JPS6277186A - Solid phase joining method - Google Patents

Solid phase joining method

Info

Publication number
JPS6277186A
JPS6277186A JP21513085A JP21513085A JPS6277186A JP S6277186 A JPS6277186 A JP S6277186A JP 21513085 A JP21513085 A JP 21513085A JP 21513085 A JP21513085 A JP 21513085A JP S6277186 A JPS6277186 A JP S6277186A
Authority
JP
Japan
Prior art keywords
materials
ceramics
ultrafine powder
joined
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21513085A
Other languages
Japanese (ja)
Inventor
Shigechika Kosuge
小菅 茂義
Toshifumi Kojima
敏文 小嶋
Yasuhiro Ueno
泰弘 上野
Itaru Watanabe
渡邊 之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP21513085A priority Critical patent/JPS6277186A/en
Publication of JPS6277186A publication Critical patent/JPS6277186A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To execute firm solid phase junction by combining the same or different kind materials of ceramics, a fiber reinforced metallic material and a metallic material, placing the ultrafine powder of a specified particle diameter or below corresponding to a kind of a joining material, between joint surfaces, and heating and pressing it. CONSTITUTION:Between combination 1, 2 joint surfaces of the same material or a different kind material of ceramics, a fiber reinforced metallic material and a metallic material, an ultrafine powder 3 whose particle diameter is <=1mum, of one of materials to be joined 1, 2 or a mixed material of both of them is placed, and heated and pressed. By utilizing a high reactivity of the ultrafine powder 3, each of the material to be joined 1, 2 is brought to a solid phase junction firmly. In this regard, this junction is usually executed in a vacuum atmosphere or an inert gas atmosphere, but in case of joining ceramics of an oxide compound or a nitride compound, it can be executed in an oxidizing or nitrifying atmosphere.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はセラミックスと金属あるいは繊維強化金属と
金属などの同種材料あるいは異種材料の固相接合方法、
特に接合面の高接合強度化に関するO 〔従来の技術〕 近年、種々の産業分野において省エネルギおよびエネル
ギの効率化が進み、それに伴ない材料の使用環境が苛酷
化し、高い耐食性、耐熱性、耐摩耗性を有する材料の出
現が望よれている。これらの要件を具備する材料として
セラミックスおよび繊維強化金#I(以下、IFRMと
いう。)が脚光を浴びておシ、すでに一部が実用化され
ている・しかしながら、セラミックスおよびFRM@単
体で構造用材料として用いるtζは耐衝撃性の点で間層
があシ、これらの用途拡大を拒んでいる。
[Detailed Description of the Invention] [Industrial Application Field] This invention provides a method for solid-phase joining of similar or dissimilar materials such as ceramics and metals or fiber-reinforced metals and metals;
[Conventional technology] In recent years, energy saving and energy efficiency have progressed in various industrial fields, and the environment in which materials are used has become harsher. The emergence of materials with wear properties is desired. Ceramics and fiber-reinforced gold #I (hereinafter referred to as IFRM) have been attracting attention as materials that meet these requirements, and some of them have already been put into practical use. The tζ used as a material has a poor interlayer in terms of impact resistance, which prevents its use from expanding.

この点を解決し、セラミックス、IFRMの高機能性を
有効に活用し、用途拡大を図るためには金属材料との複
合的使用が不可欠となる。すなわち耐食、耐熱、耐摩耗
という特性をセラミックスあるいはFRMに持たせ、構
造材料として必要な強度、靭性を金属材料に受は持たせ
ることが必要−である。
In order to solve this problem, effectively utilize the high functionality of ceramics and IFRM, and expand their applications, it is essential to use them in combination with metal materials. That is, it is necessary to give ceramics or FRM the characteristics of corrosion resistance, heat resistance, and abrasion resistance, and to give metal materials the strength and toughness necessary as structural materials.

このためにはセラミックスあるいはFRMと金属材料と
の接合が絶対的に必要となる◇これら異種材料の接合に
は通常拡散接合法が用いられているO 拡散接合法としては、第2図に示すように金属材料1と
セラミックス2を直接接合する方法、あるいは金属材料
1とセラミックス2の接合面間に箔または板材からなる
インサート材を挿入し、このインサート材を介して接合
する方法が一般に採用されている。
For this purpose, it is absolutely necessary to bond ceramics or FRM and metal materials. ◇ Diffusion bonding is usually used to bond these dissimilar materials. In general, a method of directly joining the metal material 1 and the ceramic 2, or a method of inserting an insert material made of foil or plate material between the joining surfaces of the metal material 1 and the ceramics 2 and joining them through this insert material is generally adopted. There is.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記セラミックスあるいはXFRMを金属材料に接合す
る従来の方法においては接合界面におけるセラミックス
あるいはPRMと金属との反応が必ずしも十分でなく接
合強度は例えばセラミックスの50〜50%となシ、良
好な接合強度が得られないという問題点がある。
In the conventional method of bonding the above-mentioned ceramics or The problem is that you can't get it.

この発明はかかる問題点を解決するため罠なされたもの
であシ、セラミックス、IFRMおよび金属材料などの
同種材料あるいは異種材料を高強度で接合することがで
きる固相接合方法を提案することを目的とするものであ
る。
This invention was made to solve these problems, and the purpose is to propose a solid-phase joining method that can join similar or dissimilar materials such as ceramics, IFRM, and metal materials with high strength. That is.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る固相接合方法は、セラミックス。 The solid phase bonding method according to the present invention applies to ceramics.

繊維強化金属材料および金属材料を被接合材とし、上記
各材料と同一材料または異種材料の組合せで行なう固相
接合方法において、被接合材の種類に応じた粒径1μm
以下の超微粉材料を接合面間に配し、加熱・加圧するこ
とを特徴とする。
In a solid-phase joining method in which fiber-reinforced metal materials and metal materials are used as materials to be joined, and the same material as each of the above materials or a combination of different materials is used, a particle size of 1 μm according to the type of materials to be joined is used.
The following ultrafine powder material is placed between the joint surfaces and heated and pressurized.

〔作 用〕[For production]

この発明においては、被接合材の接合面間に比表面積の
極めて大きい超微粉材料を充填することによシ、超微粉
の高反応性を利用して接合部の特性を向上させる◇ 〔実施例〕 第1図はこの発明の一実施例の説明−であり、図におい
て1は金属材′料、2はセラミックス、6は金属材料1
とセラミックス2の接合面間に充填され九粒径1μm以
下の超微粉である。超微粉6は比表面積が極めて大きく
、例えば粒径25−mの超微粉の表面積は約55 rn
’/grまで達し、反応性が非常に高く、触媒としても
利用されることがある。
In this invention, by filling an ultrafine powder material with an extremely large specific surface area between the bonding surfaces of the materials to be bonded, the characteristics of the bonded part are improved by utilizing the high reactivity of the ultrafine powder ◇ [Example ] Figure 1 is an explanation of one embodiment of the present invention, in which 1 is a metal material, 2 is a ceramic, and 6 is a metal material 1.
It is an ultrafine powder with a grain size of 1 μm or less that is filled between the bonding surfaces of the ceramic and the ceramic 2. The ultrafine powder 6 has an extremely large specific surface area, for example, the surface area of an ultrafine powder with a particle size of 25 m is about 55 rm.
'/gr, has very high reactivity, and is sometimes used as a catalyst.

第1図に示したように、金属材料1とセラミックス2の
接合面間に超微粉5を充填した状態で接合部をα1〜5
.0役−程度の圧力で加圧し、所定の温度で所定時間加
熱して金属材料1とセラミックス2を接合する。
As shown in Fig. 1, with ultrafine powder 5 filled between the joint surfaces of metal material 1 and ceramics 2,
.. The metal material 1 and the ceramics 2 are bonded by applying pressure at a pressure of approximately 0.0 mm and heating at a predetermined temperature for a predetermined time.

加熱温度、加熱時間は超微粉3の材種によって異なるが
、超微粉3が高い反応性を示し、かつ被接合材である金
属材料1の融点以下の温度に設定する@ この加圧・加熱の状態で超微粉6が高い反応性を示し、
金属材料1とセラミックス2の接合面と超微粉3が活性
化され、接合が容易に行なわれる@また、接合面間に充
填された超微粉も焼結されるため接合された継手は十分
な強度を有する〇この接合方法に使用される超微粉6は
接合すべき材料の種類に応じて適宜適正なものを選定す
るととKなるが、超微粉6自体が高い反応性を有するた
め、その選択範囲は広く、金属材料1とセラミックス2
を接合する場合はセラミックス、金属およびセラミック
スと金属の混合粉のいずれでも適用することができる◎
この場合、超微粉3は必ずしも被接合材と同種であるこ
とは必要でなく、例えば、被接合材としてZrO□とN
1基合金を使用した場合には、超微粉材としては被接合
材と同種のZrO2、IJi基合金粉末およびこれらの
混合粉末が効果的であるが、At203.ステンレス鍋
粉末等も有効であることを確認している。
The heating temperature and heating time vary depending on the type of ultrafine powder 3, but the temperature is set so that the ultrafine powder 3 exhibits high reactivity and is below the melting point of the metal material 1 to be joined. Ultrafine powder 6 shows high reactivity in the state,
The joining surfaces of the metal material 1 and the ceramics 2 and the ultrafine powder 3 are activated, making the joining easier @ Also, since the ultrafine powder filled between the joining surfaces is also sintered, the joined joint has sufficient strength. 〇The ultrafine powder 6 used in this bonding method can be selected appropriately depending on the type of materials to be bonded, but since the ultrafine powder 6 itself has high reactivity, the selection range is limited. is broadly divided into metal materials 1 and ceramics 2
When joining, any of ceramics, metals, and mixed powders of ceramics and metals can be applied.
In this case, the ultrafine powder 3 does not necessarily have to be of the same type as the materials to be joined; for example, ZrO□ and N may be used as the materials to be joined.
When a single-based alloy is used, ZrO2- and IJi-based alloy powders of the same type as the materials to be joined and mixed powders thereof are effective as ultrafine powder materials, but At203. It has been confirmed that stainless steel pot powder is also effective.

また、固相接合を行なうときの接合雰囲気は通常真空雰
囲気あるいはアルゴン等の不活性ガス雰囲気であるが、
酸化物系または窒化物系セラミックスを接合する場合に
はそれぞれ酸化性あるいは窒化性雰囲気でも良好に接合
することができる。
Furthermore, the bonding atmosphere when performing solid phase bonding is usually a vacuum atmosphere or an inert gas atmosphere such as argon.
When oxide-based or nitride-based ceramics are bonded, good bonding can be achieved even in an oxidizing or nitriding atmosphere, respectively.

〔具体例1〕 上記実施例に基づき具体的に接合した場合について説明
する。
[Specific Example 1] A specific case of joining will be described based on the above embodiment.

被接合材として接合寸法10wx10wのAt2o3と
Tl −6ht −4v合金を使用し、この被接合材上
接合面間隙1W設けて突合わせ、この間隙に粒径0.0
1〜0.1μmの純で1超微粉を充填し、加圧力1にφ
d、加熱加熱温度約900加、加熱保持1時間、真空雰
囲気5 X 1O−2Torrの条件の下で面相接合を
行なった。同時に、超微粉を充填せずに被接合材を上記
接合条件で直接接合し、両者の接合強度を調べた。この
接合強度は曲げ強さく三点曲げ)で評価した。
At2o3 and Tl -6ht -4v alloy with bonding dimensions of 10w x 10w are used as the materials to be joined, and a gap of 1W is provided between the surfaces to be joined on the materials to be joined.
Filled with ultrafine powder of 1 to 0.1 μm, and applied pressure of 1 to φ
d. Heating The face-to-face bonding was performed under the conditions of heating at a heating temperature of approximately 900, heating and holding for 1 hour, and a vacuum atmosphere of 5 x 10-2 Torr. At the same time, the materials to be joined were directly joined under the above joining conditions without being filled with ultrafine powder, and the joining strength between the two was examined. This joint strength was evaluated by bending strength (three-point bending).

この結果、超微粉材を充填しない直接接合の場合の接合
強度は1.3 Kyt/−であシ、接合界面が剥離する
形で破断したのに対し、超微粉を充填したものは曲げ強
さは11.2〜f/krlにも達し、その破断は接合面
ではなく、At203母材側にやや入った場所で生じた
As a result, the joint strength in the case of direct joining without filling with ultrafine powder material was 1.3 Kyt/-, and the joint interface broke in the form of peeling, whereas the one filled with ultrafine powder had a lower bending strength. reached 11.2 to f/krl, and the fracture occurred not at the joint surface but at a location slightly deeper into the At203 base material side.

〔具体例2〕 被接合材および接合茶件は上記具体例1と同様にし、超
微粉材として粒径α02〜0.08μmのAt203微
粉末を用いて接合し、その接合強度を調べた◇ その結果曲げ強さは12.6Kgt7−であシ、破断は
上記具体例1と同様にAt203母材側にやや入った場
所で生じた。
[Specific Example 2] The materials to be joined and the welding conditions were the same as those in Specific Example 1 above, and At203 fine powder with a particle size of α02 to 0.08 μm was used as the ultrafine powder material to join, and the joining strength was investigated. As a result, the bending strength was 12.6 kgt7-, and the fracture occurred at a location slightly deeper into the At203 base material side, as in Example 1 above.

なお上記実施例においては酸化物系セラミックスと金属
材料との接合について説明したが、窒化物系、炭化物系
あるいは硼化物系セラミックスと金属との接合、セラミ
ックスとFRMとの接合あるいはFRMと金属との接合
にも有効に利用する仁とができること全確認している。
In the above embodiments, the bonding between oxide-based ceramics and metal materials has been described, but the bonding between nitride-based, carbide-based or boride-based ceramics and metals, the bonding between ceramics and FRM, or the bonding between FRM and metals is also applicable. We have confirmed that it can be used effectively for bonding as well.

さらに異種材料の接合のみならず同種材料の接合にも適
用しても同様に高接合強度を得ることができる〇〔発明
の効果〕 この発明は以上説明したように、被接合材の接合面間に
比表面積の極めて大きい超微粉材料を充填することによ
シ、超微粉の高反応性を利用して被接合材を接合するか
ら、その接合強度を接合母材強度に近い程度まで高める
ことができる効果を有する。したがってセラミックス等
と金属材料との複合材料の構造材料としての用途拡大を
図ることができる。
Furthermore, high bonding strength can be obtained not only when applying the bonding of dissimilar materials but also to bonding of the same type of materials. [Effects of the Invention] As explained above, this invention provides By filling the material with an ultrafine powder material with an extremely large specific surface area, the materials to be joined are joined by utilizing the high reactivity of the ultrafine powder, so the joining strength can be increased to a level close to that of the joining base material. It has the effect of Therefore, it is possible to expand the use of composite materials of ceramics and metal materials as structural materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の詳細な説明図、第2図は従来の接合
方法を示す説明図である@ 1・・・金属材料、2・・・セラミックス、3・・・超
微粉。 代理人 弁理士 佐 藤 正 年 1:金属 2:乞うぐ、、/7ス
FIG. 1 is a detailed explanatory diagram of the present invention, and FIG. 2 is an explanatory diagram showing a conventional joining method.@1: Metal material, 2: Ceramics, 3: Ultrafine powder. Agent: Patent Attorney Tadashi Sato Year 1: Metals 2: Begging.../7th grade

Claims (1)

【特許請求の範囲】[Claims] セラミックス、繊維強化金属材料および金属材料を被接
合材とし、上記各材料と同一材料または異種材料の組合
せで行なう固相接合方法において、被接合材の種類に応
じた粒径1μm以下の超微粉材料を接合面間に配し、加
熱・加圧することを特徴とする固相接合方法。
In a solid-phase joining method in which ceramics, fiber-reinforced metal materials, and metal materials are used as materials to be joined, and the same material as each of the above materials or a combination of different materials is used, an ultrafine powder material with a particle size of 1 μm or less depending on the type of materials to be joined is used. A solid phase bonding method characterized by placing a material between the bonding surfaces and applying heat and pressure.
JP21513085A 1985-09-30 1985-09-30 Solid phase joining method Pending JPS6277186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21513085A JPS6277186A (en) 1985-09-30 1985-09-30 Solid phase joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21513085A JPS6277186A (en) 1985-09-30 1985-09-30 Solid phase joining method

Publications (1)

Publication Number Publication Date
JPS6277186A true JPS6277186A (en) 1987-04-09

Family

ID=16667212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21513085A Pending JPS6277186A (en) 1985-09-30 1985-09-30 Solid phase joining method

Country Status (1)

Country Link
JP (1) JPS6277186A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01198408A (en) * 1988-02-04 1989-08-10 Sumitomo Heavy Ind Ltd Method for joining different material
JPH05213679A (en) * 1991-10-18 1993-08-24 Internatl Business Mach Corp <Ibm> Interface area between metal and ceramics in metal/ceramic substrate and formation method thereof
JP2006228804A (en) * 2005-02-15 2006-08-31 Fuji Electric Holdings Co Ltd Ceramic substrate for semiconductor module and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891088A (en) * 1981-11-27 1983-05-30 トヨタ自動車株式会社 Method of bonding ceramic and metal
JPS59137373A (en) * 1983-01-20 1984-08-07 日本特殊陶業株式会社 Ceramic bonding method
JPS6117475A (en) * 1984-07-05 1986-01-25 旭化成株式会社 Method of directly bonding metal member to ceramic member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891088A (en) * 1981-11-27 1983-05-30 トヨタ自動車株式会社 Method of bonding ceramic and metal
JPS59137373A (en) * 1983-01-20 1984-08-07 日本特殊陶業株式会社 Ceramic bonding method
JPS6117475A (en) * 1984-07-05 1986-01-25 旭化成株式会社 Method of directly bonding metal member to ceramic member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01198408A (en) * 1988-02-04 1989-08-10 Sumitomo Heavy Ind Ltd Method for joining different material
JPH05213679A (en) * 1991-10-18 1993-08-24 Internatl Business Mach Corp <Ibm> Interface area between metal and ceramics in metal/ceramic substrate and formation method thereof
JP2006228804A (en) * 2005-02-15 2006-08-31 Fuji Electric Holdings Co Ltd Ceramic substrate for semiconductor module and its manufacturing method

Similar Documents

Publication Publication Date Title
JPH0367986B2 (en)
JPS60131874A (en) Method of bonding ceramic and metal
JPS582276A (en) Metal-ceramic joint body and manufacture
US7108166B2 (en) Method for sealing a battery case
JPS5997580A (en) Solder for bonding silicon carbide material
JPS6277186A (en) Solid phase joining method
JPH02175674A (en) Joined body of ceramics and metallic body and method for joining thereof
JPS59207885A (en) Method of bonding ceramic member to metal member
JPH0366071B2 (en)
JP2005139057A (en) Method for metallizing powder sintered ceramics
JPS60251179A (en) Method of bonding ceramic member and metal member
JPH01224279A (en) Bonding of ceramic to metal
JPH0632869B2 (en) Brazing method for ceramics and metal
JPS62197361A (en) Method of joining silicon carbide ceramics
JPS59174581A (en) Method of bonding aluminum to alumina
JPS60231473A (en) Method of bonding ceramic member and metal member
JPS60251180A (en) Method of bonding ceramic member and metal member
JPS6228091A (en) Joining method for ceramics
JPH0285307A (en) Method for joining ferrous material
JPS60195067A (en) Diffusion bonding method
JPS6351993B2 (en)
JPH01111783A (en) Joined structure of carbon and ceramics, carbon or metal
JPH0497968A (en) Ceramic-metal joined body
JPS6287468A (en) Bonded composite material of ceramic to metal
JPS6277188A (en) Solid phase joining method