JPS627804A - Production of hyperfine particle - Google Patents

Production of hyperfine particle

Info

Publication number
JPS627804A
JPS627804A JP14468885A JP14468885A JPS627804A JP S627804 A JPS627804 A JP S627804A JP 14468885 A JP14468885 A JP 14468885A JP 14468885 A JP14468885 A JP 14468885A JP S627804 A JPS627804 A JP S627804A
Authority
JP
Japan
Prior art keywords
gas
arc
heat source
torch
ultrafine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14468885A
Other languages
Japanese (ja)
Inventor
Yoshiaki Ibaraki
茨木 善朗
Masatoshi Kanamaru
昌敏 金丸
Takeshi Araya
荒谷 雄
Kiju Endo
喜重 遠藤
Susumu Hioki
日置 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14468885A priority Critical patent/JPS627804A/en
Publication of JPS627804A publication Critical patent/JPS627804A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To safely produce hyperfine metallic or alloy particles with high production efficiency by feeding a gas provided with a whirling flow to the inside of a torch for an arc heat source for melting a metal or alloy. CONSTITUTION:When hyperfine particles are produced from a molten metal or alloy with an arc heat source, gaseous He, CO2, N2, Ar or a mixture thereof is fed to a gas path 3 on the inside of the cover 2 of a torch for the arc heat source in the direction of an arrow 4 and is spouted from gas holes 5 to form a whirling flow 6. Arc generated from the electrode 1 of the torch is centered on a part of the surface of a material to efficiently melt the material and hyperfine particles are efficiently produced. Since the gas contg. no H2 is provided with a whirling flow so as to center arc, high safety operation can be carried out.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は超微粒子の製造方法に関するもので、超微粒子
の生成効率が高くしかも安全性の高い超微粒子の製造方
法を提供することにある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for producing ultrafine particles, and an object of the present invention is to provide a method for producing ultrafine particles with high production efficiency and safety.

〔発明の背景〕[Background of the invention]

超微粒子の製造方法については、特公昭55−4412
3号、特公昭57−44725号などの方法が知られて
いる。これらはそれぞれ、ガス中蒸発法、水素ア一り加
熱法と呼ばれ、超微粒子の有効な製造方法である。
Regarding the manufacturing method of ultrafine particles, see Japanese Patent Publication No. 55-4412.
Methods such as No. 3 and Japanese Patent Publication No. 57-44725 are known. These are respectively called the in-gas evaporation method and the hydrogen aeration heating method, and are effective methods for producing ultrafine particles.

しかし、ガス中蒸発法は、蒸発させる金属を耐火物ルツ
ボ中で高周波誘導加熱により溶解しているため、耐火物
ルツボの冷却は必須であり、この冷却水に奪われる熱は
非常に多い。そのため熱効率が割くなり、生成効率も低
い。また、耐火物ルツボと反応する金属の超微粒子の製
造、および高融点金属(Nb、Taなど)の超微粒子の
製造は不可能である。また、装置全体が大型となり、装
置の設置スペースも多く要するため、超微粒子の価格は
高くなる。
However, in the in-gas evaporation method, since the metal to be evaporated is melted in a refractory crucible by high-frequency induction heating, cooling of the refractory crucible is essential, and a large amount of heat is taken away by this cooling water. Therefore, the thermal efficiency is low, and the generation efficiency is also low. Furthermore, it is impossible to produce ultrafine particles of metals that react with a refractory crucible, and it is impossible to produce ultrafine particles of high melting point metals (Nb, Ta, etc.). In addition, the entire device becomes large and requires a lot of installation space, which increases the price of ultrafine particles.

一方、後者の水素アーク加熱法は、ガス中蒸発法と比較
すると超微粒子の生成効率が高く、製造装置も小規模で
よいため超微粒子を経済的に製造することができる。し
かし、水素アーク加熱法は雰囲気に水素あるいは水素含
有化合物ガス成分が混入されており、しかも通常は密閉
系内で製造するため、外部の空気あるいは酸素が系内に
混入すると、アーク熱源を点火源として爆発を起す可能
性があり、生産設備としては問題を有している。
On the other hand, the latter hydrogen arc heating method has a higher generation efficiency of ultrafine particles than the in-gas evaporation method, and requires only a small scale production apparatus, so that ultrafine particles can be economically produced. However, in the hydrogen arc heating method, hydrogen or hydrogen-containing compound gas components are mixed in the atmosphere, and since it is usually produced in a closed system, if outside air or oxygen gets into the system, the arc heat source becomes an ignition source. This poses a problem for production equipment as it has the potential to cause an explosion.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、安全性が高く、しかも生成効率の高い
超微粒子の製造方法を提供することにある。
An object of the present invention is to provide a method for producing ultrafine particles with high safety and high production efficiency.

〔発明の概要〕[Summary of the invention]

本発明はアーク熱源を用いて、溶融純金属または溶融合
金から、超微粒子を製造する方法において、アーク熱源
用トーチの内側にガスを流し、そのガスの流れに旋回流
を付与する構造を持たせたことを特徴とするものである
The present invention relates to a method for producing ultrafine particles from molten pure metal or molten alloy using an arc heat source, in which gas is flowed inside a torch for the arc heat source, and the gas flow has a structure that imparts a swirling flow. It is characterized by:

本方法は、特願昭59−83711で述べたように、ア
ークを材料表面の局部に出来るだけ集中させ、超微粒子
の生成効率を高くするものである。本方法は、アークを
材料表面の局部に出来るだけ集中させる方法として、水
素あるいは水素含有化合物ガスでなく、アーク熱源用ト
ーチの内側に流すガス旋回流を付与したものである。旋
回流を付与するガスとして、アークを集中させる効果の
強いガスで、水素あるいは水素含有化合物ガス以外には
、ヘリウム、炭酸ガス、窒素、アルゴンなどがあり、こ
れらのガスの混合ガスを使用しても良い。水素あるいは
水素含有化合物ガスはアークを集中させる効果が非常に
高いが、安全性に問題がある。そこで水素あるいは水素
含有化合物ガス以外で、アークを集中させる方法として
、前記、ヘリウム。
As described in Japanese Patent Application No. 59-83711, this method concentrates the arc as locally as possible on the surface of the material, thereby increasing the efficiency of producing ultrafine particles. In this method, instead of using hydrogen or a hydrogen-containing compound gas, a gas swirling flow is applied to the inside of the arc heat source torch in order to concentrate the arc as locally as possible on the surface of the material. As a gas that gives a swirling flow, it is a gas that has a strong effect of concentrating the arc, and in addition to hydrogen or hydrogen-containing compound gas, there are helium, carbon dioxide, nitrogen, argon, etc., and a mixture of these gases is used. Also good. Hydrogen or hydrogen-containing compound gas is very effective in concentrating the arc, but there are safety issues. Therefore, as a method of concentrating the arc using a gas other than hydrogen or hydrogen-containing compound gas, helium is used.

炭酸ガス、窒素、アルゴンガスあるいはこれらの混合ガ
スを使用するが、これらのガスは水素あるいは水素含有
化合物ガスはどアークを集中させる効果は大きくないた
め、アーク熱源用トーチの内側にこれらのガスを流し、
そのガスの流れに旋回流を付与することにより、アーク
を集中させる効果を強化しようとするものである。これ
らにより、アーク熱源用トーチから出たアークは材料表
面の局部に集中し、安全にしかも生成効率が高くなる。
Carbon dioxide, nitrogen, argon gas, or a mixture of these gases is used, but these gases are not as effective in concentrating the arc as hydrogen or hydrogen-containing compound gases, so these gases are not used inside the arc heat source torch. sink,
The purpose is to enhance the effect of concentrating the arc by imparting a swirling flow to the gas flow. As a result, the arc emitted from the arc heat source torch is concentrated locally on the material surface, making it safer and more efficient.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を第1図及び第2図により説明す
る。第1図(a)、 (b)は本発明を利用した超微粒
子製造装置の中で、アーク熱源用トーチの内側にガスを
流し、そのガスの流れに旋回流を付与する構造を持たせ
た製造方法の一例である。1は電極であり、通常タング
ステンあるいは少量のドリアを添加したタングステンを
用いる。2はトーチのカバーを示しており、3はトーチ
の内側のガスの通路で、矢印4に示すように供給される
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. Figures 1 (a) and (b) show an apparatus for producing ultrafine particles using the present invention, which has a structure in which gas is flowed inside an arc heat source torch and a swirling flow is imparted to the gas flow. This is an example of a manufacturing method. Reference numeral 1 denotes an electrode, which is usually made of tungsten or tungsten doped with a small amount of doria. Reference numeral 2 indicates a cover of the torch, and reference numeral 3 indicates a gas passage inside the torch, through which gas is supplied as shown by arrow 4.

矢印4から供給されたガスは複数個の旋回流を付与する
ような角度及び大きさに設置された(本実施例では6ケ
の場合を示す)穴5を通過することにより矢印6に示す
ようなガスの流れとなり、電極lの周囲を旋回し、電極
先端から発生するアークを熱ピンチ力により収縮させ、
材料表面の局部にアークを集中させることができる。ト
ーチの構造は図示した例のみならず、トーチの内側にガ
スを流せる構造であればよく、旋回流を付与する穴5の
大きさ、形状、数、穴の角度は特に限定する必要がなく
、この穴5の中を流れるガスの種類によって定められる
ガス流速に関連している。この点を第2図を用いて説明
する。第2図は第1図(a)、 (b)の矢印6で示し
た旋回流の流速と超微粒子生成量の関係を示したもので
あり、3種類のガスを使用した例を示す。曲線(1)は
ヘリウム(He)100%ガスを旋回流を生じさせるガ
スとして使用した例であり、旋回流の流速を高くすると
超微粒子生成量が増加していることを示している。曲線
(2)および(3)はそれぞれ、旋回流を生じさせるガ
スとしてヘリウム十窒素ガス(N2)およびヘリウム1
00%ガス(Ar)混合ガスを使用した例であり、曲線
(1)に示したヘリウム100%ガスの例より超微粒子
生成量は大きくないが、旋回流の流速を高くすると、超
微粒子生成量が増加していることを示している。その他
、ヘリウム、炭酸ガス(CO2) 、窒素、アルゴンお
よびこれらのガスを話合してもよく、いずれも適当な旋
回流の流速を付与する構造をとれば、安全にしかも効率
良く超微粒子を生成させることが出来る。
The gas supplied from the arrow 4 passes through the holes 5 (in this example, six holes are shown) installed at angles and sizes that provide a plurality of swirling flows, as shown by the arrow 6. The gas flows, swirling around the electrode, and the arc generated from the electrode tip is contracted by thermal pinch force.
The arc can be concentrated locally on the material surface. The structure of the torch is not limited to the illustrated example, but may be any structure that allows gas to flow inside the torch, and the size, shape, number, and angle of the holes 5 that provide swirling flow do not need to be particularly limited. It is related to the gas flow rate determined by the type of gas flowing through this hole 5. This point will be explained using FIG. 2. FIG. 2 shows the relationship between the flow velocity of the swirling flow shown by the arrow 6 in FIGS. 1(a) and (b) and the amount of ultrafine particles produced, and shows an example in which three types of gas are used. Curve (1) is an example in which 100% helium (He) gas is used as the gas for generating the swirling flow, and shows that as the flow rate of the swirling flow is increased, the amount of ultrafine particles produced increases. Curves (2) and (3) are helium-de-nitrogen gas (N2) and helium-1, respectively, as the gases that generate the swirling flow.
This is an example using a 100% helium gas (Ar) mixed gas, and the amount of ultrafine particles produced is not larger than the example of 100% helium gas shown in curve (1), but if the flow velocity of the swirling flow is increased, the amount of ultrafine particles produced shows that the number is increasing. In addition, helium, carbon dioxide (CO2), nitrogen, argon, and other gases such as these may be used, and if each has a structure that provides an appropriate swirling flow velocity, ultrafine particles can be generated safely and efficiently. I can do it.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、水素あるいは水素
含有化合物ガスを使用しないため、超微粒子製造装置の
系内に空気あるいは酸素が混入した場合でも、アーク熱
源を点火源とした爆発を起こす可能性がない安全な装置
で、しかも超微粒子の生成効率が高いという効果がある
As explained above, according to the present invention, since hydrogen or hydrogen-containing compound gas is not used, even if air or oxygen gets mixed into the system of the ultrafine particle production device, an explosion using the arc heat source as the ignition source can occur. It is a safe device that does not have any harmful effects, and it has the effect of being highly efficient in producing ultrafine particles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はアーク熱源用トーチの説明図で(a)は横断面
図、(b)は縦断面図を示す、第2図は本発明を用いた
場合の旋回流流速と超微粒子生成量の関係を示す図であ
る。 1・・・電極、3・・・ガス通路、5・・・旋回流を付
与する第 1 口 (Q) (し)
Fig. 1 is an explanatory diagram of a torch for arc heat source, (a) shows a cross-sectional view, and (b) shows a longitudinal cross-sectional view. Fig. 2 shows the swirling flow velocity and the amount of ultrafine particle generation when using the present invention. It is a figure showing a relationship. 1... Electrode, 3... Gas passage, 5... First port (Q) that provides swirling flow.

Claims (1)

【特許請求の範囲】 1、アーク熱源を用いて、溶隔純金属または溶隔合金か
ら超微粒子を製造する方法において、アーク熱源用トー
チの内側にガスを流し、そのガスの流れに旋回流を付与
する構造を持たせたことを特徴とする超微粒子の製造方
法。 2、旋回流を与えるガスを、ヘリウム、炭酸ガス、窒素
、アルゴン及びにこれらのガスの混合とした特許請求の
範囲第1項記載の製造方法。
[Claims] 1. In a method for producing ultrafine particles from a pure metal or a metal alloy using an arc heat source, a gas is caused to flow inside a torch for the arc heat source, and a swirling flow is created in the gas flow. A method for producing ultrafine particles, characterized in that they have a structure. 2. The manufacturing method according to claim 1, wherein the gas providing the swirling flow is helium, carbon dioxide, nitrogen, argon, or a mixture of these gases.
JP14468885A 1985-07-03 1985-07-03 Production of hyperfine particle Pending JPS627804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14468885A JPS627804A (en) 1985-07-03 1985-07-03 Production of hyperfine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14468885A JPS627804A (en) 1985-07-03 1985-07-03 Production of hyperfine particle

Publications (1)

Publication Number Publication Date
JPS627804A true JPS627804A (en) 1987-01-14

Family

ID=15367945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14468885A Pending JPS627804A (en) 1985-07-03 1985-07-03 Production of hyperfine particle

Country Status (1)

Country Link
JP (1) JPS627804A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4834796B1 (en) * 2011-07-01 2011-12-14 昌義 安久津 Folding mechanism of the pressure roller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4834796B1 (en) * 2011-07-01 2011-12-14 昌義 安久津 Folding mechanism of the pressure roller

Similar Documents

Publication Publication Date Title
Venkatramani Industrial plasma torches and applications
US4519835A (en) Transferred-arc plasma reactor for chemical and metallurgical applications
US3765870A (en) Method of direct ore reduction using a short cap arc heater
JPH0399780A (en) Method of gas metal arc welding of aluminum base work
US4638488A (en) Fine grains producing apparatus
US20210121993A1 (en) Device and method for plasma cutting of work pieces
JPS6046305A (en) Alloy powder manufacturing process and device
JPH02277729A (en) Direct smelting method
US3992193A (en) Metal powder production by direct reduction in an arc heater
Zavjalov et al. Synthesis of copper nanopowders using electron-beam evaporation at atmospheric pressure of inert gas
JPS627804A (en) Production of hyperfine particle
JPS59166605A (en) Apparatus for preparing ultra-fine particle
JP2002220601A (en) Production method for low oxygen spherical metal powder using dc thermal plasma processing
US3173981A (en) Arch torch furnacing means and process
US5160533A (en) Method for grain refining of metals
Chen et al. Effect of energy parameters on droplet transfer behavior and weld formation in laser-arc hybrid welding with cable-type welding wire
US3353061A (en) High temperature plasma generator having means for providing current flow through plasma discharge
JPS63266001A (en) Production of composite spherical powder
JP3578486B2 (en) Method and apparatus for producing single-phase γ'-Fe4N ultrafine particles
RU2743474C2 (en) Method of plasma synthesis of powders of inorganic materials and apparatus for implementation thereof
JPS62103308A (en) Apparatus for producing ultrafine particles
JP2913018B2 (en) Metal surface treatment method
JPS61262470A (en) Gas shielded welding method
US20210121971A1 (en) Method and device for plasma cutting of work pieces
GB1334369A (en) Method of energy transfer utilizing a fluid convection cathode plasma jet