JPS62778B2 - - Google Patents

Info

Publication number
JPS62778B2
JPS62778B2 JP56023453A JP2345381A JPS62778B2 JP S62778 B2 JPS62778 B2 JP S62778B2 JP 56023453 A JP56023453 A JP 56023453A JP 2345381 A JP2345381 A JP 2345381A JP S62778 B2 JPS62778 B2 JP S62778B2
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
reinforcing
pressure
columnar member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56023453A
Other languages
Japanese (ja)
Other versions
JPS57137144A (en
Inventor
Ryotaro Ogiwara
Katsuyuki Ueno
Yasusuki Nakamura
Tsutomu Harada
Hisashi Ogura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meisei Industrial Co Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Meisei Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK, Meisei Industrial Co Ltd filed Critical Kawasaki Jukogyo KK
Priority to JP56023453A priority Critical patent/JPS57137144A/en
Publication of JPS57137144A publication Critical patent/JPS57137144A/en
Publication of JPS62778B2 publication Critical patent/JPS62778B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、主として液化天然ガス、液化石油ガ
ス等の超低温液化ガスを貯蔵、或は、輸送するた
めのメンブレタンクやセミブレンタンクの周側壁
面、底壁面に配設されて使用される耐圧ボードに
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is mainly concerned with a membrane tank or a semi-breeding tank for storing or transporting ultra-low temperature liquefied gas such as liquefied natural gas or liquefied petroleum gas. Regarding the pressure-resistant board used.

上記のような用途に供せられるボードにおいて
は、本来の断熱性はもとより、前記タンクの側壁
や底壁に作用する内圧、及び、タンクの動揺、そ
の他の原因により側壁に働く強大な荷重によつて
破壊されたり、変形を受けないようにするため
に、一般的な断熱ボードに比べて遥かに大なる耐
圧強度が要求され、かつ、取扱い施工面から軽量
化も要求される。
Boards used for the above-mentioned purposes not only have inherent heat insulation properties, but also have high resistance to internal pressure acting on the side walls and bottom walls of the tank, as well as large loads acting on the side walls due to tank oscillations and other causes. In order to prevent it from being destroyed or deformed due to stress, it is required to have much higher pressure resistance than general insulation boards, and it is also required to be lightweight in terms of handling and construction.

かかる要求に応える一手段として、断熱材自体
の耐圧強度が大きくなるように、即ち、高密度断
熱材を使用することが考えられ、この場合は、例
えば、ポリウレタンの場合に100Kg/m3程度以上
の高密度のものが必要となることがある。その結
果、製品重量が大きくなつて、それの取扱い面や
施工面に悪影響を及ぼすのみならず、この種ボー
ドとして第一義的要求であるところの、断熱性も
低下する問題がある。即ち、ポリウレタンフオー
ムなど発泡樹脂製の断熱材の断熱性は高密度化に
伴い悪化するのである。
One way to meet such demands is to increase the compressive strength of the insulation material itself, that is, to use high-density insulation materials. High densities may be required. As a result, the weight of the product increases, which not only adversely affects handling and construction, but also reduces the heat insulation properties, which is the primary requirement for this type of board. That is, the insulation properties of foamed resin insulation materials such as polyurethane foam deteriorate as the density increases.

また、断熱性の低下がなく、かつ、軽量にして
十分に高い耐圧強度を有する断熱ボードとして、
元来が宇宙ロケツトの推進燃料(液体水素)タン
ク用防熱材として開発されたもので、特殊なガラ
ス繊維立体格子を予め配設した型枠中に発泡性断
熱材を発泡させることにより三方向にガラス繊維
を含有するものや、特開昭52−26648号公報等で
みられるように、ガラス繊維シートと断熱材とを
多層に重合接着させたものをその積層面と直角に
切断し、次に、その切断した層とガラス繊維シー
トを再び交互に重合接着一体化した複合断熱材が
知られているが、前者の場合は、特殊材料を多量
に要するとともに、非常に高度な発泡技術を要
し、また、後者の場合は、複雑な製造工程を要
し、殊に接着、切断工程の品質管理が困難なこと
から均質なボードを多量生産することが困難であ
り、材料面、製造面で非常に高価なものになつて
しまう難点があつた。
In addition, as a heat insulating board that does not reduce insulation properties, is lightweight and has sufficiently high pressure resistance,
It was originally developed as a heat insulating material for the propellant fuel (liquid hydrogen) tanks of space rockets, and was created by foaming foam insulating material in a formwork in which a special three-dimensional glass fiber lattice was placed in advance. A product containing glass fiber or a product made by polymerizing and adhering a glass fiber sheet and a heat insulating material in multiple layers, as shown in Japanese Patent Application Laid-Open No. 52-26648, is cut perpendicular to the laminated surface, and then A composite insulation material is known in which the cut layers and glass fiber sheets are alternately polymerized and bonded together again, but the former requires a large amount of special materials and a very advanced foaming technology. In addition, in the latter case, it is difficult to mass-produce homogeneous boards because it requires a complicated manufacturing process, and it is difficult to control the quality of the bonding and cutting processes in particular. The problem was that it became expensive.

更に、冒述の如き要求に応える他の手段とし
て、一般的な使用態様からボードの表面保護及び
タンク等への固定保持のために表裏両面に接合一
体化される合板等の二枚の表面材間に、適当間隔
を隔てて複数本の柱状部材を固着介在させ、これ
らによつて形成される空間部に樹脂製断熱材を発
泡させ、もつて、前記柱状部材に所要の圧縮強度
を負担させたものが考えられているが、この種形
態のボードで従来のものは、例えば、特開昭49−
105227号公報で示されているように、前記柱状部
材が天然素材である木製品であつたため、柱状部
材単体の圧縮強度は小さく、そのため、ボード全
体として所要の耐圧強度をもたせるには、柱状部
材の配置密度を大にするか、或は柱状部材単体を
大径化する要が生じ、これが断熱性を低下する要
因になり、また、ボードの総重量を増大する要因
にもなつており、その上、木製故に、原料の切出
し、切削加工といつた製造工程を要して、均質な
ものが得がたく、かつ、吸湿性を有するため、腐
蝕や含有水分の凍結に伴う体積膨張に起因する亀
裂発生等によつて、材質及び強度が経年低下し、
これがボードとしての耐久性(寿命)を縮めると
いつた問題があつた。
Furthermore, as another means to meet the above-mentioned requirements, two surface materials such as plywood that are bonded and integrated on both the front and back sides of the board in order to protect the surface of the board and secure it to a tank, etc., are available. In between, a plurality of columnar members are fixedly interposed at appropriate intervals, a resin heat insulating material is foamed in the space formed by these, and the columnar members are made to bear the required compressive strength. However, the conventional board of this type is, for example, published in Japanese Patent Application Laid-Open No. 1973-
As shown in Publication No. 105227, since the columnar members were made of wood, which is a natural material, the compressive strength of the columnar members alone was small. It becomes necessary to increase the arrangement density or increase the diameter of each columnar member, which causes a decrease in insulation performance, and also causes an increase in the total weight of the board. Since it is made of wood, it requires a manufacturing process that involves cutting raw materials and cutting, making it difficult to obtain a homogeneous product.Also, because it is hygroscopic, cracks may occur due to corrosion or volumetric expansion due to freezing of contained moisture. The material quality and strength deteriorate over time due to
There was a problem that this shortened the durability (lifespan) of the board.

また、前記柱状部材を木製品ではなく合成樹脂
材料で構成することにより、木製のものに比べて
圧縮強度を顕著に向上させるという技術も、実公
昭52−39108号公報に示されているように、従来
より知られている。しかしながら、合成樹脂材料
で構成された柱状部材ではあつても、断熱材の肉
厚を大にして断熱性能を向上させようとする場合
には、柱状部材が細すぎると座屈変形し易くな
る、あるいは、ボードの板面に沿う方向で作用す
る剪断力に対する耐力が低くなるという欠点があ
り、柱状部材を太くすると、前記座屈や剪断耐力
の低下を防ぐ上では有効であつても、柱状部材の
大径化に伴つて断熱性能が低下する欠点があり、
結局、断熱性能の向上のために厚肉の断熱材を得
るに際しては、圧縮強度および剪断耐力の低下を
招くとともに、柱状部材の大径化による断熱性能
の低下を招くという問題点を避けられないものと
されていた。
In addition, as shown in Japanese Utility Model Publication No. 52-39108, there is a technique in which the columnar members are made of a synthetic resin material instead of a wooden product, thereby significantly improving the compressive strength compared to wooden ones. Traditionally known. However, even if the columnar member is made of synthetic resin material, if the thickness of the insulation material is increased to improve the insulation performance, if the columnar member is too thin, it will easily buckle and deform. Alternatively, there is a drawback that the strength against the shearing force acting in the direction along the board surface becomes low. The disadvantage is that the insulation performance decreases as the diameter increases.
After all, when obtaining a thick insulation material to improve insulation performance, it is unavoidable that the compressive strength and shear strength will decrease, and the insulation performance will decrease due to the increase in the diameter of the columnar members. It was considered a thing.

本発明は、軽量で断熱機能の優れた高発泡の断
熱材を、厚みを大にしてさらに断熱性能を高めた
状態で得るにあたり、柱状部材の大径化を伴つて
断熱性能が低下するとか、柱状部材の座屈変形に
よる耐圧強度の低下、あるいは、剪断耐力の低下
を招くことなく、厚肉の断熱材を備えた耐圧断熱
ボードを得ることにその目的がある。
The present invention aims to obtain a highly foamed heat insulating material that is lightweight and has an excellent heat insulating function by increasing the thickness and further improving the heat insulating performance. The objective is to obtain a pressure-resistant heat insulating board equipped with a thick heat insulating material without causing a decrease in pressure strength or shear strength due to buckling deformation of columnar members.

上記目的を達成するための本発明の特徴とする
構成は、発泡樹脂製断熱材に、適当間隔を隔てて
かつそれの肉厚方向に貫通又はほぼ貫通する状態
で樹脂製の補強柱状部材の複数個を埋入させると
ともに、その補強柱状部材を前記断熱材の肉厚方
向に対して傾斜姿勢で埋入位置させ、さらに、前
記断熱材の肉厚内には、前記補強柱状部材群が貫
通支持される状態で一つ以上の板状体を介在させ
てある点にあり、かかる構成から、次の作用効果
を奏する。
The characteristic structure of the present invention for achieving the above object is that a plurality of reinforcing columnar members made of resin are installed in a foamed resin heat insulating material at appropriate intervals and penetrating or almost penetrating in the thickness direction of the foamed resin heat insulating material. At the same time, the reinforcing columnar members are embedded in an inclined position with respect to the thickness direction of the heat insulating material, and further, the reinforcing columnar members are penetrated and supported within the thickness of the heat insulating material. In this state, one or more plate-like bodies are interposed in the state in which the device is in use, and this configuration provides the following effects.

木製のものに比べて耐圧強度のきわめて大きい
合成樹脂製の柱状部材によつてボードとしての所
要耐圧強度の大部分を負担できるから、断熱材自
体としては耐圧強度の小さいもの、つまり、低密
度高発泡のものを用いることができて、ボード全
体を厚肉である割に軽量化できる。加えて、断熱
材が低密度のもので良いことから、それ自体の熱
伝導率をも低下できる。この事と、元来が圧縮強
度の高い補強柱状部材の座屈変形を中間の板状体
で阻止して補強柱状部材単体の圧縮強度をさらに
高め、しかも、その補強柱状部材を断熱材の肉厚
方向に対して傾斜姿勢で埋入させて、耐圧強度と
剪断耐力とをともに高めてあることとの組合せに
より、軽量で、断熱性能に優れ、かつ、耐圧強度
ならびに剪断耐力に優れた厚肉の断熱ボードを得
ることができたものである。
Since the synthetic resin columnar members, which have extremely high pressure resistance compared to wooden ones, can bear most of the pressure resistance required for the board, the insulation material itself should be made of materials with low pressure resistance, that is, low density and high Since foam can be used, the entire board can be made lighter despite its thickness. In addition, since the heat insulating material can be of low density, its own thermal conductivity can also be reduced. In addition, it is possible to further increase the compressive strength of the reinforcing column member by blocking buckling deformation of the reinforcing column member, which originally has high compressive strength, with the intermediate plate-like member. This combination of embedding in an inclined position in the thickness direction increases both pressure resistance and shear resistance, resulting in a thick wall that is lightweight, has excellent heat insulation performance, and has excellent pressure resistance and shear resistance. We were able to obtain this insulation board.

以下に本発明の実施例を図面の記載に基づいて
説明する。
Embodiments of the present invention will be described below based on the drawings.

第1図は最も基本的な構造のものであつて、ポ
リウレタン、ポリスチレン、ポリエチレン、フエ
ノール樹脂等の発泡樹脂製断熱材4に、その面方
向に縦横夫々に適当間隔を隔てて、ポリエステ
ル、エポキシ、ガラス繊維又炭素繊維強化樹脂製
で、中実又は中空形の補強柱状部材3の複数個
を、断熱材4肉厚方向に貫通する状態で、かつ、
断熱材4の肉厚方向に対して傾斜した姿勢で埋入
させるとともに、前記断熱材4の肉厚方向での中
央部又はほぼ中央部に、合板、アルミニウム板、
ステンレス板などの、低温耐久性ならびに低温強
度を有する板状体5を、前記補強柱状部材3群を
貫通支持させる状態に介在したボードであり、こ
れの製作方法としては、○イ前記板状体5の表裏に
おいて発泡成形した前記断熱材4及び板状体5に
所要間隔を隔ててその肉厚方向に貫通する複数の
孔を形成し、この孔内に、予め別途成形した前記
柱状部材3を挿入する方法、○ロ前記同様に断熱材
4及び板状体5に形成した孔内に、未硬化の液状
樹脂(これはガラス繊維又は炭素繊維を混入した
ものも含む。)を注入して重合硬化させる方法、
○ハ型枠および板状体5を組立て、この型枠に前記
柱状部材3を板状体5に予め穿した孔に貫通させ
て並列固定させておいて、その空間部にポリウレ
タン原液やポリスチレン樹脂粒状物を入れて発泡
反応により空間部を充填させて柱状部材3と断熱
材4および板状体5とを一体化する方法。等が考
えられる。
Figure 1 shows the most basic structure, in which polyester, epoxy, etc. A plurality of solid or hollow reinforcing columnar members 3 made of glass fiber or carbon fiber reinforced resin are penetrated in the thickness direction of the heat insulating material 4, and
The insulation material 4 is embedded in an inclined position with respect to the thickness direction, and plywood, aluminum plate,
This is a board in which a plate-like body 5 having low-temperature durability and low-temperature strength, such as a stainless steel plate, is interposed so as to penetrate and support the three groups of reinforcing columnar members, and the manufacturing method thereof is as follows: A plurality of holes are formed in the heat insulating material 4 and the plate-shaped body 5 which are formed by foam molding on the front and back sides of the 5, and penetrate in the thickness direction thereof at required intervals, and the columnar members 3, which are separately molded in advance, are inserted into the holes. Insertion method: ○B Inject uncured liquid resin (this also includes those mixed with glass fiber or carbon fiber) into the holes formed in the heat insulating material 4 and the plate-shaped body 5 in the same manner as above and polymerize it. how to harden,
○ Assemble the formwork and the plate-like body 5, and fix the columnar members 3 in parallel to the formwork by passing them through the holes drilled in the plate-like body 5 in advance, and fill the space with polyurethane stock solution or polystyrene resin. A method of integrating the columnar member 3, the heat insulating material 4, and the plate-like member 5 by introducing granular materials and filling the space by a foaming reaction. etc. are possible.

そして、上記何れの方法においても、一度に相
当肉厚の大きなもの、つまり、必要とする断熱ボ
ード単体の肉厚の整数倍のものを作製し、これを
所要厚さにスライス状に切断する方法を採用する
こともできる。
In any of the above methods, a board with a considerably large thickness, that is, a board that is an integer multiple of the thickness of the required insulation board, is manufactured at one time, and then this is cut into slices to the required thickness. can also be adopted.

尚、前記補強柱状部材3の直径(太さ)、及
び、配列ピツチは、それの構成材料の圧縮強度値
に応じて適宜設計するのであるが、殊に、繊維強
化樹脂を用いる場合は、直径の小さいものを少数
用いることで所期の目的を達成でき、更に、強化
のための混入繊維として長尺のものを用いて、こ
れを柱状部材の長手方向に沿つた配向姿勢にすれ
ば、圧縮強度を最も大きくできて、ボード耐圧強
度面で一層有利である。
The diameter (thickness) and arrangement pitch of the reinforcing columnar member 3 are appropriately designed depending on the compressive strength value of its constituent material. In particular, when using fiber reinforced resin, the diameter The desired purpose can be achieved by using a small number of small fibers, and furthermore, if long fibers are used as reinforcing fibers and are oriented along the longitudinal direction of the columnar member, compression can be achieved. The strength can be maximized, which is more advantageous in terms of board pressure resistance.

上記の如き耐圧断熱ボードはそれのみを単体と
して用いられる場合もあるが、通常は、断熱材4
の表面保護およびタンクなど断熱対象駆体への固
定保持のために、第2図や第3図で示すように、
断熱材4り肉厚方向両面、或は、片面に、合板、
合板樹脂板、アルミニウム板などの表面材1を、
使用条件に応じ適宜選択して一体接合していわゆ
る、パネル形態で用いられるものである。
Although the above-mentioned pressure-resistant insulation board is sometimes used as a single unit, it is usually used as insulation material 4.
As shown in Figures 2 and 3, in order to protect the surface of
Insulation material 4. Plywood on both sides in the wall thickness direction, or on one side.
Surface material 1 such as plywood resin plate or aluminum plate,
They are selected as appropriate depending on the conditions of use and integrally joined to be used in a so-called panel form.

尚、上記のパネル形態のものにおいて、前記補
強柱状部材3の端部を前記表面材1に接合するに
際しては、唯単なる接当固着でも良いが、補強柱
状部材3の端部接着面積を増やすために、接着剤
を柱状部材3の端部周辺にハの字状に塗布して、
接合部面積が柱状部材3の中間部における横断面
積よりも大なるような手段を採ることによつて、
例えば、躯体に対して強力に締付け固定するよう
なときに補強柱状部材3に作用する強大な軸力を
広い接着部面積で分散させ、補強柱状部材3より
も耐圧縮強度の低い表面材1が局部的に破損、変
形することを回避できるように構成しても良い。
In the above-mentioned panel form, when joining the ends of the reinforcing columnar members 3 to the surface material 1, simple contact and fixation may be used, but in order to increase the bonding area of the ends of the reinforcing columnar members 3. Then, apply adhesive in a V-shape around the end of the columnar member 3,
By taking measures such that the joint area is larger than the cross-sectional area at the middle part of the columnar member 3,
For example, when the reinforcing columnar member 3 is strongly tightened and fixed to a building frame, the strong axial force that acts on the reinforcing columnar member 3 is dispersed over a wide adhesive area, and the surface material 1 has a lower compressive strength than the reinforcing columnar member 3. It may be configured to avoid local damage or deformation.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る耐圧断熱ボードの実施例を
示し、第1図は、一部切欠斜視図、第2図は第1
図における−線断面図、第3図および第4図
は夫々別の実施例を示す要部の拡大縦断面図であ
る。 3……補強柱状部材、4……断熱材、5……板
状体。
The drawings show an embodiment of the pressure-resistant insulation board according to the present invention, and FIG. 1 is a partially cutaway perspective view, and FIG. 2 is a partially cutaway perspective view.
The sectional view taken along the line ``--'' and FIGS. 3 and 4 are enlarged longitudinal sectional views of main parts showing different embodiments, respectively. 3...Reinforcing columnar member, 4...Insulating material, 5...Plate-shaped body.

Claims (1)

【特許請求の範囲】 1 発泡樹脂製断熱材4に、適当間隔を隔ててか
つそれの肉厚方向に貫通又はほぼ貫通する状態で
樹脂製の補強柱状部材3の複数個を埋入させると
ともに、その補強柱状部材3を前記断熱材4の肉
厚方向に対して傾斜姿勢で埋入位置させ、さら
に、前記断熱材4の肉厚内には、前記補強柱状部
材3群が貫通支持される状態で一つ以上の板状体
5を介在させてある事を特徴とする耐圧断熱ボー
ド。 2 前記補強柱状部材3がガラス繊維又は炭素繊
維強化樹脂から構成されたものである特許請求の
範囲第1項に記載の耐圧断熱ボード。 3 前記補強柱状部材3を構成する樹脂に混入の
繊維が長尺の繊維であり、かつ、その長尺繊維を
柱状部材3長手方向に沿つた又はほぼ沿つた配向
姿勢に混入してある特許請求の範囲第2項に記載
の耐圧断熱ボード。 4 前記板状体5が前記断熱材4の肉厚中央部又
はほぼ中央部に一枚、介在されている特許請求の
範囲第1項乃至第3項の何れかに記載の耐圧断熱
ボード。
[Scope of Claims] 1. A plurality of reinforcing columnar members 3 made of resin are embedded in the foamed resin heat insulating material 4 at appropriate intervals and penetrating or almost penetrating in the thickness direction thereof, and The reinforcing columnar member 3 is embedded in an inclined position with respect to the thickness direction of the heat insulating material 4, and the group of reinforcing columnar members 3 is penetrated and supported within the thickness of the heat insulating material 4. A pressure-resistant insulation board characterized by having one or more plate-like bodies 5 interposed therebetween. 2. The pressure-resistant insulation board according to claim 1, wherein the reinforcing columnar member 3 is made of glass fiber or carbon fiber reinforced resin. 3. A patent claim in which the fibers mixed in the resin constituting the reinforcing columnar member 3 are long fibers, and the long fibers are mixed in an orientation along or almost along the longitudinal direction of the columnar member 3. The pressure-resistant insulation board according to item 2 of the range. 4. The pressure-resistant heat insulating board according to any one of claims 1 to 3, wherein the plate-like body 5 is interposed at the center or substantially the center of the thickness of the heat insulating material 4.
JP56023453A 1981-02-17 1981-02-17 Pressure-resisting heat insulating board Granted JPS57137144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56023453A JPS57137144A (en) 1981-02-17 1981-02-17 Pressure-resisting heat insulating board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56023453A JPS57137144A (en) 1981-02-17 1981-02-17 Pressure-resisting heat insulating board

Publications (2)

Publication Number Publication Date
JPS57137144A JPS57137144A (en) 1982-08-24
JPS62778B2 true JPS62778B2 (en) 1987-01-09

Family

ID=12110914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56023453A Granted JPS57137144A (en) 1981-02-17 1981-02-17 Pressure-resisting heat insulating board

Country Status (1)

Country Link
JP (1) JPS57137144A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0528391Y2 (en) * 1988-07-30 1993-07-21

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60171324U (en) * 1984-04-23 1985-11-13 西川 幸雄 insulation sheet
JPH0320113Y2 (en) * 1985-09-18 1991-04-30
US4808461A (en) * 1987-12-14 1989-02-28 Foster-Miller, Inc. Composite structure reinforcement
DE69334169T2 (en) * 1993-10-29 2008-06-12 Foster-Miller, Inc., Waltham TRANSLAMINARY REINFORCEMENT SYSTEM FOR THE REINFORCEMENT OF A GEWEBSMATRIXSTRUKR IN Z-DIRECTION
KR101681706B1 (en) * 2010-06-28 2016-12-01 대우조선해양 주식회사 Insulation box of lng cargo containment system
KR101681705B1 (en) * 2010-06-28 2016-12-01 대우조선해양 주식회사 Insulation box of lng cargo containment system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5239108U (en) * 1975-09-11 1977-03-19

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5239108U (en) * 1975-09-11 1977-03-19

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0528391Y2 (en) * 1988-07-30 1993-07-21

Also Published As

Publication number Publication date
JPS57137144A (en) 1982-08-24

Similar Documents

Publication Publication Date Title
US5679432A (en) Multi-layer laminate structure
CA2389037C (en) Panels utilizing a precured reinforced core and method of manufacturing the same
US4155482A (en) Insulated cryogenic liquid container
JP4286249B2 (en) Sealed insulated tank built into the load-bearing structure of the ship
KR100325441B1 (en) Improvement on an impermeable and thermally insulating tank comprising prefabricated panels
US3095014A (en) Stave secured sectional insulated conduit
US6998359B2 (en) Article and process for maintaining orientation of a fiber reinforced matt layer in a sandwiched urethane construction
US3446692A (en) Insulated panel and method of making same
EP1265744B1 (en) Fiber reinforced composite cores
US6755998B1 (en) Composite panel adapted for point compressive loads and method for making same
KR100751697B1 (en) Insulating structure of cargo containment system with the cfrp and its panel for lng tank
KR20060052601A (en) Sealed, thermally insulated tank with compression-resistant non-conducting elements
US3472728A (en) Foam structural element
JP6333363B2 (en) Self-supporting case for insulating a fluid storage tank and method for manufacturing such a case
KR20140073486A (en) Method and system for reinforced pipe insulation
US5798160A (en) Foam-plastic core for structural laminate
US4051833A (en) Reinforced structural panel with integral solar energy collecting array and method of producing and assembling same
JPS62778B2 (en)
US3783082A (en) Panels and method of making same
US4050608A (en) Cross-shaped joint cover member for generally rectangular composite insulating panels forming wall portion of insulated cryogenic liquid container
JPH06123158A (en) Composite material for construction
KR20210124996A (en) Insulation block for storage tank insulation
US3470058A (en) Foamed plastic structures
US11585089B2 (en) Lightweight, wood-free structural insulation sheathing
JPS62191136A (en) Fiber-reinforced plastic composite board