JPS6277594A - Two-phase fluid loop - Google Patents

Two-phase fluid loop

Info

Publication number
JPS6277594A
JPS6277594A JP21514085A JP21514085A JPS6277594A JP S6277594 A JPS6277594 A JP S6277594A JP 21514085 A JP21514085 A JP 21514085A JP 21514085 A JP21514085 A JP 21514085A JP S6277594 A JPS6277594 A JP S6277594A
Authority
JP
Japan
Prior art keywords
working fluid
main loop
liquid
pressure side
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21514085A
Other languages
Japanese (ja)
Other versions
JPH0631702B2 (en
Inventor
Yoshiro Miyazaki
芳郎 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21514085A priority Critical patent/JPH0631702B2/en
Publication of JPS6277594A publication Critical patent/JPS6277594A/en
Priority to US07/285,311 priority patent/US4898231A/en
Publication of JPH0631702B2 publication Critical patent/JPH0631702B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electromagnetic Pumps, Or The Like (AREA)
  • Central Heating Systems (AREA)

Abstract

PURPOSE:To make it possible to carry out a remote control transport of a large heat amount and a stable control thereof by fitting a bypass for transporting vapor between an evaporating part provided at the high-pressure side of a main loop for circulating a liquid-phase working fluid by a pump and a condensing part provided at the lower pressure side. CONSTITUTION:A working fluid of a liquid phase within a main loop 5 is circulated by means of a pump 7. A working fluid within a high pressure side 5a is introduced into the main loop 5 by a capillary force of a capillary 3a of the evaporating part 3, and absorbs heat from electronic apparatus in the evaporating part 3 and evaporates. The working fluid of a vapor phase evaporated in the evaporating part 3 reaches a condensing part 1 of a low temperature via a bypass 9. The vapor phase working fluid enters a capillary 3 a on the side of the condensing part 1 because of a difference in pressure between the bypass 9 and the low pressure side 5a, radiated and condensed and again turned into a liquid-phase working fluid, and circulated in the main loop 5 from the low pressure side 1a. Since a drive force is applied to the working fluid by means of the pump 7, it is possible to transport a large amount of heat to a remote distance. Further, since there is no part where the vapor phase working fluid is mixed with the liquid phase working fluid and both fluids flow together, such a phonomenon as fluidication, unstability and the like is prevented from occurring, even at a nongravitational place such as in space.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明ば、蒸発と凝縮との相変化を伴う熱力学サイク
ルによって熱輸送する二相流体ループに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] This invention relates to a two-phase fluid loop that transports heat through a thermodynamic cycle involving phase changes of evaporation and condensation.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

宇宙ステーション等の熱輸送方式としては、その入熱輸
送能力の要求から液ループが有望である。
Liquid loops are promising as a heat transport method for space stations and other systems due to their high heat input transport capabilities.

しかし、単相流体ループでは、顕熱を利用して熱を輸送
するので、加熱部の温度をせまい温度幅に保持するため
には、大量の作動流体を循環させなければならず、ポン
プ、配管等の大型化が必要となり、重量等の点また、ポ
ンプ動力の点から実用性が小さい。
However, single-phase fluid loops use sensible heat to transport heat, so in order to maintain the temperature of the heating part within a narrow temperature range, a large amount of working fluid must be circulated, and pumps, piping, etc. etc., which makes it impractical in terms of weight and pump power.

そこで、宇宙ステーションのように、少ない動力で大量
の熱を輸送し、加熱部の温度をせまい温度幅に保持しな
ければならない場合には、作動流体の相変化による潜熱
を利用して熱を輸送する二相流体ループが有利と考えら
れている。
Therefore, when it is necessary to transport a large amount of heat with a small amount of power and maintain the temperature of the heating part within a narrow temperature range, such as on a space station, it is necessary to transport the heat by using the latent heat caused by the phase change of the working fluid. A two-phase fluid loop is considered advantageous.

すなわち、二相流体ループは潜熱を利用するため、作動
流体の循環量が小さくてすみ、従って、配管、ポンプを
小型・軽量化できる利点があり、循環駆動力も少なくて
すみ、充分実用性のある方式である。この二相液体ルー
プでは、循環流体が電子gl器等の発熱部へ液相で送ら
れ、ここで吸熱して蒸気相に変化する。この蒸気相は放
熱部へ送られ、ここで放熱して再び液相に戻される。こ
ような二相の作動流体を駆+)Jする方法としては、例
えばメカニカルポンプを用いる方法、あるいはキャピラ
リポンプを用いる方法等がある。
In other words, since the two-phase fluid loop utilizes latent heat, the amount of working fluid to be circulated is small, which has the advantage of making piping and pumps smaller and lighter, and requires less circulation driving force, making it fully practical. It is a method. In this two-phase liquid loop, the circulating fluid is sent in a liquid phase to a heat generating part such as an electronic glazer, where it absorbs heat and changes into a vapor phase. This vapor phase is sent to the heat radiating section, where it radiates heat and returns to the liquid phase. Methods for pumping such a two-phase working fluid include, for example, a method using a mechanical pump or a method using a capillary pump.

そして、従来メカニカルポンプを用いた二相流体ループ
としては、例えば第5図に示すようなものがある。すな
わら、この二相流体ループは、放熱部としての凝縮部1
01、吸熱部としての蒸発器1039作動流体を駆動す
るためのメカニカルポンプ105及び調整弁107等に
より構成されている。従って、吸熱部としての蒸発器1
03で電子器機等から吸熱して蒸発した蒸気は、管路を
経て放熱部としての凝縮器101に輸送され、ここで熱
を放出して凝縮される。凝縮された液体は、メカニカル
ポンプ105により駆動され還流される。
As a conventional two-phase fluid loop using a mechanical pump, there is one shown in FIG. 5, for example. In other words, this two-phase fluid loop includes a condensing section 1 as a heat dissipation section.
01, an evaporator 1039 as a heat absorbing section, a mechanical pump 105 for driving a working fluid, a regulating valve 107, and the like. Therefore, the evaporator 1 as a heat absorption part
The steam that has absorbed heat from electronic devices and evaporated in step 03 is transported through a pipe to a condenser 101 serving as a heat radiating section, where it radiates heat and is condensed. The condensed liquid is driven by a mechanical pump 105 and is refluxed.

このよ−うに構成された二相流体ループは、小さなポン
プで大量の熱を遠くまで輸送する能力を持っており、ま
た、ポンプの回転数や調整弁操作による能動的な制御が
可能であり、・大きな熱量変動にも対応できるという特
徴がある。しかし、気液二相が共存している流れでは、
種々の流動不安定、あるいは振動現象が起り易い。例え
ば蒸発管では流量増加に対する圧力損失が負の領域で流
量が不安定となる逸走型不安定のほか、種々の流動不安
定現象が予想される。また凝縮部においても、例えば、
蒸気が過冷却水に流入する部分では、蒸気の液中凝縮に
伴う振動が発生することが予想される。このように基本
的に不安定な二相流体ループに対し安定した制御を行な
うことは極めて困難である。さらに宇宙空間のように無
重力場での二相流の特性が不明であるため、二相流体ル
ープの制御は難かしい問題となっている。また、作動流
体のキャビテーション、モータの潤滑及び信頼性にも問
題がある。
A two-phase fluid loop configured in this way has the ability to transport large amounts of heat over long distances with a small pump, and can be actively controlled by controlling the pump rotation speed and regulating valve operation.・It has the characteristic of being able to respond to large fluctuations in heat quantity. However, in a flow where gas-liquid two phases coexist,
Various flow instability or vibration phenomena are likely to occur. For example, in an evaporator tube, various flow instability phenomena are expected in addition to escape-type instability, in which the flow rate becomes unstable in a region where the pressure loss relative to the increase in flow rate is negative. Also, in the condensing section, for example,
At the part where the steam flows into the supercooled water, it is expected that vibrations will occur due to the condensation of the steam in the liquid. It is extremely difficult to perform stable control on such a fundamentally unstable two-phase fluid loop. Furthermore, since the characteristics of two-phase flow in a zero-gravity field such as in space are unknown, controlling two-phase fluid loops has become a difficult problem. There are also problems with working fluid cavitation, motor lubrication, and reliability.

そこで、ヒートパイプと同様に蒸発した液量を毛細管力
により自動的に補う方式の二相流体ループであるキャピ
ラリポンプシステムが開発されている。
Therefore, a capillary pump system has been developed, which is a two-phase fluid loop that automatically compensates for the amount of evaporated liquid using capillary force, similar to a heat pipe.

このキャピラリポンプシステムとして、例えば第6図に
示すようなものがある。すなわち、このシステムは、吸
熱部としての蒸発部201にキャピラリ201aを設け
、毛細管力により放熱部としての凝縮部203の液体を
引き込むものである。
As this capillary pump system, there is one shown in FIG. 6, for example. That is, in this system, a capillary 201a is provided in an evaporation section 201 as a heat absorption section, and liquid in a condensation section 203 as a heat radiation section is drawn in by capillary force.

このように構成されたキャピラリポンプは、作動流体の
駆動に外部ポンプ動力が不要であることと、蒸発しただ
けの液体が供給されるという自己制御性を有するという
特徴がある。しかし、流体駆動力を毛細管力に頼ってい
るため液体の輸送能力が小さく、大熱量、あるいは遠距
離の熱輸送ができないという問題がある。
A capillary pump configured in this manner is characterized in that no external pump power is required to drive the working fluid, and in that it has self-control properties in that only evaporated liquid is supplied. However, since it relies on capillary force for fluid driving force, it has a small liquid transport capacity and has the problem of not being able to transport large amounts of heat or heat over long distances.

〔発明の目的〕[Purpose of the invention]

この発明は上記従来の問題点に鑑みfj1案されたもの
で、大熱量を遠距離輸送することができ、しかも、宇宙
空間のような無重力場においても安定した制御特性を有
する二相流体ループの提供を目的とする。
This invention was devised fj1 in view of the above-mentioned conventional problems, and is a two-phase fluid loop that can transport a large amount of heat over long distances and has stable control characteristics even in a weightless field such as outer space. For the purpose of providing.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、この発明は、ポンプで液相
の作動流体を循環させるメインループと、メインループ
の高圧側に設Cノられメインループから液体が供給され
る毛細管構造を有する蒸発部と、メインループの低圧側
に設けられメインループに液体を還流する凝縮部と、前
記蒸発部で蒸発した蒸気を前記凝縮部へ輸送するバイパ
スとにより二相流体ループを構成した。
In order to achieve the above object, the present invention has a main loop in which a liquid-phase working fluid is circulated by a pump, and an evaporator section having a capillary structure installed on the high-pressure side of the main loop and to which liquid is supplied from the main loop. A two-phase fluid loop was constructed by a condensing section provided on the low-pressure side of the main loop to return liquid to the main loop, and a bypass transporting vapor evaporated in the evaporating section to the condensing section.

(発明の効果〕 この発明の構成によれば、メインループの作動流体の駆
動力はポンプにより与えられるので、大熱量を遠距離ま
で輸送することができるとともに、蒸発部で蒸発した液
体の供給は蒸発部の毛細管力によって自己制御的に行な
われるので、制御を容易に行なうことができる。
(Effects of the Invention) According to the configuration of the present invention, the driving force for the working fluid in the main loop is provided by the pump, so a large amount of heat can be transported over a long distance, and the liquid evaporated in the evaporation section can be supplied. Since this is carried out in a self-controlled manner by the capillary force of the evaporation section, it can be easily controlled.

また、蒸気相と液相とが混合して流れる部分がないため
、宇宙空間のような無重力場においても流動不安定等の
現象を起すことがなく、安定した制御を行なうことがで
きる。
Further, since there is no part where the vapor phase and liquid phase mix and flow, stable control can be performed without causing phenomena such as flow instability even in a zero gravity field such as outer space.

〔発明の実浦例〕 以下、この発明の一実施例を第1図に基づいて説明づる
[Example of the Invention] An embodiment of the invention will be described below with reference to FIG.

第1図は二相流体ループの概略構成図を示し、この二相
流体ループは、宇宙空間へ放熱する放熱部としての凝縮
部1と、電子機器等から吸熱して液相の作動流体を蒸発
させる吸熱部としてし蒸発部3と、作動流体を循環する
メインループ5と、液循環の駆動力を与えるポンプ7と
、バイパス9とを有している。
Figure 1 shows a schematic configuration diagram of a two-phase fluid loop. This two-phase fluid loop consists of a condensing section 1 as a heat dissipating section that radiates heat to space, and a condensing section 1 that absorbs heat from electronic devices and evaporates liquid phase working fluid. It has an evaporation section 3 as a heat absorption section, a main loop 5 for circulating a working fluid, a pump 7 for providing driving force for liquid circulation, and a bypass 9.

前記蒸発部3はキャピラリ3aを有して毛Ill管構造
をなし、メインループ5の高圧側5aに接続され、キャ
ピラリ3aが高圧側5aの作動流体に接している。また
、前記凝縮部1は同じくキャピラリ1aを有して毛細管
構造をなし、メインループ5の低圧側5bに接続され、
キャピラリ1aが低圧側5bの作動流体に接している。
The evaporator 3 has a capillary tube structure with a capillary 3a, and is connected to the high pressure side 5a of the main loop 5, and the capillary 3a is in contact with the working fluid on the high pressure side 5a. Further, the condensing section 1 also has a capillary 1a to form a capillary structure, and is connected to the low pressure side 5b of the main loop 5,
The capillary 1a is in contact with the working fluid on the low pressure side 5b.

そして、蒸発部3と凝縮部1とは前記バイパス9により
接続されている。
The evaporating section 3 and the condensing section 1 are connected by the bypass 9.

つぎに、上記一実施例の作用について述べる。Next, the operation of the above embodiment will be described.

メインループ5内の液相の作動流体は、ポンプ7によっ
て駆動力が与えられメインループ5を循環する。
The liquid-phase working fluid in the main loop 5 is given driving force by the pump 7 and circulates through the main loop 5 .

そして、蒸発部3においてキャピラリ3aの毛細管力に
よって高圧側5a内の作動流体が導入される。導入され
た液相としての作動流体は蒸発部3において電子機器等
から吸熱して蒸発する。蒸発部3で蒸発した蒸気相は、
バイパス9を通って低温の凝縮部1に至る。この凝縮部
1でバイパス9と低圧側5aとの圧力差で蒸気相が凝縮
部1側のキャピラリ1a内に入り込み、放熱凝縮して再
び液相となり、低圧側1aからメインループ5に還流す
る。
Then, in the evaporation section 3, the working fluid in the high pressure side 5a is introduced by the capillary force of the capillary 3a. The introduced working fluid as a liquid phase absorbs heat from electronic equipment and the like in the evaporator 3 and evaporates. The vapor phase evaporated in the evaporation section 3 is
It passes through a bypass 9 and reaches a low temperature condensing section 1 . In the condensing section 1, the vapor phase enters the capillary 1a on the condensing section 1 side due to the pressure difference between the bypass 9 and the low-pressure side 5a, undergoes heat radiation condensation, becomes a liquid phase again, and returns to the main loop 5 from the low-pressure side 1a.

前記蒸発部3においては、キャピラリ3aによる毛細管
力によって、蒸発した液体と同量の液体をメインループ
5の低圧側5aから取り込む。
In the evaporator 3, the same amount of liquid as the evaporated liquid is taken in from the low-pressure side 5a of the main loop 5 by capillary force caused by the capillary 3a.

このときのメインループ5とバイパス9の圧力変位は、
第2図に示す状態となり、上記作動が裏付けられる。
The pressure displacement of the main loop 5 and bypass 9 at this time is
The state shown in FIG. 2 is reached, and the above operation is confirmed.

このように、メインループ5の作動流体はポンプ7によ
って駆動力が与えられるため、大熱量を遠距離まで輸送
することができる。
In this way, since the working fluid in the main loop 5 is given driving force by the pump 7, a large amount of heat can be transported over a long distance.

また、蒸発部3で蒸発した液体の供給は、キャキャビラ
リ3aの毛細管力によって自己制御的に行われるため、
安定した制御を容易に行なうことができる。
Furthermore, since the supply of the liquid evaporated in the evaporation section 3 is performed in a self-controlled manner by the capillary force of the cavity 3a,
Stable control can be easily performed.

さらに、液相はメインループ5を循環され、蒸気相はバ
イパス9を流されて、蒸気相と液相とが混合して流れる
部分がないため、宇宙空間のような無重力場においても
流動不安定等の現象を起すことがなく、安定した制御を
行なうこうができる。
Furthermore, since the liquid phase is circulated through the main loop 5 and the vapor phase is passed through the bypass 9, there is no part where the vapor phase and liquid phase mix and flow, so the flow is unstable even in a zero gravity field such as outer space. It is possible to perform stable control without causing such phenomena.

なお、この発明は、二相流体ループのシステムに係るも
のであり、凝縮部1及び蒸発部3の構造。
Note that this invention relates to a two-phase fluid loop system, and the structure of the condensing section 1 and the evaporating section 3.

メインループ5とバイパス9との連通構造等は任意に構
成できるものである。例えば、第3図に示すような断面
構造を有するモノグループヒートパイプ11を用いて、
第4図に示すように構成することもできる。すなわち、
前記モノグループヒートパイプ11の液体流路13をメ
インループ5に接続して凝縮部1及び蒸発部3を構成し
、毛m管構造をなす軸方向グループ及び周方向グループ
を備えた蒸気流路15をバイパス9に連通した構成とし
てもよい。
The communication structure between the main loop 5 and the bypass 9 can be arbitrarily configured. For example, using a monogroup heat pipe 11 having a cross-sectional structure as shown in FIG.
It can also be configured as shown in FIG. That is,
The liquid flow path 13 of the monogroup heat pipe 11 is connected to the main loop 5 to constitute the condensation section 1 and the evaporation section 3, and the vapor flow path 15 includes an axial group and a circumferential group forming a capillary structure. It is also possible to have a configuration in which the bypass 9 is connected to the bypass 9.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に係る二相流体ループの該
略構成図、第2図は第1図の構成による流体ループ各部
の圧力分布模式図、第3図はモノグループヒートパイプ
の断面図、第4図はモノグループヒートパイプを用いた
二相流体ループの概略構成図、第5図は従来例によるボ
ンプニ相流体ループの概略構成図、第6図は従来例によ
るキャピラリポンプシステムの概略構成図である。 (図面の主要部を表わす符号の説明) 1・・・凝縮部     3・・・蒸発部5・・・メイ
ンループ  7・・・ポンプ9・・・バイパス 第1図 第2図 第3図 第4図
FIG. 1 is a schematic diagram of a two-phase fluid loop according to an embodiment of the present invention, FIG. 2 is a schematic diagram of pressure distribution in each part of the fluid loop according to the configuration of FIG. 1, and FIG. 3 is a diagram of a monogroup heat pipe. 4 is a schematic diagram of a two-phase fluid loop using a monogroup heat pipe, FIG. 5 is a schematic diagram of a conventional Bonpuni phase fluid loop, and FIG. 6 is a diagram of a conventional capillary pump system. It is a schematic configuration diagram. (Explanation of symbols representing main parts of the drawings) 1... Condensing section 3... Evaporating section 5... Main loop 7... Pump 9... Bypass Figure 1 Figure 2 Figure 3 Figure 4 figure

Claims (1)

【特許請求の範囲】[Claims] ポンプで液相の作動流体を循環させるメインループと、
メインループの高圧側に設けられメインループから液体
が供給される毛細管構造を有する蒸発部と、メインルー
プの低圧側に設けられメインループに液体を還流する凝
縮部と、前記蒸発部で蒸発した蒸気を前記凝縮部へ輸送
するバイパスとにより構成したことを特徴とする二相流
体ループ。
A main loop that circulates liquid phase working fluid with a pump,
An evaporation section having a capillary structure provided on the high pressure side of the main loop and to which liquid is supplied from the main loop, a condensation section provided on the low pressure side of the main loop and refluxing the liquid to the main loop, and vapor evaporated in the evaporation section. A two-phase fluid loop comprising: a bypass for transporting the fluid to the condensing section.
JP21514085A 1985-09-30 1985-09-30 Two-phase fluid loop Expired - Lifetime JPH0631702B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP21514085A JPH0631702B2 (en) 1985-09-30 1985-09-30 Two-phase fluid loop
US07/285,311 US4898231A (en) 1985-09-30 1988-11-10 Heat-pipe system and method of and apparatus for controlling a flow rate of a working fluid in a liquid pipe of the heat pipe system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21514085A JPH0631702B2 (en) 1985-09-30 1985-09-30 Two-phase fluid loop

Publications (2)

Publication Number Publication Date
JPS6277594A true JPS6277594A (en) 1987-04-09
JPH0631702B2 JPH0631702B2 (en) 1994-04-27

Family

ID=16667356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21514085A Expired - Lifetime JPH0631702B2 (en) 1985-09-30 1985-09-30 Two-phase fluid loop

Country Status (1)

Country Link
JP (1) JPH0631702B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006526757A (en) * 2003-06-05 2006-11-24 株式会社ニコン Heat pipe with temperature control

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006526757A (en) * 2003-06-05 2006-11-24 株式会社ニコン Heat pipe with temperature control

Also Published As

Publication number Publication date
JPH0631702B2 (en) 1994-04-27

Similar Documents

Publication Publication Date Title
US5490393A (en) Generator absorber heat exchanger for an ammonia/water absorption refrigeration system
US4750543A (en) Pumped two-phase heat transfer loop
EP2000753B1 (en) System and method for separating components of a fluid coolant for cooling a structure
US4603732A (en) Heat management system for spacecraft
JPH04268172A (en) Combined machine type-absorption type cooling and its apparatus
US4664177A (en) Pumped two-phase heat transfer loop
CN106628276A (en) Spacecraft self-driven two-phase circulation heat control system
JPS63502692A (en) fluid flow control system
JPS6277594A (en) Two-phase fluid loop
US3269458A (en) Method and apparatus for accurate and controlled cooling
KU et al. Functional and performance tests of two capillary pumped loop engineering models
KR20000064967A (en) Generator-absorber-heat exchange heat transfer device and method and heat pump using them
US20230232588A1 (en) Cooling apparatus and space structure
Scaringe et al. Heat-pump-augmented spacecraft heat-rejection systems
JPH06117722A (en) Absorption heat pump device
JPH0262792B2 (en)
RU2667249C1 (en) Thermal control system on the basis of the two-phase thermal circuit
JP2699623B2 (en) Condenser
JPS61265392A (en) Thermal pump
US2123708A (en) Absorber type refrigerating system with boiler feed
JPS5833468B2 (en) Absorption refrigeration equipment
Edelstein Pumped two-phase heat transfer loop
JPS62294864A (en) Absorption heat pump
JPS61276664A (en) Heat pump device
JPH0524422B2 (en)