用いられる自動化学
分析装置の一例を示す概略構成図である。尚、前
記第1図と同一のものは同一符号を付してその詳
細な説明を省略する。1は液槽、2は移送用ベル
ト、3は反応管、4は排液槽、5は洗浄液吐出ノ
ズル、6は純水吐出ノズル、9乃至15はフロー
セル9を主体とする分析機構である。そして、本
発明では特に、純水吐出ノズル6の上方を通過し
た位置に来る反応管3aの下方に、クランク機構
20の動作により上下動を行うピストン杆19の
先端に取付けられた山形状のスポンジ18を臨ま
せるようにした。このスポンジは吸水性の良好な
材料、例えばモルトプレーンによつて構成され、
その直径は前記反応管3の直径と略同一又は稍大
き目にされている。又、ピストン杆19は例えば
合成樹脂によつて構成され、前記スポンジ18と
は例えば接着により連結されている(このスポン
ジ18とピストン杆19とを総称して拭き取り機
構と称する)。ここで、クランク機構20は、図
示しない駆動機構により、一定間隔毎、例えば反
応管3の移送ピツチ毎に上下動を行い、かつ上下
動ストロークは、下限は前記スポンジ18が反応
管3の下端部より僅かに外れる程度に、そして、
上限は前記スポンジ18が反応管3の底部内面に
十分に押圧される程度になるように設定される。
尚、多項目分析装置においてはその項目数に応じ
て複数個の反応管が並列に配置されるが、これに
応じて前記スポンジを配列すればよい。
FIG. 3 is a schematic diagram showing an example of an automatic chemical analyzer used in the analysis method of the present invention. Components that are the same as those in FIG. 1 are given the same reference numerals, and detailed explanation thereof will be omitted. 1 is a liquid tank, 2 is a transfer belt, 3 is a reaction tube, 4 is a drain tank, 5 is a cleaning liquid discharge nozzle, 6 is a pure water discharge nozzle, and 9 to 15 are analysis mechanisms mainly including a flow cell 9. In particular, in the present invention, a mountain-shaped sponge is attached to the tip of a piston rod 19 that moves up and down by the operation of the crank mechanism 20, below the reaction tube 3a passing above the pure water discharge nozzle 6. I made it look like 18. This sponge is made of a material with good water absorption, such as maltplane,
Its diameter is approximately the same as or slightly larger than the diameter of the reaction tube 3. The piston rod 19 is made of, for example, synthetic resin, and is connected to the sponge 18 by, for example, adhesive (the sponge 18 and the piston rod 19 are collectively referred to as a wiping mechanism). Here, the crank mechanism 20 moves up and down at regular intervals, for example, at every transfer pitch of the reaction tube 3, by a drive mechanism (not shown), and the lower limit of the up and down stroke is such that the sponge 18 is at the lower end of the reaction tube 3. To the extent that it deviates slightly more, and
The upper limit is set so that the sponge 18 is sufficiently pressed against the inner surface of the bottom of the reaction tube 3.
In a multi-item analysis device, a plurality of reaction tubes are arranged in parallel depending on the number of items, and the sponges may be arranged accordingly.

前記構成の装置を使用した自動化学分析方法を
説明する。先ず、順次移送された反応管3内に
は、液槽1内に浸漬された段階で図示しない注入
機構により検体が注入され、その後反応試薬と混
合されその後分析機構により所定の分析が為され
る。しかる後、残留液の入つた反応管3は逆さ状
態にされて排液槽4内に残留液を排出し、更に洗
浄液吐出ノズル5によつて洗浄され、純水吐出ノ
ズル6によつて再洗浄が為される。次に洗浄作業
によつて反応管3の内壁に残つた水滴を除去する
作業を行うわけであるが、この作業の詳細を第4
図a乃至dを参照して順次説明する。先ず前記ク
ランク機構によりピストン杆19を上昇させ(同
図a)、スポンジ18の先端が反応管3の内底面
頂部に接する位置迄挿入する(同図b)。このよ
うな状態で、ピストン杆19を下方に引き抜け
ば、同図aに示した水滴P(例えば3c.c.程度の反
応管では通常10μ〜100μの水滴が残留す
る)はスポンジ18内に吸収されて無くなる筈で
あるが、自動分析機のように連続して反応管が移
送されてくる場合、通常は液を含んだスポンジが
乾く前に次の反応管が到達して再び水分を吸収す
るため、スポンジ18は十分に水を含んだ状態と
なり、かかる場合にはスポンジ引き抜き後に反応
管3の内壁に残留する液量も5μ〜50μと大
きくバラツキ次の分析に悪影響を与えることとな
る。そこで、本発明では特に、スポンジ18の上
死点を越えて更に上方に押圧して圧縮状態にし、
スポンジ18内に含まれていた水分を絞り、水滴
にして落下させるようにした(同図c)。ここで
圧縮状態が上死点を越えると、スポンジ18が反
応管の底部内面に十分な圧縮状態で押圧される状
態をいう。その後、スポンジ18を下降させて引
き抜くようにすれば、下降時にスポンジ18が元
の状態に復元し、この復元時に周囲の水分(特に
上方の水分)を吸引する作用が働き、反応管3の
内壁面の水分は分析に影響しない程度の量になる
ように拭き取られる(同図d)。ちなみに残留液
量は略5μ以下となり、各反応管のバラツキも
僅少になるという良好な結果が得られた。このよ
うにして水滴が取り除かれた反応管は再び分析に
使用される。尚、特に乾燥が必要な場合には、加
熱手段を併用してもよいが、前記拭き取り機構で
殆んど水滴が除去されるから、その加熱手段は小
容量のもので足りる。
An automatic chemical analysis method using the apparatus configured as described above will be explained. First, a sample is injected into the sequentially transferred reaction tubes 3 by an injection mechanism (not shown) while immersed in the liquid tank 1, and then mixed with a reaction reagent, and then subjected to a predetermined analysis by an analysis mechanism. . Thereafter, the reaction tube 3 containing the residual liquid is turned upside down to discharge the residual liquid into the drainage tank 4, and is further cleaned by the cleaning liquid discharge nozzle 5, and re-cleaned by the pure water discharge nozzle 6. will be done. Next, a cleaning operation is performed to remove water droplets remaining on the inner wall of the reaction tube 3, and the details of this operation will be explained in Section 4.
This will be explained sequentially with reference to Figures a to d. First, the piston rod 19 is raised by the crank mechanism (FIG. 2A), and the sponge 18 is inserted until the tip thereof touches the top of the inner bottom surface of the reaction tube 3 (FIG. 2B). In this state, if the piston rod 19 is pulled downward, the water droplet P shown in FIG. It should be absorbed and disappear, but when reaction tubes are transferred continuously like in an automatic analyzer, normally the next reaction tube arrives before the sponge containing the liquid dries and absorbs water again. As a result, the sponge 18 becomes sufficiently saturated with water, and in such a case, the amount of liquid remaining on the inner wall of the reaction tube 3 after the sponge is pulled out varies widely, ranging from 5 μm to 50 μm, which adversely affects the next analysis. Therefore, in the present invention, in particular, the sponge 18 is pressed further upward beyond the top dead center to bring it into a compressed state.
The water contained in the sponge 18 was squeezed out and dropped into water droplets (c in the same figure). When the compressed state exceeds the top dead center, the sponge 18 is pressed against the inner surface of the bottom of the reaction tube in a sufficiently compressed state. After that, if the sponge 18 is lowered and pulled out, the sponge 18 will be restored to its original state when it is lowered, and at the time of this restoration, the action of sucking the surrounding moisture (especially the moisture above) will work, and the inside of the reaction tube 3 will be activated. The moisture on the wall surface is wiped off to the extent that it does not affect the analysis (d in the same figure). Incidentally, good results were obtained in that the amount of residual liquid was approximately 5 microns or less, and the variation among the reaction tubes was also minimal. The reaction tube from which water droplets have been removed in this way is used again for analysis. If drying is particularly required, a heating means may be used in combination, but since most of the water droplets are removed by the wiping mechanism, a small-capacity heating means is sufficient.

このような分析方法によれば、洗浄後に反応管
3に付着した水滴を容易に除去でき、特に従来の
ように大容量のヒータを用いて加熱するものでは
なく、乾燥が必要な場合にも小容量の加熱手段で
すむから恒温液Wに悪影響を与えることもなく、
又消費電力が大きくなることもない。更に真空ポ
ンプを用いずにクランク機構により上下動を行わ
せるものであるから、排気音や振動が大きくなる
という問題もない。尚、この方法によれば、乾燥
を行わない場合には反応管に付着した残留液を完
全に除去することはできず、分析に影響を与えな
い程度の残留液を残すこととなるが、むしろ、反
応管内壁面が僅かに濡れている状態となるため、
従来のような乾燥によつて内壁面に小さな固形物
が固着することはなく、従つて連続使用に伴う反
応管の汚れを助長させることがないという利点を
も有する。又、この方法ではスポンジ18の寿命
が問題となるが、材料が安価でかつ構造が簡単で
あるため定期的な変換が容易となるから半永久的
に使用できることとなる。本発明は前記実施例に
限定されない。例えば、第5図aに示すように、
スポンジ18を取り付けたピストン杆19の下部
に鍔部22を設け、その上に略ドーナツ形状のス
ポンジ21を載置するようにして拭き取り機構を
構成してもよい。この場合、ピストン杆19の上
端と鍔部22との間の距離は反応管3の高さと同
一又はそれよりも僅かに長くなるように設定し、
かつ鍔部22の中心部近傍には複数個の孔22a
を設け前記ドーナツ形スポンジ21の中央孔21
aと上下で連通し得る構成にする。このような構
成であれば、前記同様にしてクランク機構により
スポンジ18を上昇させた場合、同図bに示すよ
うに、スポンジ18が反応管3の内底面で圧縮さ
れると共に、ドーナツ形スポンジ21が鍔部22
と反応管3の開口端部との間に挾まれて圧縮され
ることになる。このとき、スポンジ18の圧縮に
より紋り出された水滴Pはドーナツ形スポンジ2
1の中心部の孔21aと鍔部22の孔22aを通
つて外部に排出される。そしてピストン杆19を
引き抜くと管内の水滴がスポンジ18に吸収さ
れ、一方反応管3の周囲であつてベルト2の下方
に付着していた水滴P1がドーナツ形スポンジ21
によつて吸収されることになる。このような方法
を用いれば、前記実施例の効果に加えて、反応管
3が逆転して液槽1の上面に移動する途中で反応
管3の外側(ベルト2の上面)に付着している液
体が反応管3内に入るおそれがなくなり、分析精
度を向上させることができるという効果を奏す
る。尚、前記上下動機構は必ずしもクランク機構
でなくてもよい。又、拭き取り機構のスポンジに
替えて他の吸水性の良い柔軟性材料を用いてもよ
い。
According to such an analysis method, water droplets attached to the reaction tube 3 can be easily removed after washing, and especially when drying is required, instead of heating using a large-capacity heater as in the conventional method, a small Since only a large capacity heating means is required, there is no adverse effect on the constant temperature liquid W.
Moreover, power consumption does not increase. Furthermore, since the vertical movement is performed by a crank mechanism without using a vacuum pump, there is no problem of increased exhaust noise or vibration. However, according to this method, if drying is not performed, the residual liquid adhering to the reaction tube cannot be completely removed, and a residual liquid that does not affect the analysis will remain. , the inner wall of the reaction tube will be slightly wet,
It also has the advantage that small solid matter does not stick to the inner wall surface due to conventional drying and therefore does not promote fouling of the reaction tube due to continuous use. In addition, with this method, the lifespan of the sponge 18 is a problem, but since the material is inexpensive and the structure is simple, periodic replacement is easy, so it can be used semi-permanently. The invention is not limited to the above embodiments. For example, as shown in Figure 5a,
The wiping mechanism may be configured such that a flange portion 22 is provided at the lower part of the piston rod 19 to which the sponge 18 is attached, and a substantially donut-shaped sponge 21 is placed on the flange portion 22. In this case, the distance between the upper end of the piston rod 19 and the flange 22 is set to be the same as or slightly longer than the height of the reaction tube 3,
In addition, a plurality of holes 22a are provided near the center of the flange 22.
A central hole 21 of the donut-shaped sponge 21 is provided.
The structure should be such that it can communicate with a above and below. With this configuration, when the sponge 18 is raised by the crank mechanism in the same manner as described above, the sponge 18 is compressed on the inner bottom surface of the reaction tube 3 and the donut-shaped sponge 21 is compressed, as shown in FIG. is the tsuba part 22
and the open end of the reaction tube 3 and are compressed. At this time, the water droplet P bulged out by the compression of the sponge 18 is
The liquid is discharged to the outside through the hole 21a in the center of the body 1 and the hole 22a in the flange 22. When the piston rod 19 is pulled out, the water droplets inside the tube are absorbed by the sponge 18, while the water droplets P1 that have adhered around the reaction tube 3 and below the belt 2 are absorbed by the donut-shaped sponge 21.
It will be absorbed by. If such a method is used, in addition to the effects of the above-mentioned embodiment, the reaction tube 3 will be reversed and adhered to the outside of the reaction tube 3 (the top surface of the belt 2) while the reaction tube 3 is being moved to the top surface of the liquid tank 1. There is no fear that the liquid will enter the reaction tube 3, resulting in an effect that the accuracy of analysis can be improved. Note that the vertical movement mechanism does not necessarily have to be a crank mechanism. Moreover, other flexible materials with good water absorption may be used in place of the sponge of the wiping mechanism.

以上詳述したように本発明によれば、大がかり
な加熱乾燥を行わずに洗浄後に反応管に残つた水
滴を容易に除去できると共に、多項目分析に最適
な水滴除去機能を備えた自動化学分析方法とな
る。
As detailed above, according to the present invention, water droplets remaining in the reaction tube after washing can be easily removed without extensive heating and drying, and automatic chemical analysis with a water droplet removal function that is optimal for multi-item analysis It becomes a method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の自動化学分析方法に用いられる
分析装置の概略構成図、第2図はそれに用いられ
る乾燥装置の他例を示す概略構成図、第3図は本
発明自動化学分析方法に使用される分析装置の概
略構成図、第4図a〜dはそれに用いられる拭き
取り機構の動作を説明するための断面図、第5図
a,bは他の拭き取り機構の構成及び動作を説明
するための断面図である。 1……液槽、2……ベルト、3……反応管、4
……排液槽、5……洗浄液吐出ノズル、6……純
水吐出ノズル、9……フローセル、10……保温
槽、14……光度計、18……スポンジ、19…
…ピストン杆、20……クランク機構、21……
ドーナツ形スポンジ、22……鍔部。
Figure 1 is a schematic configuration diagram of an analyzer used in a conventional automated chemical analysis method, Figure 2 is a schematic diagram showing another example of a drying device used therein, and Figure 3 is a schematic diagram showing another example of a drying device used in the automatic chemical analysis method of the present invention. Figures 4a to 4d are cross-sectional views for explaining the operation of the wiping mechanism used therein, and Figures 5a and b are for explaining the configuration and operation of other wiping mechanisms. FIG. 1...Liquid tank, 2...Belt, 3...Reaction tube, 4
... Drainage tank, 5 ... Cleaning liquid discharge nozzle, 6 ... Pure water discharge nozzle, 9 ... Flow cell, 10 ... Heat retention tank, 14 ... Photometer, 18 ... Sponge, 19 ...
...Piston rod, 20...Crank mechanism, 21...
Donut-shaped sponge, 22...Trim part.

Claims (1)

【特許請求の範囲】[Claims] 1 反応試薬等が加えられた分析すべき試料を含
んだ複数の反応管を恒温液内に浸漬させながら順
次移送し、所定の分析を行なつた後、該反応管を
洗浄液を用いて洗浄し、再び分析すべき試料を注
入し前記分析に供するようにした自動化学分析方
法において、前記洗浄後に逆さの状態にある反応
管に対し下方から吸水性の柔軟性材料からなる拭
き取り部材をその柔軟性材料が前記反応管の底部
内面に十分な圧縮状態になる程度に上方に押圧挿
入することを特徴とする自動化学分析方法。
1. Multiple reaction tubes containing samples to be analyzed to which reaction reagents, etc. have been added are immersed in a constant-temperature solution and transferred one after another, and after performing the prescribed analysis, the reaction tubes are washed with a cleaning solution. In an automatic chemical analysis method in which a sample to be analyzed is again injected and subjected to the analysis, a wiping member made of a water-absorbing flexible material is inserted from below into the reaction tube which is in an inverted state after the washing. An automatic chemical analysis method characterized in that the material is inserted into the bottom inner surface of the reaction tube under pressure upward to a sufficiently compressed state.
JP14330878A 1978-11-22 1978-11-22 Automatic chemical analysis method Granted JPS5570743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14330878A JPS5570743A (en) 1978-11-22 1978-11-22 Automatic chemical analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14330878A JPS5570743A (en) 1978-11-22 1978-11-22 Automatic chemical analysis method

Publications (2)

Publication Number Publication Date
JPS5570743A JPS5570743A (en) 1980-05-28
JPS627980B2 true JPS627980B2 (en) 1987-02-20

Family

ID=15335734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14330878A Granted JPS5570743A (en) 1978-11-22 1978-11-22 Automatic chemical analysis method

Country Status (1)

Country Link
JP (1) JPS5570743A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921765U (en) * 1982-07-30 1984-02-09 株式会社島津製作所 automatic analyzer

Also Published As

Publication number Publication date
JPS5570743A (en) 1980-05-28

Similar Documents

Publication Publication Date Title
CA2570516C (en) Probe washing cups and methods
JPH0795013B2 (en) Liquid pipetting device and pipetting method
JP3873656B2 (en) Automatic analyzer
JPH0122586B2 (en)
JP2001133466A (en) Automatic analyzer
JP4443271B2 (en) Automatic analyzer
JPS627980B2 (en)
JP6227441B2 (en) Analysis apparatus and method
JP4509473B2 (en) Liquid dispensing method and apparatus
US4991451A (en) Probe wiping
JP2577350B2 (en) Cleaning method in automatic chemical analyzer
US20220397582A1 (en) Automatic analysis device
JPH0322592B2 (en)
JPH036462B2 (en)
JPS6042635A (en) Device for washing nozzle in analytical equipment of biochemistry
JP2663661B2 (en) Liquid vacuum suction device
JPH0140050Y2 (en)
JPS5848855B2 (en) Sample coating device for electrophoresis
JPS5820934Y2 (en) Nozzle cleaning device
JP2767269B2 (en) Sampling tube cleaning device
JPS6320172B2 (en)
JPS5816560Y2 (en) Device for discharging liquids in containers
CN113070280B (en) Pipette cleaning and blow-drying device and operation method thereof
JPH01209371A (en) Cleaner
WO2021176875A1 (en) Automatic analysis device