JPS6279321A - Method for testing acoustic characteristics - Google Patents

Method for testing acoustic characteristics

Info

Publication number
JPS6279321A
JPS6279321A JP21826885A JP21826885A JPS6279321A JP S6279321 A JPS6279321 A JP S6279321A JP 21826885 A JP21826885 A JP 21826885A JP 21826885 A JP21826885 A JP 21826885A JP S6279321 A JPS6279321 A JP S6279321A
Authority
JP
Japan
Prior art keywords
sound
measured
sound source
frequency
microphone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21826885A
Other languages
Japanese (ja)
Inventor
Keizo Onishi
慶三 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP21826885A priority Critical patent/JPS6279321A/en
Publication of JPS6279321A publication Critical patent/JPS6279321A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To measure the acoustic characteristics of a material without requiring a special apparatus, by respectively inputting the interference sound of the direct sound from a sound source and the reflected sound from a material to be measured, and the direct sound in a free sound field to calculate the difference between sound pressure levels. CONSTITUTION:A sound source 2 generating random noise and the microphone 3 spaced apart from said sound source 2 by a distance D are arranged and the interference spectrum pattern of the direct sound of said sound source 2 and the sound once reflected from a material 1 to be measured is inputted to a frequency analyser 4. In the same way, the direct sound in a free sound field generating no reflection of sound is inputted to the analyser 4 and the difference between two frequency levels is calculated for each frequency. By this method, the distance attenuation of the sound between the sound source 2 and the microphone 3 and air absorbing attenuation are off set and only the effect of the material 1 to be measured can be observed. Therefore, the acoustic characteristics of the material can be measured without requiring a special apparatus.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,音響縮尺モデル実験において,実物の音響特
性を模擬できる材料を選び出すため。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is for selecting materials that can simulate the acoustic characteristics of the real thing in acoustic scale model experiments.

材料の音響特性を測定する方法に関し,例えば音響特性
が重要である部屋の内装材等にも適用できる。
The present invention relates to a method for measuring the acoustic properties of materials, and can be applied to, for example, interior materials for rooms where acoustic properties are important.

〔従来の技術〕[Conventional technology]

従来技術は,第2図に示すように,スピーカにパイプを
取りつけその先端から球面波を発生できるようにした音
源(ホーンドライバーユニットa)を用い,発振器によ
シ純音を発生させて発振器の周波数を変化させながら測
定を行なっている。全周波数にわたり一定の音響出力を
得るため,音源機にマイク長を取りつけ,発掘器にフィ
ードバンクし出力を調整している。最終的には計測した
音圧レベルを周波数を横軸にとりてレベルレコーダに記
録し,理論計算値と比較している。
As shown in Figure 2, the conventional technology uses a sound source (horn driver unit a) in which a pipe is attached to a speaker and can generate spherical waves from the tip of the pipe, and a pure tone is generated by an oscillator to adjust the frequency of the oscillator. Measurements are made while changing the In order to obtain a constant sound output across all frequencies, a microphone length is attached to the sound source and a feed bank is sent to the excavator to adjust the output. Finally, the measured sound pressure level is recorded on a level recorder with frequency plotted on the horizontal axis, and compared with theoretically calculated values.

但し、従来の手法は実際の地表面を測定するためのもの
であり本発明のように材料の音響特性を測定するもので
はないが測定の原理としては同じものである。(〈記載
文献〉井清武弘他「地表面の影響を考慮に入れた遮音壁
の騒音減衰設計に関する研究」公害資源研究所報告 第
17号 P45〜P54  昭和55年10月)対象物
が異なる関係上実験周波数範囲は従来技術が10KHz
 以下に対し本発明は0〜100KHzである。
However, although the conventional method is for measuring the actual ground surface and is not for measuring the acoustic characteristics of a material like the present invention, the principle of measurement is the same. (<References> Takehiro Ikiyo et al. "Study on noise attenuation design of sound insulation walls taking into account the influence of the ground surface" Pollution Resource Research Institute Report No. 17 P45-P54 October 1980) Experiments due to different objects The frequency range of conventional technology is 10KHz
For the following, the present invention is from 0 to 100 KHz.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来技術では以下の2点の操作により計測器が多くなり
その分計側が複雑、長時間になるという欠点があった。
The conventional technology has the disadvantage that the following two operations require a large number of measuring devices, which makes the measuring device complicated and takes a long time.

(1)各周波数において一定の音響出力で実験する必要
があり、そのため発生音をフィードバックして発振器出
力を調整していること。
(1) It is necessary to experiment with a constant acoustic output at each frequency, so the oscillator output is adjusted by feeding back the generated sound.

(の 純音で実験する必要があり、広範囲の周波数に関
してスペクトルパターンを描くためには純音の周波数を
徐々に変化させる装置が必要であり、かつ変化させる時
間分測定時間として必要であること。
(It is necessary to experiment with pure tones, and in order to draw a spectral pattern over a wide range of frequencies, a device that gradually changes the frequency of the pure tone is required, and the time required to change it is also necessary for measurement.)

本発明は上記問題点を解消することを目的とする。The present invention aims to solve the above problems.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、ランダムノイズを発生する音源2と、一定の
距離を離して設置したマイク3を被測定材料1の上に配
置し、同音源2からの直接音と同被測定材料1に1回反
射した音との干渉スペクトルパターンを同マイク3に接
続した周波数分析器4を用いて測定する第1工程(被測
定材料1による反射音以外の反射音がない音場で測定す
る。)と、同音源2と同マイク3との相対位置はそのま
まにして、同音源2と同マイク3を音の反射のない音場
(自由音場)に設置し、同音源2からの直接音を前記周
波数分析器4を用いて同様に測定する第2工程と、各周
波数ごとに第1工程で測定した音圧レベルから第2工程
で測定した音圧レベルを差し引いたスペクトルパターン
を求める第3工程とを備え9以上により音源2とマイク
3との間の距離による音の減衰と空気分子の吸収による
音の減衰が相殺され、被測定材料1の影響のみによるス
ペクトルパターンが求まり、これを理論計算値と比較す
る第4工程によって被測定材料1の音響特性を測定する
ことを特徴とする。
In the present invention, a sound source 2 that generates random noise and a microphone 3 installed at a certain distance are placed on the material to be measured 1, and the direct sound from the sound source 2 and the microphone 3 are placed on the material to be measured 1 once. A first step of measuring the interference spectrum pattern with the reflected sound using the frequency analyzer 4 connected to the microphone 3 (measurement is performed in a sound field where there is no reflected sound other than the sound reflected by the material to be measured 1); The relative positions of the sound source 2 and the microphone 3 remain unchanged, and the sound source 2 and the microphone 3 are placed in a sound field without sound reflection (free sound field), and the direct sound from the sound source 2 is transmitted at the frequency specified above. A second step of similarly measuring using the analyzer 4, and a third step of obtaining a spectrum pattern by subtracting the sound pressure level measured in the second step from the sound pressure level measured in the first step for each frequency. With Preparation 9 and above, the sound attenuation due to the distance between the sound source 2 and the microphone 3 and the sound attenuation due to the absorption of air molecules are canceled out, and a spectral pattern due only to the influence of the material to be measured 1 is obtained, which can be used as the theoretical calculation value. The method is characterized in that the acoustic characteristics of the material to be measured 1 are measured in the fourth step of comparison.

なお、スペクトルパターンとは実験周波数を横軸に、測
定音圧レベルを縦軸に表したグラフをいう。
Note that the spectrum pattern is a graph in which the experimental frequency is plotted on the horizontal axis and the measured sound pressure level is plotted on the vertical axis.

〔作用〕[Effect]

本発明では、音源はランダムノイズを発生できればよく
9周波数分析器を用いる以外は特別な装置を必要としな
い。第1図に示すように自由音場での測定を合わせて行
ない、測定1(第1工程)と測定2(第2工程)の音圧
レベルの差をとることによって問題となっている2点は
全て解決する。
The present invention does not require any special equipment other than the use of a nine-frequency analyzer, as long as the sound source can generate random noise. As shown in Figure 1, two problems can be solved by performing free-field measurements and calculating the difference in sound pressure level between measurement 1 (first step) and measurement 2 (second step). will solve everything.

利点としては、(1)ランダムノイズで実験するため9
周波数を変化させる必要がない、(2)必要とされるレ
ベル以上であれば、音源の周波数特性は問わない(引算
操作によって相殺される。)ことが挙げられる。
Advantages include (1) experimenting with random noise;
There is no need to change the frequency. (2) The frequency characteristics of the sound source do not matter as long as the frequency is equal to or higher than the required level (cancelled by a subtraction operation).

〔実施例〕〔Example〕

次゛に本発明方法の一実施例を図面に基づいて説明する
Next, one embodiment of the method of the present invention will be explained based on the drawings.

第1図において、被測定材料1上のA点に音源2を配置
し、A点から距離りを隔ててマイクロホン3を設置し、
マイクロホン3の受信音を周波数分析器4に入力し分析
する(測定l)。
In FIG. 1, a sound source 2 is placed at a point A on a material to be measured 1, a microphone 3 is placed at a distance from the point A,
The sound received by the microphone 3 is input to the frequency analyzer 4 and analyzed (measurement 1).

分析内容は実験周波数範囲での音圧レベルのスペクトル
パターンで、スペクトルパター7とは実験周波数を横軸
に、音圧レベルを縦軸に表わしたグラフをいう。
The content of the analysis is a spectrum pattern of the sound pressure level in the experimental frequency range, and the spectrum pattern 7 is a graph in which the horizontal axis represents the experimental frequency and the vertical axis represents the sound pressure level.

この測定は被測定材料lでの音の反射以外の反射音が作
用しないように無響室内で行なう。
This measurement is carried out in an anechoic chamber so that reflected sound other than the sound reflected by the material to be measured 1 does not act.

次に同じく無響室内で音源2とマイクロホン3の位置関
係はそのままにして同様の測定・分析を行なう(測定2
)。周波数分析器4(スペクトルの引算を内部で実行可
能)で測定1の分析結果から測定1の分析結果を差し引
くことにより、音源2.マイクロホン3間の音の距離減
衰と空気吸収減衰が相殺され、被測定材料1の影響だけ
を見ることができる。
Next, perform the same measurement and analysis in the same anechoic chamber, leaving the positional relationship between the sound source 2 and the microphone 3 unchanged (Measurement 2
). By subtracting the analysis result of measurement 1 from the analysis result of measurement 1 with the frequency analyzer 4 (which can perform spectrum subtraction internally), the sound source 2. The distance attenuation of the sound between the microphones 3 and the air absorption attenuation cancel each other out, and only the influence of the material to be measured 1 can be seen.

分析結果を差し引くというのは測定周波数ごとに音圧レ
ベルを引算することであり2例えば次の様に考えること
ができる。測定1での分析結果は、その中のある周波数
に注目すれば音源2から発生された音が被測定材料1の
影響を受けたあとの音圧レベルから距離減衰量と空気吸
収減衰量が差し引かれた音圧レベルが観測されている。
Subtracting the analysis results means subtracting the sound pressure level for each measurement frequency.2For example, it can be considered as follows. The analysis result of measurement 1 shows that if we focus on a certain frequency, the distance attenuation and air absorption attenuation can be subtracted from the sound pressure level after the sound generated from sound source 2 is affected by the material to be measured 1. sound pressure levels have been observed.

−力測定2では注目した周波数での音源2から発生され
た音から距離減衰量と空気吸収減衰量が差し引かれた音
圧レベルが観測される。従って第3図で示すように被測
定材料1の影響だけが見られるということである。
- In force measurement 2, the sound pressure level obtained by subtracting distance attenuation and air absorption attenuation from the sound generated from sound source 2 at the frequency of interest is observed. Therefore, as shown in FIG. 3, only the influence of the material to be measured 1 can be seen.

測定分析結果から材料の音響特性のひとつとして音響イ
ンピーダンスを求める方法を第4図のフローチャートに
沿って以下に示す。方法としては従来技術と同じもので
ある。まず材料の音響インピーダンスを与えて材料の影
響によるスペクトルパターンを理論計算し、実験で測定
・分析した被測定材料の影響によるスペクトルパターン
と比較して一致するまで材料の音響インピーダンスを変
えてゆき、一致したときの計算に用いた材料の音響イン
ピーダンスを、被測定材料の音響インピーダンスとする
方法である。
A method for determining acoustic impedance as one of the acoustic characteristics of a material from the measurement and analysis results will be described below in accordance with the flowchart of FIG. The method is the same as the conventional technique. First, we theoretically calculate the spectral pattern due to the influence of the material by giving the acoustic impedance of the material, and then compare it with the spectral pattern due to the influence of the material under test, which was measured and analyzed experimentally.The acoustic impedance of the material is changed until it matches, and then This method uses the acoustic impedance of the material used in the calculation as the acoustic impedance of the material to be measured.

〔発明の効果〕〔Effect of the invention〕

以上のように9本発明によれば、従来技術のような特別
な装置を必要とせず、材料の音響特性(ここでは材料の
影響を表わすスペクトルパターン)を測定することがで
きる。
As described above, according to the present invention, the acoustic characteristics of a material (in this case, a spectral pattern representing the influence of the material) can be measured without the need for special equipment as in the prior art.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の一実施例を示す説明図。 第2図は点音源から伝搬する音の地表面に起因する超過
減衰を計測する従来の実験装置を示す説明図、第3図は
引算操作の意味を示す説明図。 第4図は材料の音響インピーダンスを求める際のフロー
チャートである。 1・・被測定材料、2・・・音源、3・・・マイク、4
・・・周波数分析器。 @2詔
FIG. 1 is an explanatory diagram showing one embodiment of the method of the present invention. FIG. 2 is an explanatory diagram showing a conventional experimental apparatus for measuring excessive attenuation of sound propagating from a point sound source due to the ground surface, and FIG. 3 is an explanatory diagram showing the meaning of the subtraction operation. FIG. 4 is a flowchart for determining the acoustic impedance of a material. 1... Material to be measured, 2... Sound source, 3... Microphone, 4
...Frequency analyzer. @2 edict

Claims (1)

【特許請求の範囲】[Claims] ランダムノイズを発生する音源2と、一定の距離を離し
て設置したマイク3を被測定材料1の上に配置し、同音
源2からの直接音と、同被測定材料1に1回反射した音
との干渉スペクトルパターンを同マイク3に接続した周
波数分析器4を用いて測定する第1工程と、同音源2と
同マイク3との相対位置はそのままにして、同音源2と
同マイク3を音の反射のない音場(自由音場)に設置し
、同音源2からの直接音を前記周波数分析器4を用いて
同様に測定する第2工程と、各周波数ごとに第1工程で
測定した音圧レベルから第2工程で測定した音圧レベル
を差し引いたスペクトルパターンを求める第3工程と、
第3工程で求めたスペクトルパターンと理論計算値とを
比較する第4工程とからなることを特徴とする音響特性
試験方法。
A sound source 2 that generates random noise and a microphone 3 placed a certain distance apart are placed on the material to be measured 1, and the direct sound from the same sound source 2 and the sound reflected once on the material to be measured 1 are measured. The first step is to measure the interference spectrum pattern of the same sound source 2 and the same microphone 3 using the frequency analyzer 4 connected to the same sound source 2 and the same microphone 3, while leaving the relative positions of the same sound source 2 and the same microphone 3 unchanged. A second step in which the frequency analyzer 4 is installed in a sound field without sound reflection (free sound field) and the direct sound from the same sound source 2 is similarly measured using the frequency analyzer 4, and a first step in which each frequency is measured. a third step of obtaining a spectrum pattern by subtracting the sound pressure level measured in the second step from the sound pressure level measured;
An acoustic property testing method comprising a fourth step of comparing the spectrum pattern obtained in the third step with a theoretically calculated value.
JP21826885A 1985-10-01 1985-10-01 Method for testing acoustic characteristics Pending JPS6279321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21826885A JPS6279321A (en) 1985-10-01 1985-10-01 Method for testing acoustic characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21826885A JPS6279321A (en) 1985-10-01 1985-10-01 Method for testing acoustic characteristics

Publications (1)

Publication Number Publication Date
JPS6279321A true JPS6279321A (en) 1987-04-11

Family

ID=16717205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21826885A Pending JPS6279321A (en) 1985-10-01 1985-10-01 Method for testing acoustic characteristics

Country Status (1)

Country Link
JP (1) JPS6279321A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105424813A (en) * 2015-11-12 2016-03-23 中国石油集团西部钻探工程有限公司 Superimposed wave attenuation probe for core sound wave measurement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105424813A (en) * 2015-11-12 2016-03-23 中国石油集团西部钻探工程有限公司 Superimposed wave attenuation probe for core sound wave measurement

Similar Documents

Publication Publication Date Title
Allard et al. Measurements of acoustic impedance in a free field with two microphones and a spectrum analyzer
Westervelt Parametric end‐fire array
Brandão et al. A comparison of three methods to calculate the surface impedance and absorption coefficient from measurements under free field or in situ conditions
Din et al. Measurement method with a pressure-velocity sensor for measuring surface normal impedance of materials using ensemble averaging: Comparison with other methods and its geometrical configuration
Eveno et al. Wave propagation and radiation in a horn: Comparisons between models and measurements
JPS5847026B2 (en) How to calibrate acoustic radiation transducers
Champoux et al. Measurement of acoustic impedance in a free field at low frequencies
Novak et al. Nonparametric identification of nonlinear systems in series
JPH11509695A (en) Sound intensity calibration device
CN113671041A (en) Sound insulation measuring system based on near-field acoustic holography and measuring method thereof
Nuryantini et al. Home-made simple experiment to measure sound intensity using smartphones
Wijnant et al. Development and application of a new method for the in-situ measurement of sound apsorption
Van Zyl et al. Evaluation of the intensity method of sound power determination
Schmerr et al. Complete ultrasonic transducer characterization and its use for models and measurements
Gupta et al. Estimation of partial discharge parameters in GIS using acoustic emission techniques
Rendón et al. Nonlinear progressive waves in a slide trombone resonator
JPS6279321A (en) Method for testing acoustic characteristics
JP4876287B2 (en) Measuring method of acoustic impedance and sound absorption coefficient
Olechowska et al. Analysis of selected methods used for the reverberation time estimation
Calicchia et al. Revealing surface anomalies in structures by in situ measurement of acoustic energy absorption
Hauge Finite element modeling of ultrasound measurement systems for gas. Comparison with experiments in air.
Chick et al. Spectral enrichment and wall losses in trombones played at high dynamic levels
Kunigelis et al. Acoustic investigation of air-filled porous materials
JP6684074B2 (en) Strength estimation method and strength estimation system using sound waves
Bequin et al. Weak nonlinear propagation of sound in a finite exponential horn