JPS6277897A - Motor for controlling tension of rolling mill - Google Patents

Motor for controlling tension of rolling mill

Info

Publication number
JPS6277897A
JPS6277897A JP60216645A JP21664585A JPS6277897A JP S6277897 A JPS6277897 A JP S6277897A JP 60216645 A JP60216645 A JP 60216645A JP 21664585 A JP21664585 A JP 21664585A JP S6277897 A JPS6277897 A JP S6277897A
Authority
JP
Japan
Prior art keywords
power
motor
winding
rotor
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60216645A
Other languages
Japanese (ja)
Inventor
Takashi Mera
米良 孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60216645A priority Critical patent/JPS6277897A/en
Publication of JPS6277897A publication Critical patent/JPS6277897A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Abstract

PURPOSE:To improve the reliability notably by eliminating a sleeve contact by a method wherein, in a motor for driving a rooper, a rotor is connected to a power supply through a power cable moderately slackened. CONSTITUTION:Terminals 7b1 of a rotor winding 7b are led out of the end reverse to directly connected axle side through a central hole 7f1 excavated at the central part of a rotary axle 7f. The terminals 7b1 led out by a flexible conductor made of mild copper wire or connected to a power cable moderately slackened are constituted to make a rotor free-rotatable within the range of 180 deg.. In such a constitution, the titled motor though similar to a winding induction motor can eliminate a sleeve contact part comprising a slip ring and a brush.

Description

【発明の詳細な説明】 ・(技術分野の説明) 本発明は金属圧延殿のスタンド間張力制御を行なうため
の圧延製張力制御用電動機装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Description of Technical Field) The present invention relates to a rolling tension control electric motor device for controlling inter-stand tension in a metal rolling hall.

〔発明の技術的背頓とその問題点] 鉄や非鉄金属の圧延設備において多数の圧延機を近接し
て設置し連続的に被圧延材を圧延するものでは、各圧延
機ロールの回転速度差や圧延される材料の温度の変化に
よる伸びの差により、各圧延機スタンド間にある被圧延
材に張力変動が発生する。この張力変動は圧延中の被圧
延材の厚さのむらとなり、最終製品の寸法誤差の増大や
不良品の発生の要因となるため、圧延機スタンド間の被
圧延材の張力は常に一定になる様に制御される。
[Technical failure of the invention and its problems] In rolling equipment for ferrous and non-ferrous metals, in which a large number of rolling mills are installed close to each other and the material to be rolled is continuously rolled, the rotational speed difference between the rolls of each rolling mill is Due to differences in elongation due to changes in the temperature of the material to be rolled, tension fluctuations occur in the material to be rolled between the rolling mill stands. This tension fluctuation causes unevenness in the thickness of the rolled material during rolling, which increases dimensional errors in the final product and causes defective products. Therefore, the tension of the rolled material between the rolling mill stands should always be constant. controlled by.

この張力の制御の仕方には従来数種類の方法があるが、
特に被圧延材を圧延する熱間圧5i設備などでは、電動
式ルーパーと呼ばれる張力制御装置を用いることがある
There are several conventional methods for controlling this tension.
In particular, a tension control device called an electric looper is sometimes used in a hot pressure 5i facility for rolling a material to be rolled.

この−例として第7図に示す様に隣接した圧延機スタン
ド1.2の中間にひとつのルーバーローラ3を設置して
、被圧延材4を適当な高さに押し上げる様にし、このル
ーバーローラー3をリンク5およびギヤー6を介し電動
機7によって駆動するもので、被圧延材に作用する張力
をルーパーローラー3の高さを変えて制御するものであ
る。
As an example of this, as shown in FIG. 7, one louver roller 3 is installed between adjacent rolling mill stands 1.2 to push up the rolled material 4 to an appropriate height. is driven by an electric motor 7 via a link 5 and a gear 6, and the tension acting on the material to be rolled is controlled by changing the height of the looper roller 3.

この様な張力制御装置に必要な特性として、速い応答性
と良好な制御性がある。このため従来の電動式ルーパー
には、副脚性の良い直流電動機が用いられ、かつ連応性
向上のため、出来るだけ慣性モーメントの小さいものが
採用されていた。
Characteristics required for such a tension control device include fast response and good controllability. For this reason, conventional electric loopers use DC motors with good secondary leg performance, and in order to improve coordination, motors with as small a moment of inertia as possible are used.

しかし乍ら、前述の如くギヤー6を用いた方式は、その
ギt−6自体の慣性モーメントが大きく連応性をl!l
l害し、またギヤー6のバックラッシュのため制i2I
Ig1度が阻害いされると言う欠点があったため、最近
では、このギヤー6を無くし、第8図のIJなリンク5
の駆動軸とIF電動機の駆シJ軸を直結させるキヤシユ
の直結駆動方式の電動ルーバーか採用される様になった
However, as mentioned above, in the system using the gear 6, the moment of inertia of the gear 6 itself is large, which reduces the coordination. l
i2I was damaged due to backlash in gear 6.
Recently, this gear 6 has been eliminated and the IJ link 5 shown in Fig.
An electric louver with a direct drive system has been adopted in which the drive shaft of the IF motor is directly connected to the drive shaft J axis of the IF motor.

この様な電動ルーパーにも電lIJ機としては従来の直
流゛電動機を採用していたので、新たな問題が工を生す
る峰になった。即ち、第8図の(M造より明らかな如く
、リンク5の駆動軸に直結される電動fil 7はD大
でも180°1通常の設備においては60〜90°以上
の回転を必要としないばかりでなく、定常的な運転状態
においては、はぼ10〜20°の範囲を回転するのみと
なる。周知の如く直流電動橢には、整流子とブラシが不
可欠のものであるが、前述の様な狭い範囲の回転は、こ
の整流子にとってあたかも静止中の通電に等しい状態と
なる。
Since this type of electric looper used a conventional DC motor as an electric IJ machine, a new problem became a major problem. That is, as is clear from the M construction in Fig. 8, the electric filter 7 directly connected to the drive shaft of the link 5 does not require rotation of more than 60 to 90 degrees in normal equipment. However, under steady operating conditions, it only rotates within a range of 10 to 20 degrees.As is well known, a commutator and brushes are essential for a DC electric shovel, but as mentioned above, For this commutator, rotation within a narrow range is equivalent to energization while the commutator is at rest.

直流電vJ機の整流子片は、銅もしくはその合金でつく
られた多数の整流子片とマイカ等の絶縁物で作った薄い
絶縁板を、円周方向に交互に並べた構造であるため、円
周方向の熱伝導は揄めて悪いものである。この様な性質
の整流子をもつ直流電動機をほぼ静止に近い状態で通電
使用すると、ブラシ下の整流子片のみが周端に加熱され
て膨張し、隣接した整流子片を円周方向に押すと共に、
自身は半径外周方向に伸び上る。また通電が止み整流子
が冷却されると一部のものは伸び上ったままの状態を保
ち、また一部のものは隣接した整流子片との隙間が伸び
上る以前より大きくなっているため、初期の状態より半
径中心方向に大きく沈んでしまうなどいわゆるハイパー
、ローバーが発生する。このハイパーやローパーは、ブ
ラシの滑らかf、摺動を防げ、ブラシの欠損や大きな火
花発生による整流子表面の荒損などを生ずる。
The commutator pieces of a DC electric VJ machine have a structure in which a large number of commutator pieces made of copper or its alloy and thin insulating plates made of an insulator such as mica are arranged alternately in the circumferential direction. Heat conduction in the circumferential direction is extremely poor. When a DC motor with a commutator of this nature is used in a nearly stationary state, only the commutator pieces under the brushes are heated and expand at the circumferential edge, pushing adjacent commutator pieces in the circumferential direction. With,
It extends upward in the radial direction. Also, when the current stops and the commutator cools down, some of the pieces remain stretched upward, and some of the gaps between adjacent commutator pieces become larger than before they were stretched upward. , so-called hyper-rover occurs, such as sinking more toward the center of the radius than in the initial state. These hypers and ropers prevent the brushes from smoothing and sliding, which can cause breakage of the brushes and rough damage to the commutator surface due to generation of large sparks.

特にギヤーレスの場合、従来の如くギヤによるトルク増
巾が出来ないので電動機の所要トルクが増大し、これに
連れて電流も増やす必要が生じ、前述のハイパー、ロー
バーの対阻のため、軸方向に非常に長い整流子をつくる
か、または2台以上の電動機に分割し、−軸に直結する
などの対策を要する。このため、電#J門は大形化し、
圧延(須のまわりに広いスペースが必要となる等の問題
があった。
In particular, in the case of a gearless system, the torque cannot be increased by gears as in the past, so the required torque of the electric motor increases, and along with this, it becomes necessary to increase the current as well. Countermeasures must be taken, such as creating a very long commutator or dividing the motor into two or more motors and connecting them directly to the -shaft. For this reason, the electric #J gate became larger,
There were problems such as the need for a large space around the rolling mill.

(発明の目的) 本発明は従来の直結駆動方式の電動ルーパー用電動機の
もつ欠点を除去するためなされたもので、整流子とブラ
シをもたない圧延機張力制御用電動機装置を提供するこ
とを目的とする。
(Object of the Invention) The present invention has been made in order to eliminate the drawbacks of the conventional direct drive type electric looper motor, and an object of the present invention is to provide a rolling mill tension control motor device that does not have a commutator and brushes. purpose.

〔発明の概要〕[Summary of the invention]

本発明は前記目的を達成するため以下のように構成した
ものである。即ち第1番目の発明は、商用周波数の交流
電源より交流′電力を受け、これを可変電圧の直流に変
換する順変換器および電動機の回転子巻線に流れる電流
の方向を切替える逆変換器ならびに前記両度換器の制御
器より成る第1の電力変l!j!装置と、前記商用周波
数の交流電源より交電力を受け直流電力に変換する第2
の電力変換装置と、前記第1の電力変換装置より電力の
ζ1を給を受ける固定子巻線と前記第2の電力変換装置
より電力の供給を受ける回転子巻線をゴhえた電動機と
からなるものである。第2番月の発明(ユ商用周波数の
交?i1電源より交流電力を受け、これを可変電圧の直
流に変換する順変換器および電動機の回転子巻線に流れ
る電流の方向を切替える逆変換器ならびに前記両度換器
の制御器より成る第1の電力変換装置と、前記商用周波
数の交流電源より交流電力を受け直流電力に変換する第
2の電力変換装置と、前記第1の電力・変換装置より電
力の供給を受ける固定子巻線と前記第2の電力変IIj
!装Eより電力の供給を受ける回転子巻線を備えた電動
機と、この電動機の回転子の回転角を検出する回転子回
転角検出装置と、この回転子回転角検出装置の信号に従
って前記電動機発生トルクの変動分を演算し、これに基
き前記固定子巻線に流れる電流を補正する第1の関数発
生器と、WL機丁子反作用よる電動橢発生トルクの変化
分を前記固定子巻線に流れる電流の大きさに応じて前記
回転子巻線に流れる電流を補正する第2の関数発生器と
からなるものである。
In order to achieve the above object, the present invention is constructed as follows. That is, the first invention includes a forward converter that receives AC' power from a commercial frequency AC power source and converts it into variable voltage DC, an inverse converter that switches the direction of current flowing through the rotor winding of a motor, and A first power transformer l! consisting of the controller of said double-degree converter. j! a second device that receives alternating current power from the commercial frequency alternating current power source and converts it into direct current power;
a power converter, and an electric motor having a stator winding that receives power ζ1 from the first power converter and a rotor winding that receives power from the second power converter. It is what it is. Inventions of the second month (Forward converter that receives AC power from a commercial frequency AC power source and converts it to variable voltage DC; Inverse converter that switches the direction of current flowing through the rotor winding of a motor. and a first power converter comprising a controller for the double degree converter, a second power converter that receives AC power from the commercial frequency AC power source and converts it into DC power, and the first power converter. A stator winding receiving power from the device and the second power transformer IIj
! An electric motor equipped with a rotor winding that receives power from equipment E, a rotor rotation angle detection device that detects the rotation angle of the rotor of this motor, and a rotor rotation angle detection device that detects the rotation angle of the rotor of the motor, and detects the rotation angle of the motor according to a signal from the rotor rotation angle detection device. a first function generator that calculates a variation in torque and corrects the current flowing to the stator winding based on the variation; and a first function generator that calculates a variation in torque and corrects the current flowing to the stator winding based on the variation; and a second function generator that corrects the current flowing through the rotor winding according to the magnitude of the current.

〔発明の実施例〕[Embodiments of the invention]

先ず本発明に基く直結駆動方式の圧延機張力制御□□用
電vJ機装置(以下電動ルーパー装置という)の基本構
成について説明する。
First, the basic configuration of a direct drive type rolling mill tension control electric VJ machine device (hereinafter referred to as electric looper device) according to the present invention will be explained.

第1図に本発明による電動ルーパー装置を構成する主な
要素を示す。即ち、7が電動機であり、これは固定子巻
線(電機子巻線)7c1回転子巻線(界磁巻、1)7b
をもっている。後述する如くこ机ら固定子1回転子巻線
7a、7bは、いずれが電機子巻線、界Ef1巻線でも
良く、また単用、二相、三相巻線とすることが可能であ
るが、第1図においては、回転子を集中巻の界磁巻線、
固定子をU、V、Wの3つの巻線群を電気角で120゜
に配し、かつ星形に接続した通常の三相交72巻礫とし
である。固定子巻線7aは、第1のサイリスタ電力変換
装置8に接続され、電力の供給を受ける。同様に回転子
巻線7bは第2のサイリスタ電力変換装置9に接続され
電力の供給を受ける。
FIG. 1 shows the main elements constituting the electric looper device according to the present invention. That is, 7 is an electric motor, which consists of stator winding (armature winding) 7c1 rotor winding (field winding, 1) 7b
have. As will be described later, either of the stator 1 rotor windings 7a and 7b may be an armature winding or a field Ef1 winding, and may be a single-use, two-phase, or three-phase winding. However, in Fig. 1, the rotor has a concentrated field winding,
The stator has three winding groups U, V, and W arranged at 120 degrees in electrical angle and connected in a star shape to form a normal three-phase alternating 72-winding structure. The stator winding 7a is connected to the first thyristor power conversion device 8 and receives power supply. Similarly, the rotor winding 7b is connected to the second thyristor power converter 9 and receives power supply.

第1のサイリスタ電力変換装置8は、一般の商用交流電
源より電力供給を受け直流電力に変換する順変換器8a
と平滑用直流リアクトル(以下直流リアクトルと称す)
8bおよび゛雇肋機の固定子巻線7aに流れる電流の方
向を切替える逆変換器8Cと両度換器3a、 8cのサ
イリスタの点弧タイミングを制卯する制御器8dよりな
っている。
The first thyristor power converter 8 is a forward converter 8a that receives power from a general commercial AC power source and converts it into DC power.
and smoothing DC reactor (hereinafter referred to as DC reactor)
8b and an inverter 8C that switches the direction of the current flowing through the stator winding 7a of the substation, and a controller 8d that controls the firing timing of the thyristors of the bidirectional converters 3a and 8c.

また第2のサイリスタ電力変換装置9は、商用電源より
交流電力の供給を受け直流電力に変換する順変換器とこ
の制御iII器(図示せず)よりなっている。
The second thyristor power conversion device 9 includes a forward converter that receives alternating current power from a commercial power source and converts it into direct current power, and a controller (not shown) for controlling this forward converter.

尚第1図では、第1のサイリスク電力変換波;N8の逆
変換器8Cのサイリスタの構成は、固定巻線が三相巻線
であるので、up、vp、wp。
In FIG. 1, the configuration of the thyristor of the inverse converter 8C of the first thyrisk power conversion wave; N8 is up, vp, wp since the fixed winding is a three-phase winding.

U、\、VN、WNの6コのサイリスタ群より成るいわ
ゆる三相グレッツ結線を採用している。
A so-called three-phase Gretz connection consisting of six thyristor groups U, \, VN, and WN is adopted.

第2図には、前述の電動機7の具体的な構成を示してい
る。固定子巻線7aは固定子鉄心7Cに設けられたスロ
ットに納められスロット模やバインド帯等で適当に固定
されるのは通常の交流電動別と同様であり、固定子鉄心
7C1固定子巻線7aは固定子枠7dにより支えられる
FIG. 2 shows a specific configuration of the electric motor 7 mentioned above. The stator winding 7a is housed in a slot provided in the stator core 7C, and is appropriately fixed with a slot pattern, a binding band, etc., as in a normal AC electric motor. 7a is supported by a stator frame 7d.

一方、回転予巻1!J7bは同様に回転子鉄心7eに設
けられたスロットに納められ、回転軸7fに取付けられ
る。この回転軸は7r1ベアリング7c+、7(]−を
介しベアリングブラケット7h。
On the other hand, rotation advance volume 1! Similarly, J7b is accommodated in a slot provided in the rotor core 7e and attached to the rotating shaft 7f. This rotating shaft is connected to a bearing bracket 7h via 7r1 bearings 7c+ and 7(]-.

7h′より支えられ自由に回転できる様にしである。ま
た、回転子巻線7bの端子7b+は前記回転軸7fの中
心に設けた中心孔7flを通り反直結側@端に導出され
ている。
It is supported by 7h' so that it can rotate freely. Further, the terminal 7b+ of the rotor winding 7b passes through a center hole 7fl provided at the center of the rotating shaft 7f and is led out to the opposite end of the direct connection side.

通常前記端子7b1は、柔らかい銅線より成る可撓導体
により導出されるか、適度のたるみをもたせた電カケー
プルにより接続され、回転子が180°以内で自由に回
転できる僅に構成される。
Usually, the terminal 7b1 is led out by a flexible conductor made of a soft copper wire, or connected by a power cable with an appropriate amount of slack, and has a small structure that allows the rotor to freely rotate within 180 degrees.

以上の構成は、あたかも巻線形誘導電vJ機に類似して
いるが、特徴的に異なっているのは、回転子巻線7bの
端子7b1の導出部であり、スリップリングおよびブラ
シからなる摺動接触部を有しないことである。
The above configuration is similar to a wound type induction electric VJ machine, but what is characteristically different is the lead-out part of the terminal 7b1 of the rotor winding 7b, which is a sliding part consisting of a slip ring and a brush. It has no contact parts.

以上のように構成した電動ルーパー装置の作用を、第3
図を参照しながら説明する。第2のサイリスタ電力変y
A装N9により商用交流電力を可変電圧の直流電力に変
換した後、電wJ磯の回転子巻線7bに供給し、電f7
1機内部に起磁力Φrを生成させる。
The operation of the electric looper device configured as above is explained in the third section.
This will be explained with reference to the figures. Second thyristor power change
After converting the commercial AC power into variable voltage DC power using the A unit N9, it is supplied to the rotor winding 7b of the electric wJ Iso, and the electric power f7
A magnetomotive force Φr is generated inside one aircraft.

一方、第1のサイリスタミノ〕変換装置8は、順変換器
8aにおいて交流電力を可変電圧の直流電力に変換した
後、直流リック1−ル8bを介し逆変換器8Cに供給す
る。
On the other hand, the first thyristormino converter 8 converts AC power into variable voltage DC power in a forward converter 8a, and then supplies it to an inverse converter 8C via a DC rick 1-8b.

ここで直流リアクトル8bは、それを流れる直流電流が
微小である時、断続するのを防止する目的であり、電動
機のりアクタンスの大きさ、および制■ずべき電流の値
が比較的大きく電流の断続が起らない場合には省略され
ることもある。直流電力の供給を受けた逆変換器8Cに
おいては、電a敗の磁極の位置とトルクの方向に従って
、航述のサイリスタUP、VP、WP、UN、VN。
Here, the purpose of the DC reactor 8b is to prevent the DC current flowing through it from intermittent when it is very small. It may be omitted if it does not occur. In the inverter 8C supplied with DC power, the thyristors UP, VP, WP, UN, and VN are activated according to the position of the magnetic pole and the direction of the torque.

’v”J Nの適切な2コを選択して通電を11なう。’v” Select two appropriate pieces of JN and turn on the electricity for 11 seconds.

第3図においては、サイリスタUPとVNの2コが通電
された場合を示す。サイリスタUPとVNが通電される
ことにより固定子巻線7aには、U巻線より流札込み7
巻線に流れ出す直&電流が流れろ。この電流によりU、
VS線は起磁力ΦU。
FIG. 3 shows a case where two thyristors UP and VN are energized. When the thyristors UP and VN are energized, the stator winding 7a receives a flow of money from the U winding 7.
Direct & current flowing into the winding. This current causes U,
The VS line is the magnetomotive force ΦU.

ΦVを生じ、結果として固定子lR17aはその合成起
磁力ΦSを生ずる。回転予巻$17bによる起しf!力
Φrと固定子巻線7aによる起磁力のSはお互いに作用
し、その中心が一致する方向にお互い【こ吸引力を発生
し、回転子はトルクを発生する。
As a result, the stator lR17a generates its composite magnetomotive force ΦS. Starting f with rotation pre-winding $17b! The force Φr and the magnetomotive force S caused by the stator winding 7a act on each other, and in the direction where their centers coincide, they generate an attractive force and the rotor generates torque.

両起…力の中心の為す角度をeとするとそのトルクの大
きさτは、 τOCΦr・Φ5sine・ (11)に関係する。こ
れを図示すると第4図の如くなり両起磁力の中心が電気
角で90° (または−90’ )の時が最大となる。
If the angle formed by the centers of both forces is e, the magnitude of the torque τ is related to τOCΦr・Φ5sine・(11). This is illustrated in FIG. 4, where the magnetomotive force is at its maximum when the center of both magnetomotive forces is at an electrical angle of 90° (or -90').

通常の直結電動ルーパー装置においては、電vJ!l!
lの回転角は[角にて最大60〜90゛、実際の運転状
態では20〜30”で十分である。前述の如く電動機は
2極の巻線をもつので電気角と機械角が一致している。
In a normal direct-coupled electric looper device, electric vJ! l!
The rotation angle of l is 60 to 90 degrees at most, and 20 to 30 inches is sufficient in actual operating conditions.As mentioned above, the motor has two pole windings, so the electrical angle and mechanical angle match. ing.

従って、電動ルーパー装置としての最低位置の侍握状態
での回転子巻線7bと固定子巻線7aの関係位置を前述
の起磁力ΦrとΦSのなす角度θにて、最大120〜1
35度(前述の最大60〜90度に対応した時)程度に
設定しておくことにより、第4図の斜線部分で示す様に
、発生トルクの最大点付近で使用することができる。特
に、実際の使用状態をθ−90度付近に設定することに
より、回転角度によるトルクの変動は実用上問題のない
程度となる。従って発生トルクは第1のサイリスク電力
変換装置8の出力電流にほぼ比例するものとなり、これ
は従来の直流型8機式の場合と同等の制御性能をもたせ
ることが可能となる。
Therefore, the relative position of the rotor winding 7b and the stator winding 7a in the lowest position gripping state of the electric looper device is determined by the angle θ between the magnetomotive forces Φr and ΦS at a maximum of 120 to 1
By setting the angle to about 35 degrees (corresponding to the above-mentioned maximum of 60 to 90 degrees), it can be used near the maximum point of generated torque, as shown by the shaded area in FIG. In particular, by setting the actual usage state to around θ-90 degrees, the variation in torque due to the rotation angle becomes such that there is no problem in practical use. Therefore, the generated torque is approximately proportional to the output current of the first Cyrisk power converter 8, and this makes it possible to provide control performance equivalent to that of the conventional DC type eight type.

゛電動様の発生トルクの方向の転換は、第3図より明ら
かな如く、サイリスタVPとU Nを導通させることに
よって実現できる。
``As is clear from FIG. 3, changing the direction of the generated torque in an electric manner can be realized by making the thyristors VP and UN conductive.

尚以上の説明で明らかな如く、通常の動作においては固
定子巻線7aは、2組(第1図、第3図においてはU、
■巻線)と、逆変換器部8Cのサイリスタは2組4コ(
第3図、第5図においてはサイリスタUP、VP、UN
、VN)I、か使用しないので池の巻m(w巻線)とサ
イリスタ(WP。
As is clear from the above explanation, in normal operation, the stator winding 7a consists of two sets (U, U, and U in FIGS. 1 and 3).
■There are 2 sets of 4 thyristors (winding) and thyristors in the inverter section 8C (
In Figures 3 and 5, thyristors UP, VP, UN
, VN) I, is not used, so the pond winding m (w winding) and the thyristor (WP).

WN)は省略することも可能である。WN) can also be omitted.

しかし本実施例の如く3組の巻線と、6コのサイリスタ
を組合せた場合2コ導通させるサイリスクの徂合せは6
種類あり、それに従って電vJ礪の発生トルクと回転角
度の関係は、電気角にて60°毎に同一状態を繰り返す
様にできるので、実際に機械と組合せる場合、相手機械
との相対位置関係の選択の自由度が大きくなる。
However, when three sets of windings and six thyristors are combined as in this example, the thyristor range for making two thyristors conductive is 6.
There are different types, and the relationship between the generated torque and the rotation angle of the electric vJ can be made to repeat the same state every 60 degrees in electrical angle, so when actually combining it with a machine, the relative positional relationship with the mating machine. The degree of freedom of choice increases.

以上述べた本発明の電動ルーパー装置の第1の実施例に
よれば、次のような効果が得られる。
According to the first embodiment of the electric looper device of the present invention described above, the following effects can be obtained.

既に述ぺたように直結形電動ルーバー装置は、動作回転
角が極めて小さくなるという性質があり、従来の直流電
動機方式の場合は、整流子片の変形が生ずるため大きな
トルクのものが製作しにくいことを;ホべた。本発明の
電動ルーパー装置は、整流子やスリップリングがなく直
接回転子のリード線が導出される。従って、層肋部にお
ける発熱およびそれに伴う熱変形の問題が一切生ずるこ
とがなく、大きなトルクのものも容易に製作でき、(セ
めて信頼性の高い電動ルーパー装置を得ることができる
。特に前述の実施例の如く、回転子巻線7bを主磁束を
つくる界磁巻線として構成するものは、その電流の大ぎ
さは直流電動機方式の電機子電流に比べ極めて小さくで
きるので、その端子の導出線は比較的小さなもので簡単
な構造となり、保守が極めて簡便となる。
As already mentioned, direct-coupled electric louver devices have a property that the operating rotation angle is extremely small, and in the case of conventional DC motor systems, it is difficult to manufacture ones with large torque because the commutator pieces deform. Hobeta. The electric looper device of the present invention has no commutator or slip ring, and the lead wire of the rotor is directly led out. Therefore, there is no problem of heat generation in the layered ribs and associated thermal deformation, and it is possible to easily manufacture a device with a large torque (a highly reliable electric looper device can be obtained.Especially as mentioned above) When the rotor winding 7b is configured as a field winding that generates the main magnetic flux, as in the embodiment shown in FIG. The wires are relatively small and have a simple structure, making maintenance extremely easy.

以上は本発明による第1の実施例(基本的構成)につい
て構成2作用効果を説明したが、実用的には、種々の機
能を付加することにより、より一層性能の良い電動ルー
パー装置とすることが可能となる。
The functions and effects of configuration 2 have been described above for the first embodiment (basic configuration) of the present invention, but in practical terms, it is possible to provide an electric looper device with even better performance by adding various functions. becomes possible.

第5図にその1例すなわち本発明による電動ルーパー装
置の第2の実施例を示すもので、これは第1図に対し、
回転子回転角検出装置10およびその出力に関係して固
定子電流の基準を変化させる電機子電流補正用関数発生
器(第1の関数発生器)8d1を付加したものである。
FIG. 5 shows one example of this, that is, a second embodiment of the electric looper device according to the present invention, which is different from FIG.
This includes an armature current correction function generator (first function generator) 8d1 that changes the stator current reference in relation to the rotor rotation angle detection device 10 and its output.

このような構成の電動ルーパー装置の発生トルクは前記
(1)式の如く回転子と固定子のつくる起磁力の中心の
成す角θに関係し変化するので、関数発生器8dlは、
これを補正するため(1/5en(El)に比例して固
定子巻線7bに流れる電流を増減する様にサイリスタ電
力変換装置8の制御器8dに信号を与えるものである。
Since the generated torque of the electric looper device having such a configuration changes in relation to the angle θ formed by the center of the magnetomotive force created by the rotor and stator, as shown in equation (1) above, the function generator 8dl is
In order to correct this, a signal is given to the controller 8d of the thyristor power converter 8 to increase or decrease the current flowing through the stator winding 7b in proportion to (1/5en(El)).

これにより発生トルクは回転角度に関係なく所定の1−
ルクを得ることが可能となる。同時に、第5図には、固
定子巻線7aに流れる電流の大きさに応じ回転子巻線7
bの電流を変化させるための界磁電流補正用関数発生器
(第2の関数発生器)9aを付加している。
As a result, the generated torque remains at a predetermined 1 - regardless of the rotation angle.
This makes it possible to obtain a lot of money. At the same time, in FIG. 5, the rotor winding 7a is
A field current correction function generator (second function generator) 9a for changing the current of b is added.

これはこの装置の電動機はあたかも回転界磁形同期電動
はと同一構成となっているので、固定予巻I!117a
と回転子巻線7bのつくる起磁力のS。
This is because the electric motor of this device has the same configuration as a rotating field type synchronous electric motor, so the fixed pre-winding I! 117a
and S of the magnetomotive force created by the rotor winding 7b.

Φrはお互いに作用し合ういわゆる電機子反作用を生ず
る。この電機子反作用は、固定子巻線7aの大きざと両
起磁力のなす角度eの余弦(cosO)に関係し、固定
子巻線7bの電流の増加に伴い、雷vJ磯内部の空隙磁
束を減少させる作用となるので、この減少分に見合った
大きさだけ、回転子巻線電流を増加させる必要があるの
で、これを行なうのが前記関数発生器9aである。
Φr interact with each other, producing a so-called armature reaction. This armature reaction is related to the size of the stator winding 7a and the cosine (cosO) of the angle e formed by both magnetomotive forces, and as the current in the stator winding 7b increases, the air gap magnetic flux inside the lightning vJ is increased. Therefore, it is necessary to increase the rotor winding current by an amount commensurate with this decrease, and the function generator 9a performs this.

以上述べたように第2の実施例では回転角検出装置10
と関数発生器8d1を第1の実施例に付加したので、電
動機の発生トルクは電流の大きさに関係なく、その制御
信号に正確に比例するものとなり実用的な電動ルーパー
装置を得ることができる。
As described above, in the second embodiment, the rotation angle detection device 10
Since the function generator 8d1 is added to the first embodiment, the torque generated by the motor is accurately proportional to the control signal regardless of the magnitude of the current, and a practical electric looper device can be obtained. .

第6図(a)(b)は、電動機の回転子巻線用リード線
7 biを含むケーブル装置を示している。
FIGS. 6(a) and 6(b) show a cable device including a lead wire 7bi for a rotor winding of an electric motor.

回転軸7fにケーブルリール7b2.7b2′を取付け
、回転子巻線171)の端子用リード線7b1゜7b1
′を17′2周以上巻きつけた後、その先端を十分たる
む如く長くする。これにより回転軸7fの回転によるリ
ード線7bL 7bl′に生ずるねじれを防止すること
ができる。尚第6図では、電動段の反負荷側軸端へリー
ド線を導出例を示したが、本機構は電!I]機の軸受け
より内部側に取付けることが可能である。さらにリード
線は平編導体など可撓性の大なるものを採用する。
Attach the cable reel 7b2.7b2' to the rotating shaft 7f, and connect the terminal lead wire 7b1°7b1 of the rotor winding 171).
After wrapping 17' for more than two times, lengthen the tip to leave enough slack. This can prevent twisting of the lead wires 7bL and 7bl' due to rotation of the rotating shaft 7f. Although Fig. 6 shows an example in which the lead wire is led to the shaft end on the opposite load side of the electric stage, this mechanism is not suitable for electric power! I] It is possible to install it inside the bearing of the machine. Furthermore, the lead wire uses a highly flexible material such as a flat braided conductor.

(発明の効果) 本発明によれば以下に述べるような効果が得られる圧h
1機機力力制御電動間装置を提供できる。
(Effects of the Invention) According to the present invention, the following effects can be obtained at a pressure h
We can provide one machine power control electric motor control device.

すなわち、電動機の回転部分にブラシおよびスリップリ
ングなどの1習紡接触による電気伝導部が存在しないた
め、局部加熱による熱変形やそれに伴う刷子の摺動不良
火花発生、刷子の欠損などの事故が一切なく、信頼性が
大巾に向上するとともに、保守のための設備の停止時間
の減少、保守人員の大巾減少が可能となる。
In other words, since there are no electrically conductive parts such as brushes and slip rings in the rotating parts of the motor, there is no possibility of accidents such as thermal deformation due to local heating, sparks caused by poor brush sliding, or broken brushes. This greatly improves reliability, reduces equipment downtime for maintenance, and significantly reduces the number of maintenance personnel.

また、摺動部に基因した単機出力限界が完全になくなる
ため、大きなトルクのものおよび圧延機スタンド間隔等
より電動機巾方向寸法を受けた場合軸方向寸法を増大さ
せることにより所要の出力l〜シルク1qることが可能
となり、実用上制限のないものが得られる。
In addition, since the single machine output limit due to sliding parts is completely eliminated, when the electric motor width direction is large due to large torque or rolling mill stand spacing, the required output l ~ silk can be achieved by increasing the axial dimension. 1q, and there is no practical limit to what can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による圧延懇張力制御用電8機装置の第
1の実施例を示す概略構成図、第2同は第1図の電動呪
の一例を示す上半分を断面した図、第3図および第4図
は第1図の作用を説明するための回路図および波形図、
第5図は本発明による圧延機張力制御用電!e機装置の
第2の実施例を示す概略構成図、第6図(a)、(b)
は第1図および第5図に使用されるケーブルリール装置
の一例を示す平面図および正面図、第7図および第8図
はそれぞれ異なる従来の張力制御l装置の概略構成図で
ある。 7・・・電動機、7a・・・固定子巻線、71)・・・
回転子巻線、7C・・・固定子鉄心スロツ1−17d・
・・固定子枠、7e・・・回転ヲ欽心スロット、7f・
・・回転軸、7g、7Q・・・ベアリング、7h、71
1ベアリングブラケツト、7N・・・リード線導出用中
心孔、71)1・・・回転子巻線用リード線、8・・・
第1のサイリスタ電力変換装置、8a・・・順変換器、
8b・・・直流リアクトル、8C・・・逆変換器、8d
・・・制御I器、9・・・第2のサイリスタ電力変換装
置、10・・・回転子回転角検出装冒、3dl・・・電
鳴子電流補正用関数発生器、9a・・・励磁電流補正用
関数発生器。 出願人代理人 弁理士 鈴江 武彦 第2図 第3図 第4図 (a) 第6図
Fig. 1 is a schematic configuration diagram showing a first embodiment of an electric rolling tension control device according to the present invention; 3 and 4 are circuit diagrams and waveform diagrams for explaining the action of FIG. 1,
FIG. 5 shows the rolling mill tension control voltage according to the present invention! Schematic configuration diagram showing the second embodiment of the e-machine device, FIGS. 6(a) and (b)
1 and 5 are plan and front views showing an example of a cable reel device used, and FIGS. 7 and 8 are schematic configuration diagrams of different conventional tension control devices, respectively. 7...Electric motor, 7a...Stator winding, 71)...
Rotor winding, 7C...Stator core slot 1-17d.
...Stator frame, 7e...Rotation center slot, 7f.
... Rotating shaft, 7g, 7Q... Bearing, 7h, 71
1 Bearing bracket, 7N... Center hole for leading wire, 71) 1... Lead wire for rotor winding, 8...
First thyristor power converter, 8a... forward converter,
8b...DC reactor, 8C...Inverse converter, 8d
. . . Control I unit, 9 . . . Second thyristor power conversion device, 10 . . . Rotor rotation angle detection equipment, 3dl . Correction function generator. Applicant's representative Patent attorney Takehiko Suzue Figure 2 Figure 3 Figure 4 (a) Figure 6

Claims (4)

【特許請求の範囲】[Claims] (1)商用周波数の交流電源より交流電力を受け、これ
を可変電圧の直流に変換する順変換器および電動機の回
転子巻線に流れる電流の方向を切替える逆変換器ならび
に前記両変換器の制御器より成る第1の電力変換装置と
、前記商用周波数の交流電源より交流電力を受け直流電
力に変換する第2の電力変換装置と、前記第1の電力変
換装置より電力の供給を受ける固定子巻線と前記第2の
電力変換装置より電力の供給を受ける回転子巻線を備え
た電動機とからなり、この電動機の出力軸を圧延機の張
力制御装置に直結し、前記電動機の固定子巻線および回
転子巻線の相対関係位置を、電動機が発生するトルクが
最大となる点を中心に電気角が±90°だけ回転できる
様にしたことを特徴とする圧延機張力制御用電動機装置
(1) A forward converter that receives AC power from a commercial frequency AC power source and converts it into variable voltage DC, an inverse converter that switches the direction of current flowing to the rotor winding of the motor, and control of both of the converters. a second power converter that receives AC power from the commercial frequency AC power supply and converts it into DC power; and a stator that receives power from the first power converter. an electric motor having a winding and a rotor winding supplied with electric power from the second power converter; the output shaft of the electric motor is directly connected to the tension control device of the rolling mill; An electric motor device for tension control in a rolling mill, characterized in that the relative positions of the wire and the rotor winding are such that they can be rotated by an electrical angle of ±90 degrees around a point where the torque generated by the motor is maximum.
(2)商用周波数の交流電源より交流電力を受け、これ
を可変電圧の直流に変換する順変換器および電動機の回
転子巻線に流れる電流の方向を切替える逆変換器ならび
に前記両変換器の制御器より成る第1の電力変換装置と
、前記商用周波数の交流電源より交流電力を受け直流電
力に変換する第2の電力変換装置と、前記第1の電力変
換装置より電力の供給を受ける固定子巻線と前記第2の
電力変換装置より電力の供給を受ける回転子巻線を備え
た電動機と、この電動機の回転子の回転角を検出する回
転子回転角検出装置と、この回転子回転角検出装置の信
号に従つて前記電動機発生トルクの変動分を演算し、こ
れに基き前記固定子巻線に流れる電流を補正する第1の
関数発生器と、電機子反作用による電動機発生トルクの
変化分を前記固定子巻線に流れる電流の大きさに応じて
前記回転子巻線に流れる電流を補正する第2の関数発生
器とからなり、この電動機の出力軸を圧延機の張力制御
装置に直結し、前記電動機の固定子巻線および回転子巻
線の相対関係位置を、電動機が発生するトルクが最大と
なる点を中心に電気角が±90°だけ回転できる様にし
たことを特徴とする圧延機張力制御用電動機装置。
(2) A forward converter that receives AC power from a commercial frequency AC power source and converts it into variable voltage DC; an inverse converter that switches the direction of the current flowing to the rotor winding of the motor; and control of both of the converters. a second power converter that receives AC power from the commercial frequency AC power supply and converts it into DC power; and a stator that receives power from the first power converter. an electric motor having a winding and a rotor winding supplied with electric power from the second power conversion device; a rotor rotation angle detection device for detecting a rotation angle of a rotor of the motor; a first function generator that calculates a variation in the torque generated by the motor according to a signal from a detection device and corrects a current flowing through the stator winding based on the variation in the torque generated by the motor; and a variation in the torque generated by the motor due to armature reaction. and a second function generator that corrects the current flowing through the rotor winding according to the magnitude of the current flowing through the stator winding, and the output shaft of this motor is directly connected to the tension control device of the rolling mill. The relative positions of the stator winding and rotor winding of the electric motor are such that they can be rotated by an electrical angle of ±90 degrees around a point where the torque generated by the electric motor is maximum. Electric motor device for rolling mill tension control.
(3)電動機の固定子巻線を2極とし、90°位相の異
なる二相巻線としたものと、逆変換器をサイリスタによ
り4アームとしたものとの組合わせもしくは、3相星形
接続巻線と、サイリスタの6アーム構成としたものの組
合せとした特許請求範囲第1項又は第2項記載の圧延機
張力制御用電動機装置。
(3) A combination of a two-pole motor stator winding with a two-phase winding with a 90° phase difference and a four-arm inverter using a thyristor, or a three-phase star connection. An electric motor device for controlling tension in a rolling mill according to claim 1 or 2, which is a combination of a winding and a six-arm thyristor configuration.
(4)電動機回転子巻線のリード線を、回転軸に取付け
たケーブルリールを経由し導出するとともに、このケー
ブルリールより固定部端子台部の間にたるみ部を設けて
軸の回転を可能ならしめ、かつリード線の損傷を防止で
きる構造にした特許請求範囲第1項又は第2項記載の圧
延機張力制御用電動機装置。
(4) If the lead wire of the motor rotor winding is guided through a cable reel attached to the rotating shaft, and a slack section is provided between the terminal block of the fixed part from the cable reel, rotation of the shaft is possible. An electric motor device for controlling tension in a rolling mill according to claim 1 or 2, which has a structure that can tighten the lead wire and prevent damage to the lead wire.
JP60216645A 1985-09-30 1985-09-30 Motor for controlling tension of rolling mill Pending JPS6277897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60216645A JPS6277897A (en) 1985-09-30 1985-09-30 Motor for controlling tension of rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60216645A JPS6277897A (en) 1985-09-30 1985-09-30 Motor for controlling tension of rolling mill

Publications (1)

Publication Number Publication Date
JPS6277897A true JPS6277897A (en) 1987-04-10

Family

ID=16691682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60216645A Pending JPS6277897A (en) 1985-09-30 1985-09-30 Motor for controlling tension of rolling mill

Country Status (1)

Country Link
JP (1) JPS6277897A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001041288A1 (en) * 1999-12-06 2001-06-07 Hr Textron Inc. Low cost limited angle torque dc brushless servomotor and method for fabricating thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50108514A (en) * 1974-02-01 1975-08-27
JPS57132752A (en) * 1980-10-29 1982-08-17 Pierburg Gmbh & Co Kg Rotary adjusting machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50108514A (en) * 1974-02-01 1975-08-27
JPS57132752A (en) * 1980-10-29 1982-08-17 Pierburg Gmbh & Co Kg Rotary adjusting machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001041288A1 (en) * 1999-12-06 2001-06-07 Hr Textron Inc. Low cost limited angle torque dc brushless servomotor and method for fabricating thereof

Similar Documents

Publication Publication Date Title
EP1153470B1 (en) Brushless doubly-fed induction machines employing dual cage rotors
WO2019233041A1 (en) Flat-wire continuous wave-wound staggered winding and stator comprising the same
JP4940252B2 (en) Manufacturing method of rotating electrical machine
JP5802581B2 (en) Rotating electric machine and production method thereof
US9847684B2 (en) Stator and rotating electric machine
WO2006065988A2 (en) Motor winding
EP2383868B1 (en) Winding arrangement
AU758548B2 (en) Synchronisation system
EP3044860A1 (en) Electric machine
US6310417B1 (en) Hybrid-secondary uncluttered induction machine
US4707629A (en) Rotary converter having dual-winding rotor
JPS6277897A (en) Motor for controlling tension of rolling mill
CN104067486B (en) The generator of wind energy plant without speed changer
US20230089931A1 (en) Continuous wave-winding for stator
JPH0532983B2 (en)
RU2526835C2 (en) Energy-efficient electrical machine
RU2656240C1 (en) Electric propulsion unit for the free energy generation using the asynchronous slip generator
US7836576B2 (en) Method for converting a commutator exciter into a brushless exciter
CN209948920U (en) Double 12 pulse wave double current brushless generator
US1208460A (en) Expansion-ring for electric motors.
US11632007B2 (en) Stator assembly comprising electrical insulation devices having an outer surface with elevated surface portions
CN216564875U (en) Electric motor
US11329581B2 (en) Shunt series wound direct current (DC) motor driving device and equipment
EP2800248B1 (en) Stator winding of an electric generator
KR101954946B1 (en) Coil winding structure of stator with 24 slots