JPS6277016A - Stepout predicting device for power system - Google Patents

Stepout predicting device for power system

Info

Publication number
JPS6277016A
JPS6277016A JP21101785A JP21101785A JPS6277016A JP S6277016 A JPS6277016 A JP S6277016A JP 21101785 A JP21101785 A JP 21101785A JP 21101785 A JP21101785 A JP 21101785A JP S6277016 A JPS6277016 A JP S6277016A
Authority
JP
Japan
Prior art keywords
phase angle
transmission line
angle difference
bus voltage
bus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21101785A
Other languages
Japanese (ja)
Other versions
JPH0452051B2 (en
Inventor
好文 大浦
松沢 邦夫
笠原 利夫
大塚 均
和也 小俣
正弘 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP21101785A priority Critical patent/JPS6277016A/en
Publication of JPS6277016A publication Critical patent/JPS6277016A/en
Publication of JPH0452051B2 publication Critical patent/JPH0452051B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 し発明の技術分野」 本発明は、電力系統の脱調を手前に予測する脱調予測装
置(−関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a step-out prediction device that predicts a step-out in an electric power system in advance.

[発明の技術的背景およびその問題点]複数の変電所あ
るいは発電所(二おける母線電圧を高速度Cユサンプリ
ングし、伝送系を介して送受し合い、電圧位相角差を検
出して互いの電圧位相角差が一定値以上、例えば180
度づれたことを検出して系統脱調と判定する方法は従来
から使用されている。しかし、伝送系を使用せず系a電
圧位相角差を検出し、かつ、過去数点の電圧位相角差よ
り、将来の電圧位相角差を予測演算して系統脱調を早期
(ユ検出する方法はまだ実現していない。
[Technical background of the invention and its problems] Bus voltages at multiple substations or power plants (two) are sampled at high speed, transmitted and received via a transmission system, and voltage phase angle differences are detected and The voltage phase angle difference is more than a certain value, for example 180
A method has been used in the past to detect a deviation in power and determine that it is a system out-of-step. However, system A voltage phase angle difference is detected without using the transmission system, and the future voltage phase angle difference is predicted and calculated based on the voltage phase angle difference at several points in the past, and system step-out can be detected early. The method has not yet been implemented.

系統の脱調を事前(−子側検出できれば、この条件C二
より種々の糸紐安定化Q3御を行い、系統脱調を事前に
防止することが可能となる。即ち脱調を検出するのでは
なく脱調を事前1−子側検出することが脱調を防止する
ためには、是非とも必要となる。
If system out-of-step can be detected in advance (-child side), it becomes possible to perform various string stabilization Q3 controls from this condition C2 and prevent system out-of-step in advance. In order to prevent synchronization, it is absolutely necessary to detect synchronization in advance on the 1-child side rather than on the synchronization side.

[発明の目H、ノコ 本発明は、変電R[あるいは発電所(ユ接続する送電線
両端の母線πi電圧位相角差伝送系を使用せず検出し、
過去数点のその値より将来の母線電圧位相角差を予測演
算して系統脱調(1至ることを事前に検出する電力系統
の脱調子細]装置を提供することを目的とする。
[Aspects of the Invention H, Saw] The present invention detects a substation R [or a power plant (U) without using a bus line πi voltage phase angle difference transmission system at both ends of a power transmission line connected to the
It is an object of the present invention to provide a power system out-of-step adjustment device that predicts and calculates a future bus voltage phase angle difference based on the values at several points in the past.

[発明の概要] 本発明は送電線片側の母線電圧の大きさVAとその送電
線の電流ベクトルi(基準は前記母線■)を定周期で測
定し、相手端の母線電圧ベクトル9Bを演算し、送を線
両端の電圧位相角差θを検出し、さらC′−過去kk点
の電圧位相角差より将来の電圧位相角差θ(1)を予剌
j演算して、その傾向及び値により脱調を早期(ユ検出
するものである。
[Summary of the Invention] The present invention measures the magnitude of the bus voltage VA on one side of a transmission line and the current vector i of that transmission line (the reference is the bus ■) at regular intervals, and calculates the bus voltage vector 9B on the other end. , detect the voltage phase angle difference θ between the two ends of the transmission line, and calculate the future voltage phase angle difference θ(1) from the voltage phase angle difference between C' and past kk points, and calculate its tendency and value. This allows for early detection of loss of synchronization.

「発明の実施例」 まず第4図以降の図を参照して脱調子fillの考え方
(原理)を電力系統の一例を用いて説明する。
"Embodiments of the Invention" First, the concept (principle) of detuning fill will be explained using an example of a power system with reference to FIG. 4 and subsequent figures.

第4図(ユ゛邂力系統の一例を示す。同図においてl及
び2は幀数の発電機群からなる大電源の系統を示し、3
は大電源系統1,2を結ぶ大容量長距離送電線を示す。
Figure 4 shows an example of a power system. In the figure, l and 2 indicate a large power supply system consisting of a number of generator groups, and 3
indicates a large-capacity long-distance transmission line connecting large power supply systems 1 and 2.

次に系統事故などが原因となって、長距離送電線3の両
端の母線電圧?人、 ?B位相角差が1B0友以上とな
り、系M、lと系統2が脱調に至る様相を長距離送電線
3の両端の母線電圧ベクトルの動き、及び両者の電圧位
相角差の動きで説明下る。一般に、第1図の様な電力系
統C−系統$故などが発生すると系統の最も弱い連系線
、即ち羨距離送電線3(ユ脱調ローカス(送電線両端の
母R’に圧位相角差が一定値以上、例えば180度以上
開くことを意味する。)が入り、系統N]脱調が発生す
る。従って、長距離送電線3の両端の母線電圧ベクトル
の動きを把握することζ二より、系統1と系統2の脱調
現象をとらえることができる。
Next, due to a system fault, etc., the busbar voltage at both ends of the long-distance transmission line 3? Man, ? The manner in which the B phase angle difference becomes 1B0 or more and systems M, I, and system 2 go out of synchronization will be explained by the movement of the bus voltage vector at both ends of the long-distance transmission line 3 and the movement of the voltage phase angle difference between the two. . In general, when a failure occurs in the power system C-system as shown in Fig. 1, the pressure phase angle This means that the difference is greater than a certain value, for example, 180 degrees or more), and system N] step-out occurs.Therefore, it is necessary to understand the movement of the bus voltage vector at both ends of the long-distance transmission line 3. Therefore, it is possible to detect the out-of-step phenomenon of system 1 and system 2.

第5図(二おいて、0人は長距離送電線3の系統1側の
接続変電/Fiあるいは発電所等の電気所の母線電圧で
あり、9Bは1町系統2側の接線変電所あるいは発電所
等の電気所の母線電圧ベクトルを表わす。
Figure 5 (2) 0 person is the bus voltage of the connecting substation/Fi on the system 1 side of the long-distance transmission line 3 or the electric station such as a power plant, and 9B is the tangential substation or Represents the bus voltage vector of an electrical station such as a power station.

第5図(a)は通常の状態を示し、長距離送電線3の両
端の母線電圧VA、 VB間軸相川用θaで運用されて
いる。
FIG. 5(a) shows a normal state in which the long-distance transmission line 3 is operated at an axis θa between the bus voltages VA and VB at both ends.

次(1第5図(b)は、系統擾乱などによって系統1の
発を後群と系統2の発電機群とのbきが異なり、徐々(
二長距射送電線3の両端の母線電圧?、、?B間の位相
角差が拡大して行く様子を示す。そして、第5図(C)
は長距離送電線3の両端の母線電圧位相角差が増々拡大
し、その角度が一定値以上、例えば180度C二なった
場合を示し、この様な状態となれば系統1と系統2は同
期を失い脱調となる。
Next (1) Figure 5 (b) shows that due to system disturbances, etc., the power output of system 1 is different between the rear group and the generator group of system 2, and gradually (
Bus voltage at both ends of two long-distance transmission line 3? ,,? This shows how the phase angle difference between B and B increases. And Figure 5 (C)
indicates a case where the busbar voltage phase angle difference between both ends of the long-distance transmission line 3 increases and the angle exceeds a certain value, for example, 180 degrees C2. In such a state, system 1 and system 2 Loss of synchronization and goes out of step.

更(;、第5図(d)は、この様な長距離送電線3の両
端の母線電圧位相角差の拡大傾向を時間的1−示したも
のであり、例えば、過渡第−波脱調の場合、その傾向が
単調発散となる。
Furthermore, Fig. 5(d) shows the increasing tendency of the bus voltage phase angle difference at both ends of the long-distance transmission line 3 over time. In this case, the trend becomes monotonically divergent.

この様(−1大きな2つの発電機群が長距離送電線を介
して連系され系統擾乱(二より脱調する場合、その長距
離送を線両端の母線電圧位相角差の変化を観測すること
によって脱調現象をとらえることができる。
In this case (-1), when two large generator groups are interconnected via a long-distance transmission line and a system disturbance (2) occurs, the long-distance transmission is observed by observing changes in the bus voltage phase angle difference at both ends of the line. This allows us to detect out-of-step phenomena.

次に、長距離送電線3の両端の母線′電圧位相角差の検
出方法を説明する。
Next, a method of detecting the voltage phase angle difference between the busbars' at both ends of the long-distance power transmission line 3 will be explained.

長距離送電線3の系統1側の接続母線電圧の大きさを■
鮎vAを基準位相とした時の長距離送電線3の電流ベク
トルをi、長距離送電線3の線路インピーダンスを党と
すると、長距離送電線3の系統2側の接続母線の電圧ベ
クトル?B及びその位相角θは(1)式及び(2)弐I
こより求ぬられる。尚、θは7人を基準位相とした時の
位相角であり、長距離送電線3の両端の母線電圧位相角
差と等価である。
The magnitude of the connected bus voltage on the system 1 side of long-distance transmission line 3 is ■
If the current vector of the long-distance transmission line 3 is i and the line impedance of the long-distance transmission line 3 is the line impedance of the long-distance transmission line 3 when Ayu vA is the reference phase, then the voltage vector of the connecting bus on the system 2 side of the long-distance transmission line 3 is ? B and its phase angle θ are expressed by equation (1) and (2)
I'm more sought after than this. Note that θ is a phase angle when seven people are used as a reference phase, and is equivalent to the bus voltage phase angle difference between both ends of the long-distance power transmission line 3.

ここで、Re(QB)は9Bの実部の大きさを示し、工
m(QB)は9Bの虚部を示す。
Here, Re(QB) indicates the size of the real part of 9B, and Re(QB) indicates the imaginary part of 9B.

この様C−1本発明イニよれば、伝送系を使用すること
なく、送直線の両端の母り電圧位411角差θを検出す
ることができる。
As described above, according to C-1, the angular difference θ of the main voltage potential 411 at both ends of the transmission line can be detected without using a transmission system.

次に△T間隔で検出した過去数点の母線電圧位相角差よ
り、将来時点の母線電圧位相角差な予測する方法につい
て述べる。
Next, a method for predicting the bus voltage phase angle difference at a future point in time based on the bus voltage phase angle difference at several points in the past detected at intervals of ΔT will be described.

一般(−1保護継電器(二よって事故送電線をしゃ断し
た後は、長距離送電線3の両端の母線電圧位相角差は系
Mk1と系統2の発電機群の大きな慣性により不連続に
変化することなく滑らか(−変化する。それゆえ、過去
数点の母線電圧位相角差な通る高次式を求めれば、その
高次式から将来の母線電圧位相角差を求めることができ
る。
General (-1) After the faulty transmission line is cut off by the protective relay (2), the busbar voltage phase angle difference at both ends of the long-distance transmission line 3 changes discontinuously due to the large inertia of the generator groups of system Mk1 and system 2. Therefore, if you find a higher-order equation that passes the bus voltage phase angle differences at several points in the past, you can find the future bus voltage phase angle difference from that higher-order equation.

以下、高次式を2次式とした場合の脱調予測(二ついて
第3図を用いて説明する。
Hereinafter, step-out prediction when the higher-order equation is a quadratic equation (two equations will be explained using FIG. 3).

△T間隔で検出した長距離送電線3の両端の母線電圧位
相角差をθ(tx)、θ(tic−t)+θ(tK−2
)とでるとこの3点を辿る曲線は(3) 、 (4)式
で定義される。
The bus voltage phase angle difference between both ends of the long-distance power transmission line 3 detected at intervals of ΔT is expressed as θ(tx), θ(tic-t)+θ(tK-2
), the curve tracing these three points is defined by equations (3) and (4).

θ(t)−〇(ty、−z)十△θx2(t−tK−1
)+Δθols (t −tx−i) (t−tx−z
)  (3)ここで、tKは現時点の時間、 tK−1
はΔT前の時間、  tK−2は2△T前の時間をそれ
ぞれ示す。
θ(t)-〇(ty,-z) ten △θx2(t-tK-1
)+Δθols (t −tx−i) (t−tx−z
) (3) Here, tK is the current time, tK-1
indicates the time before ΔT, and tK-2 indicates the time before 2ΔT.

将来時点τにおける母線電圧位相角差θ(τ)は(3)
式のtにτを代入することにより求められる。
The bus voltage phase angle difference θ(τ) at future time τ is (3)
It is obtained by substituting τ for t in the equation.

次に脱調の判定方法Cユついて説明する。脱調判定は(
3) 、 (4)式で求めた将来時点の長距離送電線3
の両端の母線電圧位相角差が発散傾向を示し、かつ、予
め設定した境界値を越えたか否か(ユより行う。即ち、
将来時点 τlくτ2 < −−−−−<τP における母線電圧
位相角差がθ(τl)<σ(τ2)<・−<θ(τp)
  (5)かつ θ(τp) >θI imi t  
       (6)の場合(ユ脱調と判定する。ここ
で、θItmitは先に説明した境界値である。
Next, the step-out determination method C will be explained. The out-of-step judgment is (
3), Long-distance transmission line 3 at the future time determined by equation (4)
Whether or not the bus voltage phase angle difference between both ends of the bus shows a tendency to diverge and exceeds a preset boundary value (conducted from Y).
The bus voltage phase angle difference at future time τl<τ2<-----<τP is θ(τl)<σ(τ2)<・-<θ(τp)
(5) and θ(τp) >θI imit
In the case of (6) (determined as step-out), θItmit is the boundary value described earlier.

この脱調判定方法は系統1と系統2が例えば第−波で脱
調し、そのローカスが長距離送電線3(=入る場合、そ
の両端の母線電圧位相角差が単調(−発散し、かつ、あ
る境界値を越えるという物理的性質を利用している。
This step-out determination method is based on the following: When system 1 and system 2 step out, for example, at the -th wave, and the locus enters the long-distance transmission line 3 (=), the bus voltage phase angle difference at both ends becomes monotonous (-diverges and , utilizes the physical property of exceeding a certain boundary value.

本発明の一実施例を第1図を用いて具体的Cユ説明する
An embodiment of the present invention will be explained in detail with reference to FIG.

11は、長距離送電線3の系統1側の接続母線であり、
12は系統2側の接続母線でるる。13は母線ζ二接続
された計器用変圧器FTの2次電圧および送電線(ユ設
けられた変流器CTの2次電流を入力し、これら電気量
を一定周期でサンプリングし、A/D変換して出力する
サンプリング装置である。
11 is a connection bus bar on the system 1 side of the long-distance transmission line 3;
12 is the connection bus bar on the system 2 side. 13 inputs the secondary voltage of the voltage transformer FT connected to the bus line ζ2 and the secondary current of the current transformer CT installed on the transmission line (Y), samples these electrical quantities at a constant cycle, and outputs the A/D. This is a sampling device that converts and outputs the data.

14は、系統1側の接続母線11の電圧と長距離送電線
3の電流のサンプリング値より、接続母線11の電圧の
大きさ7人と長距離送電線3の電流ベクトルiを検出す
る電圧・電流ベクトル検出装置である。
14 is a voltage value for detecting the magnitude of the voltage of the connection bus 11 and the current vector i of the long distance transmission line 3 from the sampling values of the voltage of the connection bus 11 on the grid 1 side and the current of the long distance transmission line 3. This is a current vector detection device.

15は接続母線11の電圧の大きさ7人と長距離送電線
3の電流ベクトルiより、長距離送電線3の両端の母線
電圧位相角差を演算し、過去数点の母線電圧位相角差よ
り、将来時点の母線電圧位相角差な予測演算し、脱調を
検出する脱調検出装置である。
15 calculates the bus voltage phase angle difference at both ends of the long distance transmission line 3 from the voltage magnitude of the connection bus 11 and the current vector i of the long distance transmission line 3, and calculates the bus voltage phase angle difference at the past several points. This is a step-out detection device that predicts and calculates the bus voltage phase angle difference at a future point in time and detects step-out.

なお、前記′電圧・電流ベクトル検出装置母および−放 脱調検出装置神は例えばディジタル計算機の機能を用い
て実施するものでおる。
Note that the voltage/current vector detection device and the out-of-step detection device are implemented using, for example, the functions of a digital computer.

以下発明の作用について説明する。The operation of the invention will be explained below.

送延線故臨などの系統擾乱が発生し、保護継電器(二よ
り故障が除去されたならば′眼圧・電流ベクトル検出装
置14は、第2図(ユ示す様(−、サンプリング装置1
3から出力された系統1側の接続母線11の1周期間の
電圧サンプリング値■1.vz、・・・、Vn−Lvn
と長距離送電線3の1周期間の電流サンプリング値工1
+ ”L ”’+ ’n−1,Inを入力し、接続母線
11の電圧の大きさ7人を(力式より演算し、長距離送
電線3の電流ベクトルiを(8+ 、 (9) 、 Q
OJ式より演算する。
If a system disturbance such as a faulty transmission line occurs and the fault is removed from the protective relay (2), the intraocular pressure/current vector detecting device 14 will be activated as shown in FIG.
Voltage sampling value for one cycle of connection bus 11 on system 1 side output from 3 ■1. vz, ..., Vn-Lvn
Current sampling value during one period of long-distance transmission line 3
+ "L"'+ 'n-1, In is input, and the magnitude of the voltage of the connection bus 11 is calculated from the force formula, and the current vector i of the long-distance transmission line 3 is (8+, (9) , Q
Calculate from OJ formula.

尚、(8)式は長距離送電線3の電流ベクトルの太きさ
Iを求める式であり、(9)式は接続母線11の電圧を
基準とした時の電流ベクトルの位相ψを求める式である
。又QO)式はI、ψより電流ベクトルiを求める式で
ある。
In addition, the formula (8) is a formula for determining the thickness I of the current vector of the long-distance power transmission line 3, and the formula (9) is a formula for determining the phase ψ of the current vector when the voltage of the connection bus 11 is referenced. It is. Also, the QO) formula is a formula for determining the current vector i from I and ψ.

ここで、Δξは第2図(:示す様に、接続母線11の母
線電圧サンプリング値と長距離送電線3の電流サンプリ
ング値との零点を切る時間差であり、fは系統の周波数
である。尚、上記vA、iの演算は、1周期毎、即ち△
T=〒毎Cユ行なわれる。
Here, Δξ is the time difference between the bus voltage sampling value of the connection bus 11 and the current sampling value of the long-distance transmission line 3 when they cross the zero point, as shown in FIG. 2 (:), and f is the frequency of the system. , the above calculation of vA,i is performed every cycle, that is, △
T=〒Performed every Cyu.

脱調検出装置15は、前記7人、i及び長距離送電線3
の線路インピーダンス之より(1)式を用いて長距離送
電線3の系統2側の接続母線12の母線電圧ベクトル9
Bを演算し、更に(2)式を用いて9Bの位相角θを演
算する。尚この位相角θは7人を基準位相とした時の接
続母線12の位相角であり、長距離送電線3の両端の母
線電圧位相角差と等価である。
The step-out detection device 15 is connected to the seven people, i and the long distance power transmission line 3.
From the line impedance of
B is calculated, and then the phase angle θ of 9B is calculated using equation (2). Note that this phase angle θ is the phase angle of the connection bus 12 when seven people are used as a reference phase, and is equivalent to the bus voltage phase angle difference between both ends of the long-distance power transmission line 3.

次に脱調検出装置15の作用を第3図を用いて説明する
。先ずステップ811ユおいて現時点’ x +ΔT時
間前tK−II 2△T時間前tK−11の谷時点母に
(IL(2)式を用いて母線電圧位相角差θ(tX)、
θ(tx−1)。
Next, the operation of the step-out detection device 15 will be explained using FIG. 3. First, in step 811, the bus voltage phase angle difference θ(tX),
θ(tx-1).

θ(tK−2)を演算し、次(−ステップ82+ユおい
て(3)。
Calculate θ(tK-2) and then (-step 82+Y) (3).

(4)式を用いて将来時点τl、τ2.・・・τP(:
おける長距離送電線3の接続母線11と12との母線電
圧位相角差な予測演算する。さらにステップ88でその
予測値が(5) 、 (6)式を満足するか否かを判定
し、ステップS4で脱調と判定した場合ステップS4を
介して図示しない系統安定化装置(ユ制御指令を送る(
ステップ85 )。一方脱調と判定しない場合はステッ
プS6により一定時同遅延したのち、ステップSl〜S
4の演$1判定をくり返す。
Using equation (4), future time points τl, τ2. ...τP(:
The bus voltage phase angle difference between the connecting buses 11 and 12 of the long-distance power transmission line 3 is predicted and calculated. Further, in step 88, it is determined whether or not the predicted value satisfies equations (5) and (6). If step S4 determines that step-out has occurred, a system stabilizing device (not shown) (control command Send (
Step 85). On the other hand, if it is not determined that the synchronization is out of synchronization, a constant delay is performed in step S6, and then steps Sl to S
Repeat the performance $1 judgment in step 4.

[発明の効果] 以上述べたように本発明によれ、ば、送電線両端の母線
電圧位相角差を順次シリアル(二検出し、過去数点の稙
から将来の母線電圧位相角差を予測演算するよう(ユし
たので脱調を早期に検出することが可能となり、そして
この様な装置の判定粂件を用いて系統安定化制御を行な
えば、脱調を事前(二防止することができる。又、本発
明では送電線両端の母線電位相角差の検出を伝送系を介
することなく行なっているので従来技術と比べて設備面
で有利となる。
[Effects of the Invention] As described above, according to the present invention, for example, the bus voltage phase angle difference at both ends of the power transmission line is detected serially (two times), and the future bus voltage phase angle difference is predicted and calculated from the peaks of several past points. This makes it possible to detect synchronization at an early stage, and by performing system stabilization control using the determination criteria of such a device, synchronization can be prevented in advance. Further, in the present invention, the busbar electric phase angle difference at both ends of the power transmission line is detected without going through a transmission system, which is advantageous in terms of equipment compared to the prior art.

尚、本発明の冥加例では将来時点の母線電圧位相角差の
予測演算を2次式で行なったが、3次式以上のN次式で
行なっても同様な効果が得られる。
In addition, in the additional example of the present invention, the prediction calculation of the bus voltage phase angle difference at a future point in time is performed using a quadratic equation, but the same effect can be obtained even if it is performed using an N-order equation that is a cubic equation or higher.

但し、この場合、現時点までの(N+1)個の母線電圧
位相角差が必要となる。
However, in this case, (N+1) bus voltage phase angle differences up to the present time are required.

【図面の簡単な説明】[Brief explanation of drawings]

茶1図は本発明の一実施例を示す構M、説明図、第2図
は長距離送電線片側の母線電圧と電流のサンプリング値
から母線電圧の大きさと電流のベクトル値を演算する方
法を説明するための図、第3図は脱調検出装置の作用を
示す図、第4図は霜;力系統の一例を示す図、第5図は
定常及び脱調時の長距離送を線画調の電圧ベクトル及び
母線電圧位相角差の時間的変化を説明するための図、第
6図は将来時点の母線電圧位相角差の演算方法及び脱調
判定方法を説明するための図である。 3・・・送電線     11 、12・・・母線13
・・・サンプリング装置 14・・・電圧・電流ベクトル検出装置15・・・脱調
検出装置  CT・・・変流器PT・・・計器用変圧器 代理人 弁理士 則 近 憲 佑牟接か手名傘同   
三メ民μ文 第1図 l V2     ・   ・ 第3図 第4図 第 5 図Uノ
Fig. 1 shows a structure M showing an embodiment of the present invention, and Fig. 2 shows a method for calculating the magnitude of the bus voltage and the vector value of the current from the sampled values of the bus voltage and current on one side of a long-distance transmission line. Diagrams for explanation; Figure 3 is a diagram showing the action of the step-out detection device; Figure 4 is a diagram showing an example of the power system; Figure 5 is a line drawing of the long-distance feed during steady state and step-out. FIG. 6 is a diagram for explaining temporal changes in the voltage vector and the bus voltage phase angle difference, and FIG. 6 is a diagram for explaining the method of calculating the bus voltage phase angle difference at a future point in time and the step-out determination method. 3...Power transmission line 11, 12...Bus bar 13
...Sampling device 14...Voltage/current vector detection device 15...Step-out detection device CT...Current transformer PT...Instrument transformer agent Patent attorney Nori Chika Yumu Contact person Meikasa same
Three Memin μ Figure 1 l V2 ・ ・ Figure 3 Figure 4 Figure 5 Figure U

Claims (1)

【特許請求の範囲】[Claims] 送電線によって連けいされている複数の電気所のうち任
意1つの電気所で母線電圧および線路電流を一定周期で
サンプリングして、当該電気所の母線電圧の大きさおよ
び送電線路の電流ベクトルを検出し、これら母線電圧の
大きさ、電流ベクトルおよび送電線の線路インピーダン
スから前記任意の電気所に対向する他電気所の母線電圧
ベクトルを求め、この母線電圧ベクトルの実部と虚部と
から両電気所間の母線電圧位相角差を時々刻々求め、複
数点の電圧位相角差から将来の電圧位相角差を予測演算
し、その演算により得た値及び変化の傾向に応じて系統
脱調に至ることを事前に予測することを特徴とする電力
系統の脱調予測装置。
The bus voltage and line current are sampled at a fixed period at any one of the multiple electric stations connected by the power transmission line, and the magnitude of the bus voltage and the current vector of the power transmission line at that electric station are detected. , from the magnitude of these bus voltages, the current vector, and the line impedance of the transmission line, find the bus voltage vector of another electrical station that faces the arbitrary electrical station, and from the real part and imaginary part of this bus voltage vector, calculate the voltage vector of both electrical stations. Obtain the bus voltage phase angle difference from time to time, calculate the future voltage phase angle difference from the voltage phase angle difference at multiple points, and lead to system step-out according to the value obtained by the calculation and the tendency of change. A power system out-of-step prediction device characterized by predicting in advance.
JP21101785A 1985-09-26 1985-09-26 Stepout predicting device for power system Granted JPS6277016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21101785A JPS6277016A (en) 1985-09-26 1985-09-26 Stepout predicting device for power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21101785A JPS6277016A (en) 1985-09-26 1985-09-26 Stepout predicting device for power system

Publications (2)

Publication Number Publication Date
JPS6277016A true JPS6277016A (en) 1987-04-09
JPH0452051B2 JPH0452051B2 (en) 1992-08-20

Family

ID=16598964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21101785A Granted JPS6277016A (en) 1985-09-26 1985-09-26 Stepout predicting device for power system

Country Status (1)

Country Link
JP (1) JPS6277016A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007060870A (en) * 2005-08-26 2007-03-08 Mitsubishi Electric Corp Step-out prediction device for electric power system
WO2010073331A1 (en) * 2008-12-25 2010-07-01 三菱電機株式会社 Phase-control switchgear and method for controlling switchgear

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007060870A (en) * 2005-08-26 2007-03-08 Mitsubishi Electric Corp Step-out prediction device for electric power system
WO2010073331A1 (en) * 2008-12-25 2010-07-01 三菱電機株式会社 Phase-control switchgear and method for controlling switchgear
JP5143237B2 (en) * 2008-12-25 2013-02-13 三菱電機株式会社 Phase control switchgear and phase control method for switchgear
US8526155B2 (en) 2008-12-25 2013-09-03 Mitsubishi Electric Corporation Phase-control switchgear and phase-control method for switchgear

Also Published As

Publication number Publication date
JPH0452051B2 (en) 1992-08-20

Similar Documents

Publication Publication Date Title
US10310005B2 (en) Time-domain distance line protection of electric power delivery systems
US20170082675A1 (en) Time-domain directional line protection of electric power delivery systems
Silveira et al. Transmission line fault location using two-terminal data without time synchronization
EP0244649A1 (en) Method and device for protecting a power tramsmission line
Li et al. Multi-sample differential protection scheme in DC microgrids
Mishra et al. FDOST-based fault classification scheme for fixed series compensated transmission system
Rovnyak et al. Decision trees using apparent resistance to detect impending loss of synchronism
US8373309B2 (en) Systems and methods for asynchronous sampling data conversion
US10594138B2 (en) Detection and remediation of transients in electric power systems
Kundu et al. Real-time analysis of power system protection schemes using synchronized data
WO2017066205A1 (en) Traveling wave directional element
Matsuzawa et al. Stabilizing control, system preventing loss of synchronism from extension and its actual operating experience
Chaffey et al. Requirements for functional testing of HVDC protection IEDs
JP4480647B2 (en) Power system step-out prediction device
Kawady et al. Investigation of practical problems for digital fault location algorithms based on EMTP simulation
JPS6277016A (en) Stepout predicting device for power system
Azriyenni et al. Backpropagation neural network modeling for fault location in transmission line 150 kV
Apostolov Implementation of a transient energy method for directional detection in numerical distance relays
JPS6289421A (en) Desynchronization detector
Dantas et al. Transient current protection for transmission lines based on the Kalman filter measurement residual
CN107872050B (en) Direct-current transmission line protection method and device based on current frequency spectrum
JP2653428B2 (en) Power system stabilizer
Liu et al. Transmission Line Differential Protection Based on Numerical Solution of Partial Differential Equations
Abdolkhalig et al. Performance evaluation of phasor estimator within IEC 61850-9-2 communication network
Dash et al. A synchro-phasor based wide area protection scheme for interconnected power grids

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term