JPS627904A - Electric power plant system - Google Patents
Electric power plant systemInfo
- Publication number
- JPS627904A JPS627904A JP14248085A JP14248085A JPS627904A JP S627904 A JPS627904 A JP S627904A JP 14248085 A JP14248085 A JP 14248085A JP 14248085 A JP14248085 A JP 14248085A JP S627904 A JPS627904 A JP S627904A
- Authority
- JP
- Japan
- Prior art keywords
- steam
- water supply
- high pressure
- reheater
- power plant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Abstract
Description
【発明の詳細な説明】 〔発明の利用分野〕 本発明は発電プラントシステムに係り、特[。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a power generation plant system, and particularly relates to a power generation plant system.
湿分々離加熱器を備えた原子力発電プラントシステムに
おいて、減肉発生要因を回避した低設備費の給水加熱装
rIItvc関する。The present invention relates to a feed water heating system rIItvc that avoids the cause of wall thinning and has a low equipment cost in a nuclear power plant system equipped with a moisture separation heater.
従来のBWR形原子力発電プラントシステムは、湿分々
離器のみを設けた非再熱式プラントが標準であり、この
構成を第3図に示す。即ち、非再熱式プラントは第3図
に示すように、蒸気を発止する原子炉1からの蒸気は高
圧タービン2に流入し、高圧タービン2で仕事をするこ
とによシ蒸気中の湿分を増加しながら排気される。高圧
タービン2より排気された湿分の多い蒸気は、湿分々離
器3に流入し、ここで湿分が分離され、保有エネルギの
高い蒸気となって低圧タービン4に流入し、順次仕事を
しながら、復水器5に排気される。復水器5に流入した
タービン排気は凝縮され、復水となり復水ポンプ6Vc
より空気抽出器7、グランド蒸気復水器8を介して低圧
給水加熱装置9に流れる。低圧給水加熱装置H9a〜9
dの四段の給水加熱器より構成されており、低圧給水加
熱装置を出た復水け、更に、原子炉給水ポンプlOによ
り加圧され、高圧給水加熱装fiiel 1に圧送され
る。Conventional BWR nuclear power plant systems are standard non-reheat plants equipped with only a moisture separator, and this configuration is shown in FIG. That is, in a non-reheating plant, as shown in Figure 3, steam from a nuclear reactor 1 that generates steam flows into a high-pressure turbine 2, and by doing work in the high-pressure turbine 2, the moisture in the steam is removed. Exhausted with increasing minutes. The high-humidity steam exhausted from the high-pressure turbine 2 flows into the moisture separator 3, where the moisture is separated, and the steam with high retained energy flows into the low-pressure turbine 4, where it sequentially performs work. At the same time, it is exhausted to the condenser 5. The turbine exhaust gas that has flowed into the condenser 5 is condensed and becomes condensate, and the condensate pump 6Vc
It then flows through an air extractor 7 and a gland steam condenser 8 to a low-pressure feedwater heating device 9. Low pressure feed water heating device H9a~9
It is composed of a four-stage feedwater heater (d), and is pressurized by the condensate drain from the low-pressure feedwater heating device, and then by the reactor feedwater pump 1O, and is pumped to the high-pressure feedwater heating device fiiel 1.
高圧給水加熱装置11σ11a、1 lbの二段の給水
加熱器より構成され、高圧給水加熱装置により最終給水
i度まで加熱された給水は原子炉1に供されプラントサ
イクルが構成されている。The high-pressure feedwater heating device 11σ11a is composed of a two-stage feedwater heater of 1 lb, and the feedwater heated to the final feedwater temperature by the high-pressure feedwater heating device is supplied to the nuclear reactor 1 to form a plant cycle.
高圧および低圧給水加熱器での復水・給水の加熱は高圧
および低圧タービンからの抽気蒸気により行なわれ、こ
れらの状態を第4図のi−s線図により火力発電プラン
トシステムと比較して示す。Heating of condensate and feedwater in the high-pressure and low-pressure feedwater heaters is performed by extracted steam from the high-pressure and low-pressure turbines, and these conditions are shown in the i-s diagram in Figure 4 in comparison with a thermal power plant system. .
給水加熱器用の抽気蒸気条件の両者の大きな相違は、火
力発電プラントでは、最低圧膜抽気以外は全て過熱蒸気
であるのに対し、非再熱式原子カプラントでは、全ての
抽気が湿り蒸気であることである。The major difference in the bleed steam conditions for feedwater heaters is that in thermal power plants, all bleed air except for the lowest pressure membrane bleed air is superheated steam, whereas in non-reheat nuclear power plants, all bleed air is wet steam. That's true.
即ち、全ての油気が湿り蒸気であることが給水加熱器胴
側およびタービンと給水加熱器の間の抽気管での減肉発
生の主要原因となり、そのために火力発電プラントでは
炭素鋼が使用できるのに原子力発電プラントでは低合金
鋼、あるいはステンレス鋼等の高級材質の使用を余儀な
くされており、非常な設備費の高騰をまねいている。In other words, the fact that all the oil is wet steam is the main cause of thinning on the side of the feedwater heater shell and in the bleed pipe between the turbine and the feedwater heater, which is why carbon steel can be used in thermal power plants. However, nuclear power plants are forced to use high-grade materials such as low-alloy steel or stainless steel, leading to extremely high equipment costs.
本発明の目的は、減肉発生要因である湿り度の高い蒸気
の使用を回避し、経済的な炭素鋼材の使用を可能とさせ
、設備費を大巾に低減した給水加熱装置を提供すること
にある。An object of the present invention is to provide a feed water heating device that avoids the use of steam with high humidity, which is a cause of wall thinning, allows the use of economical carbon steel materials, and greatly reduces equipment costs. It is in.
原子力発電プラントにおいて、炭素鋼を使用した機器お
よび配管π減肉が多数発生しており、減肉発生位置およ
び使用環境を詳細に調査した結果、腐食環境下における
エロージョン・コロ−ジョン現象であることが明らかと
なった。即ち、減肉の原因は腐食要因と浸食要因が複雑
に関係して発生することが、種々の調査および研究によ
り明らかとなっている。At nuclear power plants, a large number of thinnings have occurred in equipment and piping made of carbon steel, and a detailed investigation of the location of the thinning and the operating environment revealed that it was an erosion/corrosion phenomenon in a corrosive environment. became clear. That is, various investigations and studies have revealed that the cause of thinning is a complex relationship between corrosion factors and erosion factors.
第5図は、減肉発生の要因中湿り度の影響について示し
たもので、湿り度の低い蒸気配管より、湿り度100係
のドレン管までを含めて減肉発生の実績を示したもので
ある。湿り度が1.5係以下の場合には、減肉の事例が
一件もないが、約2−以上の範囲では、はぼ均一に減肉
が発生し7ている。Figure 5 shows the influence of humidity among the factors that cause wall thinning, and shows the actual results of wall thinning in steam piping with low humidity up to drain pipes with humidity of 100. be. When the humidity level is 1.5 coefficient or lower, there is no case of thinning, but when the humidity level is about 2 mm or higher, thinning occurs almost uniformly.
また、同一の湿り度でも減肉の大きなものから小さなも
のまであるが、これは運転温度、流速その他の要因との
関連により差違が生じている。Further, even at the same humidity level, there are cases where the thickness loss is large or small, and this difference occurs due to the relationship with operating temperature, flow rate, and other factors.
第6図は、温度の影響について示したもので、減肉は運
転温度が1501Z’近辺が一番大きく、50C以下お
よび230C以上では、はとんど、生じていないことが
実績上から示されている。Figure 6 shows the effect of temperature, and experience has shown that wall thinning is greatest when the operating temperature is around 1501Z', and rarely occurs below 50C and above 230C. ing.
従って、減肉を防止するためには、これらの要因を上手
に回避出来るシステム構成の採用が有効である。Therefore, in order to prevent thinning, it is effective to adopt a system configuration that can effectively avoid these factors.
以下、本発明の一実施例を第1図により説明する。第1
図は、第3図で示す非再熱式原子力発電プラン)K対し
、再熱器を設け、蒸熱式原子力発電プラントとした場合
の7ステム構成を示す。An embodiment of the present invention will be described below with reference to FIG. 1st
The figure shows a 7-stem configuration in which a reheater is provided in the non-reheating nuclear power generation plan (K) shown in FIG. 3 to create a steam-heating nuclear power plant.
即ち、高圧タービン2で仕事をし、湿分の高い蒸気は湿
分々離器3で湿分が分離された後、更に、第一段再熱器
12aおよび第二段再熱器12bgよル再熱され低圧タ
ービン4に流れる。通常の原子力発電プラントでは、湿
分々離器3の入口蒸気の湿〕度は12係、出口蒸気は湿
り度2チ程度の湿り蒸気とな夛、更に、第一段再熱器1
2aで220t)’、第二段再熱器12bで268C程
度の加熱蒸気となる。That is, work is done in the high-pressure turbine 2, and after the moisture is separated from the high-humidity steam in the moisture separator 3, it is further passed through the first-stage reheater 12a and second-stage reheater 12bg. It is reheated and flows to the low pressure turbine 4. In a normal nuclear power plant, the humidity of the inlet steam of the moisture separator 3 is 12 degrees, and the outlet steam is humid steam with a humidity of about 2 degrees.
2a and 220t)', and the second stage reheater 12b produces heated steam of about 268C.
一方、高圧給水加熱器11b用の加熱蒸気14bは高圧
タービン2の油気より、そして、高圧給水加熱器11a
用の加熱蒸気14au第二段再熱器12bの出口の過熱
蒸気を供給している。また、低圧給水加熱器98〜9d
用の加熱蒸気13a〜13dは低圧タービン4の抽気よ
り供給している。On the other hand, heating steam 14b for the high-pressure feedwater heater 11b is supplied from the oil air of the high-pressure turbine 2, and then to the high-pressure feedwater heater 11a.
The superheated steam at the outlet of the second stage reheater 12b is supplied to the heated steam 14au for use. In addition, low pressure water heaters 98 to 9d
Heating steam 13a to 13d for use is supplied from the bleed air of the low pressure turbine 4.
第2図は、本発明の実施例である再熱式原子力発電プラ
ントのタービンにおけるi−s線図を非再熱式原子力発
電プラントと対比して示す。FIG. 2 shows an i-s diagram of a turbine in a reheating nuclear power plant according to an embodiment of the present invention in comparison with a non-reheating nuclear power plant.
即ち、第2図に示すように、非再熱式原子力発電プラン
トでは、タービンの抽気は全て湿り蒸気であり、一番湿
り度の大きいのは低圧給水加熱器9aと接続されている
最終抽気点の13チ(図中y=13優)である。That is, as shown in Fig. 2, in a non-reheat nuclear power plant, all of the extracted air from the turbine is wet steam, and the highest humidity is at the final extraction point connected to the low-pressure feedwater heater 9a. 13 (y=13 in the figure).
また、再熱式原子力発電プラントの場合KFI、低圧給
水加熱器9c、9dと接続されている抽気けともに過熱
蒸気であ)、一番湿り度の大きいのは高圧給水加熱器1
1aと接続されている。湿分々離器入口蒸気の12チ(
図中y=12%)で非再熱式原子力発電プラントの13
チ(図中138)と大差がない。しかし、第1図の本発
明のように、高圧給水加熱器11a用の加熱蒸気を湿分
々離型30入口(A点)より第二段再熱器12bの出口
(B点)VCすることにより、再熱式の場合、一番湿り
度が大きくなるのは、高圧給水加熱器11b用の加熱蒸
気14bとなり、湿り度は10チ(図中y−10チ)v
cまで少なくできる。In addition, in the case of a reheat nuclear power plant, both the KFI and the bleed air connected to the low-pressure feedwater heaters 9c and 9d are superheated steam), and the highest humidity is in the high-pressure feedwater heater 1.
1a. 12 channels of moisture separator inlet steam (
13 of the non-reheat nuclear power plant (y = 12%) in the figure.
There is not much difference from Q (138 in the figure). However, as in the present invention shown in FIG. 1, heating steam for the high-pressure feed water heater 11a is VC-directed from the inlet (point A) of the moisture separator 30 to the outlet (point B) of the second stage reheater 12b. Therefore, in the case of the reheat type, the highest humidity is the heating steam 14b for the high-pressure feed water heater 11b, and the humidity is 10 inches (y-10 inches in the figure) v
It can be reduced to c.
−減肉の発生要因として、蒸気の湿り度と温度が大きく
影響し、湿り度では1.5饅以上、温度では60C〜2
30Cの範囲で減肉現象が発生しやすいことは第5図、
第6図で示した。がこの減肉の発生しやすい範囲を第2
図で示すと斜線(■■■■)で囲んだ範囲である。- The humidity and temperature of the steam have a major influence on the occurrence of thinning, and the humidity is 1.5 or more, and the temperature is 60C to 2.
Figure 5 shows that thinning phenomenon tends to occur in the 30C range.
It is shown in Figure 6. The range where this thinning is likely to occur is the second
In the figure, this is the range surrounded by diagonal lines (■■■■).
即ち、従来、減肉現象に対する問題点意識が少なかった
ことと、減肉現象に対する解明が十分でなかったため、
湿分々離型、および、再熱器の処理容量を出来る限り小
ざくし、実質的な差とはならないが多少熱効率的にも有
利であったため、再熱式原子力発電プラントでも、給水
加熱器11a用の加熱蒸気は湿分々離型入口のA点より
行なっている。これに対し、本発明は、給水加熱器ll
a用の加熱蒸気の取り出し点を再熱器12の出口のB点
とすることにある。これにより従来は、湿り蒸気を供給
していたものが、本発明によれば過熱蒸気とすることが
でき、減肉の要因が排除される。In other words, in the past, there was little awareness of the problem with the thinning phenomenon, and there was insufficient understanding of the thinning phenomenon.
The moisture separation type and the processing capacity of the reheater were made as small as possible, and although the difference was not substantial, there was a slight advantage in thermal efficiency, so even in reheating nuclear power plants, feed water heaters were used. Heating steam for 11a is supplied from point A of the moisture separation mold inlet. In contrast, the present invention provides a feed water heater ll
The purpose is to set the extraction point of heated steam for A to point B at the outlet of the reheater 12. As a result, although wet steam was conventionally supplied, according to the present invention, superheated steam can be used, and the cause of thinning can be eliminated.
本発明によれば、建設コストの大巾な低減ができ、給水
加熱器に加熱蒸気を供給する配管でも、給水加熱器と同
様な減肉現象があり、炭素鋼の使用が可能となり設備低
減が可能となる。According to the present invention, construction costs can be significantly reduced, and the same thinning phenomenon as in the feed water heater occurs in the piping that supplies heated steam to the feed water heater, making it possible to use carbon steel and reducing equipment costs. It becomes possible.
第1図は本発明の一実施例である原子力発電プラント系
統図、第2図は本発明の一実施例である原子力発電プラ
ントのi −s線図、第3図は従来の原子力発電プラン
ト系統図、第4図は従来の原子力発電プラントのi −
s線図、第5図は蒸気の湿り度による減肉の影響を示す
図、第6図は蒸気温度による減肉の影響を示す図である
。
1・・・原子炉、2・・・高圧タービン、3・・・湿分
々離型、4・・・低圧タービン、5・・・復水器、6・
・・復水ポンプ、7・・・空気抽出器、8・・・グラン
ド蒸気復水器、9・・・低圧給水加熱装置、10・・・
原子炉給水ポンプ、11・・・高圧給水ポンプ、12a
、12b・・・再熱器。Figure 1 is a nuclear power plant system diagram that is an embodiment of the present invention, Figure 2 is an i-s diagram of a nuclear power plant that is an embodiment of the present invention, and Figure 3 is a conventional nuclear power plant system. Figure 4 shows the i-
The s-diagram, FIG. 5 is a diagram showing the influence of thinning due to steam humidity, and FIG. 6 is a diagram showing the influence of thinning due to steam temperature. DESCRIPTION OF SYMBOLS 1...Nuclear reactor, 2...High pressure turbine, 3...Moisture separation type, 4...Low pressure turbine, 5...Condenser, 6...
...Condensate pump, 7.Air extractor, 8.Gland steam condenser, 9.Low pressure feed water heating device, 10..
Reactor feed water pump, 11... High pressure water pump, 12a
, 12b... reheater.
Claims (1)
湿分々離器および湿分々離後の蒸気を過熱域まで加熱す
るための再熱器を設けた発電プラントの給水加熱装置に
おいて、 前記再熱器の出口直後の再熱蒸気を、前記給水加熱装置
の加熱蒸気供給源となるように、システムを構成したこ
とを特徴とする発電プラントシステム。[Claims] 1. Power generation equipped with a moisture separator for separating moisture in steam at the high-pressure turbine outlet and a reheater for heating the steam after moisture separation to a superheating range. A power generation plant system, characterized in that the system is configured such that reheated steam immediately after the outlet of the reheater serves as a heating steam supply source for the feedwater heating device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14248085A JPS627904A (en) | 1985-07-01 | 1985-07-01 | Electric power plant system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14248085A JPS627904A (en) | 1985-07-01 | 1985-07-01 | Electric power plant system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS627904A true JPS627904A (en) | 1987-01-14 |
Family
ID=15316296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14248085A Pending JPS627904A (en) | 1985-07-01 | 1985-07-01 | Electric power plant system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS627904A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106705019A (en) * | 2016-12-07 | 2017-05-24 | 上海电气电站设备有限公司 | Wide-load efficient water supply regenerative system |
-
1985
- 1985-07-01 JP JP14248085A patent/JPS627904A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106705019A (en) * | 2016-12-07 | 2017-05-24 | 上海电气电站设备有限公司 | Wide-load efficient water supply regenerative system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112240232A (en) | Steam power plant, method for modifying steam power plant, and method for operating steam power plant | |
CN111079302A (en) | Low-pressure cylinder efficiency measuring and calculating system and method | |
CN211454603U (en) | Low-pressure cylinder efficiency measuring and calculating system | |
CN112780373B (en) | Water vapor cycle based on supercritical and subcritical heat regeneration | |
KR20150008066A (en) | Method for increasing the efficiency of power generation in nuclear power plants | |
CN201714431U (en) | Regenerative steam-driven condensate pump system of power plant | |
CN206647143U (en) | TRT with resuperheat system | |
JPS627904A (en) | Electric power plant system | |
RU2602649C2 (en) | Steam turbine npp | |
CN108413379B (en) | It is a kind of that system is utilized based on the industrial coal gas synergy dragged | |
CN201851182U (en) | Regenerative steam-driven primary air fan system and thermal circulation system of power station | |
CN206681807U (en) | A kind of TRT transformed based on medium temperature and medium pressure waste heat, complementary energy electricity generation system | |
Naidin et al. | SCW NPPs: layouts and thermodynamic cycles | |
CN208566664U (en) | Combined heat and power generation system | |
CN111485962A (en) | Steam turbine thermodynamic system and method for improving efficiency thereof | |
CN110805923A (en) | Steam air preheater system based on energy cascade utilization | |
CN113431643B (en) | Low-pressure industrial steam supply system combining condensate system and boiler | |
JPS582403A (en) | Control method and its equipment of steam separating reheater | |
JP2543905B2 (en) | Nuclear power plant turbine system | |
CN220395784U (en) | Wide-load efficient multi-unit combined industrial steam supply system | |
RU2291970C1 (en) | Method for operation of thermal power station | |
CN217001997U (en) | Supporting backheating structure after pure condensing generator set is changed into back pressure cogeneration unit | |
CN210118732U (en) | Novel deaerator water charging system | |
JP6739998B2 (en) | Steam turbine plant | |
JP3745419B2 (en) | Waste heat recovery boiler |