JP4480647B2 - Power system step-out prediction device - Google Patents

Power system step-out prediction device Download PDF

Info

Publication number
JP4480647B2
JP4480647B2 JP2005246105A JP2005246105A JP4480647B2 JP 4480647 B2 JP4480647 B2 JP 4480647B2 JP 2005246105 A JP2005246105 A JP 2005246105A JP 2005246105 A JP2005246105 A JP 2005246105A JP 4480647 B2 JP4480647 B2 JP 4480647B2
Authority
JP
Japan
Prior art keywords
voltage
timing
current
bus
power system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005246105A
Other languages
Japanese (ja)
Other versions
JP2007060870A (en
Inventor
建平 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005246105A priority Critical patent/JP4480647B2/en
Publication of JP2007060870A publication Critical patent/JP2007060870A/en
Application granted granted Critical
Publication of JP4480647B2 publication Critical patent/JP4480647B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

この発明は、電力系統の連系線の両端の発電機群の間に生じる脱調を予測する電力系統脱調予測装置に関する。   The present invention relates to a power system step-out prediction apparatus that predicts step-out occurring between generator groups at both ends of a power system interconnection line.

従来の電力系統の脱調検出装置は、電力系統の連系線の電圧および電流を取込むアナログ・デジタル変換装置と、その電圧および電流を基に、判断時点までの所定区間の電圧および電流の平均値を求める平均値算出手段と、その電圧および電流の平均値の最大値および最小値を求めて記憶しておく最大・最小判定記憶手段と、その電圧と電流とから位相差を算出する位相差演算手段と、位相差が90度を超えたと判断した場合に、測定電圧の平均値が記憶しておいた電圧の平均値の最小値を中心した一定の範囲で、測定電流の平均値が記憶しておいた電流の平均値の最大値を中心とした一定の範囲であったときに、脱調と判断する脱調判定手段とを備えたものである(例えば、特許文献1参照)。   The conventional power system step-out detection device is an analog / digital converter that takes in the voltage and current of the power system interconnection line, and based on the voltage and current, the voltage and current of a predetermined section up to the point of determination are determined. Mean value calculation means for obtaining an average value, maximum / minimum determination storage means for obtaining and storing the maximum and minimum values of the average value of the voltage and current, and the phase difference from the voltage and current are calculated. When the phase difference calculation means determines that the phase difference exceeds 90 degrees, the average value of the measured current is within a certain range centered on the minimum value of the average value of the stored voltage. Step-out determination means for determining step-out when it is within a certain range centered on the maximum value of the stored average value of currents (see, for example, Patent Document 1).

特開2003−194863号公報JP 2003-194863 A

しかし、従来の脱調検出装置は、連系線の両端における電圧の位相差が180度を超えて発電機がすでに脱調に至ったときに、一端における電圧と一端に流れる電流の位相差が90度を超えたことを検出するので、発電機を系統から脱離することしかできないという問題がある。
また、一端から脱調ローカスの生じる箇所までのリアクタンスを一端における電圧と電流から求めて、連系線の単位長さのリアクタンスを用いて一端から脱調ローカスの生じる箇所までの距離を求めるので、脱調中心の判定が困難であるという問題がある。
また、電力系統の母線間の位相差を考慮していないために、誤判定が行われやすいという問題がある。
However, in the conventional step-out detection device, when the voltage phase difference at both ends of the interconnection line exceeds 180 degrees and the generator has already stepped out, the phase difference between the voltage at one end and the current flowing through the one end is Since it is detected that the angle exceeds 90 degrees, there is a problem that the generator can only be detached from the system.
In addition, the reactance from one end to the place where the out-of-step locus occurs is obtained from the voltage and current at the one end, and the distance from the one end to the place where the out-of-step locus occurs is calculated using the reactance of the unit length of the interconnection line. There is a problem that it is difficult to determine the center of step-out.
Moreover, since the phase difference between the buses of the power system is not taken into account, there is a problem that erroneous determination is easily performed.

この発明の目的は、脱調予測ができるとともに確実に脱調中心を特定することのできる電力系統脱調予測装置を提供することである。   An object of the present invention is to provide a power system step-out prediction apparatus that can perform step-out prediction and can reliably specify a step-out center.

この発明に係わる電力系統脱調予測装置は、
少なくとも1つの発電機と母線とを含むとともに上記母線が連絡線を介して接続されることにより連系されている複数の電力系統における上記発電機の脱調を予測する電力系統脱調予測装置にあって、上記連絡線の両端間の位相差に関する1階微分および2階微分がそれぞれ零を超え、且つ上記連絡線から上記一端に流れる有効電力に関する1階微分が零未満であるとともに上記連絡線から上記一端に流れる電流と同位相の中心電圧が所定の閾値より小さいという4つの条件のすべてを同時に予め定められた回数満足したとき、上記一端に連系された上記発電機がそのまま運転を継続したとき脱調に至ることを予測するとともに上記連絡線に脱調中心が現れると予測する
The power system step-out prediction apparatus according to the present invention is:
A power system step-out prediction device that includes at least one generator and a bus and predicts step-out of the generator in a plurality of power systems that are interconnected by connecting the bus through a connection line. The first-order differential and the second-order differential relating to the phase difference between both ends of the connecting line exceed zero, and the first-order derivative relating to the active power flowing from the connecting line to the one end is less than zero, and the connecting line When all of the four conditions that the center voltage in phase with the current flowing from one end to the other end is smaller than a predetermined threshold are satisfied a predetermined number of times, the generator connected to the one end continues to operate. It is predicted that a step-out will occur and a center of step-out will appear in the connecting line .

この発明に係わる電力系統脱調予測装置の効果は、上記連絡線の一端に接続された上記母線の電圧と上記連絡線から該母線に流れる電流とから算出される母線間位相差、有効電力の時系列的な傾向と中心電圧がそのまま運転を続けると脱調に至ってしまうという分岐点としての不安定平衡点を超えたときの条件をすべて満足したとき脱調に至ると予測することができる。   The effect of the power system step-out prediction apparatus according to the present invention is that the phase difference between the buses calculated from the voltage of the bus connected to one end of the connection line and the current flowing from the connection line to the bus, the active power It can be predicted that step-out will occur when all the conditions when the unstable equilibrium point as a branch point where the time series trend and the center voltage continue to operate will result in step-out will be exceeded.

この発明に係わる電力系統脱調予測装置が採用している脱調予測の原理を説明する。
まず1台の発電機が無限大母線に連系しているときの発電機が脱調に至る様子を説明する。図1は、1機無限大母線系統に接続される発電機の内部電圧の位相角δと電気的出力Peとの関係を示すP−δ曲線図である。内部電圧の位相角δは、無限大母線の電圧の位相角をゼロとしたときの値である。
1機無限大母線系統に接続されている発電機の運動方程式は式(1)により表される。
The principle of step-out prediction employed by the power system step-out prediction apparatus according to the present invention will be described.
First, the state in which a generator is stepped out when one generator is connected to an infinite bus will be described. FIG. 1 is a P-δ curve diagram showing the relationship between the phase angle δ G of the internal voltage of the generator connected to the one-machine infinite bus system and the electrical output Pe. The phase angle δ G of the internal voltage is a value when the phase angle of the voltage of the infinite bus is zero.
The equation of motion of the generator connected to the one-machine infinite bus system is expressed by equation (1).

Figure 0004480647
Figure 0004480647

但し、Pmは発電機の機械的入力、Peは発電機の電気的出力、δは発電機の内部電圧の位相角、Mは発電機の慣性定数である。
発電機の運転点は、事故などに係わって系統擾乱がある場合、P−δ曲線に沿って移動する。図1のC点は不安定平衡点である。そして、発電機の運転点が、不安定平衡点C点より位相角δが大きな側に移ると、そのままの運転を続けると運転点が逆に戻ることができずに発電機は加速して脱調に至っていく。
そして、発電機の運転点がC点より位相角の大きな側に移る条件は3つある。
第1の条件は、位相角δが増大していることであり、式(2)に示されるように、発電機の位相角δの1階微分が零を超えていることである。
第2の条件は、電気的出力Peが機械的入力Pm未満にあることであり、式(1)の左辺のMは正の実数であるので、式(3)に示されるように、発電機の位相角δの2階微分が零を超えていることである。
第3の条件は、発電機の電気的出力Peが減少傾向にあることであり、式(4)に示されるように、発電機の電気的出力Peの1階微分が零未満であることである。
However, the mechanical input of Pm generator, Pe is the electrical output of the generator, the [delta] G phase angle of the internal voltage of the generator, M is the inertia constant of the generator.
The operating point of the generator moves along the P-δ curve when there is a system disturbance due to an accident or the like. The point C in FIG. 1 is an unstable equilibrium point. If the operating point of the generator moves to the side where the phase angle δ G is larger than the unstable equilibrium point C, if the operation is continued as it is, the operating point cannot be reversed and the generator accelerates. It will lead to step-out.
There are three conditions for the operating point of the generator to move to the larger phase angle than point C.
The first condition is that the phase angle [delta] G is increased, is that as shown in equation (2), the first derivative of the phase angle [delta] G of the generator is greater than zero.
The second condition is that the electrical output Pe is less than the mechanical input Pm. Since M on the left side of the equation (1) is a positive real number, as shown in the equation (3), the generator That is, the second derivative of the phase angle δ G of
The third condition is that the electrical output Pe of the generator tends to decrease, and the first-order derivative of the electrical output Pe of the generator is less than zero, as shown in Equation (4). is there.

Figure 0004480647
Figure 0004480647

このように1機無限大母線系統の発電機では、上述の3つの条件がすべて満足したとき、そのまま運転を続けると脱調(発電機の内部電圧の位相角δが180度を超える)に至ることを運転点が不安定平衡点C点を超えることにより予測できる。
そして、これらの関係を図2に示すような2つの電力系統(A系統1aとB系統1b)が連絡線2により連系されている場合について検討する。図2は、2つの電力系統が連絡線により連系されている様子を示す図である。この場合、A系統1aの発電機3の内部電圧の位相角は、上述の1機無限大母線系統の場合と同様に、上述の3つの条件を満足するときこの発電機3はそのまま運転を続けると脱調に至ると予測できる。連絡線2がA系統1aのM母線4aとB系統1bのN母線4bとを連系しているとき、M母線4aの電圧とN母線4bの電圧の位相差δおよび連絡線2を経由してM母線4aに流れる有効電力Pに関する上述の3つの条件は維持されている。そして、その連絡線2に脱調中心が来ることを判別すれば、A系統1aに連系する発電機3がそのまま運転を続けると脱調に至ると予測することができる。
As described above, in the generator of the one-machine infinite bus system, when all of the above three conditions are satisfied, if the operation is continued as it is, the step-out occurs (the phase angle δ G of the generator internal voltage exceeds 180 degrees). That the operating point exceeds the unstable equilibrium point C.
Then, these relationships will be examined in the case where two power systems (A system 1a and B system 1b) as shown in FIG. FIG. 2 is a diagram illustrating a state where two power systems are interconnected by a connection line. In this case, when the phase angle of the internal voltage of the generator 3 of the A system 1a satisfies the above three conditions as in the case of the one machine infinite bus system described above, the generator 3 continues to operate as it is. It can be predicted that step-out will occur. When the connecting line 2 connects the M bus 4a of the A system 1a and the N bus 4b of the B system 1b, the phase difference δ between the voltage of the M bus 4a and the voltage of the N bus 4b and the connecting line 2 are used. Thus, the above three conditions relating to the active power P flowing through the M bus 4a are maintained. And if it determines that the out-of-step center comes to the connecting line 2, it can be predicted that the out-of-step will occur if the generator 3 connected to the A system 1a continues to operate.

そこで、発電機3の脱調を予測するために、M母線4aの電圧とN母線4bの電圧の位相差δおよび連絡線2を経由してM母線4aに流れる有効電力Pを求めて、上述の条件を満足するか否かを判断すれば良い。
そして、スパイラルベクトル理論に基づいてN母線4bにおける電圧v(t)は、式(5)のように表される。但し、VはM母線4aの電圧実効値、ωは回転ベクトルの角速度、Iは連絡線2を流れる電流実効値、θはM母線4aの電圧と連絡線2を流れる電流との位相差、XMNは連絡線2のインピーダンスである。
Therefore, in order to predict the step-out of the power generator 3, the phase difference δ between the voltage of the M bus 4a and the voltage of the N bus 4b and the effective power P flowing through the connecting line 2 to the M bus 4a are obtained. It may be determined whether or not the above condition is satisfied.
Based on the spiral vector theory, the voltage v N (t) at the N bus 4b is expressed as shown in Equation (5). Where V M is the effective voltage value of the M bus 4a, ω is the angular velocity of the rotation vector, I is the effective current value flowing through the connecting line 2, θ is the phase difference between the voltage of the M bus 4a and the current flowing through the connecting line 2, X MN is the impedance of the connection line 2.

Figure 0004480647
Figure 0004480647

そして、時間tを零とし、M母線4aの電圧の位相を零とすると、式(5)は式(6)として表される。この式(6)をN母線4bの電圧実数瞬時値vNreと電圧虚数瞬時値vNimに分けて式(7)、式(8)のように表される。 When the time t is zero and the voltage phase of the M bus 4a is zero, Expression (5) is expressed as Expression (6). This expression (6) is divided into a real voltage instantaneous value v Nre and a voltage imaginary instantaneous value v Nim of the N bus 4b, and is expressed as expressions (7) and (8).

Figure 0004480647
Figure 0004480647

そこで、M母線4aの電圧の位相を零としているので、M母線4aの電圧とN母線4bの電圧との位相差δは、式(9)のように表される。   Therefore, since the phase of the voltage of the M bus 4a is set to zero, the phase difference δ between the voltage of the M bus 4a and the voltage of the N bus 4b is expressed as in Expression (9).

Figure 0004480647
Figure 0004480647

また、脱調中心が連絡線2に入るか否かを検出するための第4の条件は、図3に示すように連絡線2の電流Iと同じ位相θの電圧として定義される中心電圧Vが予め定める閾値より小さいことである。図3は、複素数平面上に回転ベクトルを表した図である。
このようにM母線4aの電圧の位相とN母線4bの電圧の位相の位相差δ、連絡線2からM母線4aに流れる有効電力Pおよび中心電圧Vを求めて、第1の条件乃至第4の条件をすべて満足するとき、発電機3をそのまま運転すると脱調に至ると予測できる。
The fourth condition for detecting whether or not the step-out center enters the connection line 2 is a center voltage V defined as a voltage having the same phase θ as the current I of the connection line 2 as shown in FIG. C is smaller than a predetermined threshold value. FIG. 3 is a diagram showing a rotation vector on a complex plane.
Thus by obtaining a phase difference [delta], the active power P flows from the contact line 2 to M bus 4a and the center voltage V C of the voltage of the voltage of the phase and N bus 4b phase of M bus 4a, the first condition, second When all the conditions of 4 are satisfied, it can be predicted that if the generator 3 is operated as it is, a step-out will occur.

実施の形態1.
次に、この発明の実施の形態1に係わる電力系統脱調予測装置について説明する。この電力系統脱調予測装置10は、図4に示すような連絡線2で連系されている一方の電力系統1aのM母線4aで測定された値を用いて発電機G3の脱調を予測し、遮断器9を開放する。図4は、実施の形態1に係わる電力系統脱調予測装置を配備した電力系統である。
また、M母線4aの電圧は、デジタル電圧出力端子を有する電圧計7で計測され、連絡線2を流れる電流は、デジタル電流出力端子を有する計器用変流器8で計測されて電力系統脱調予測装置10に入力される。
Embodiment 1 FIG.
Next, a power system step-out prediction apparatus according to Embodiment 1 of the present invention will be described. This power system out-of-step prediction device 10 predicts out-of-step of the generator G3 using the value measured on the M bus 4a of one power system 1a connected to the connecting line 2 as shown in FIG. Then, the circuit breaker 9 is opened. FIG. 4 shows a power system in which the power system step-out prediction apparatus according to the first embodiment is provided.
In addition, the voltage of the M bus 4a is measured by a voltmeter 7 having a digital voltage output terminal, and the current flowing through the connecting line 2 is measured by an instrument current transformer 8 having a digital current output terminal. Input to the prediction device 10.

実施の形態1に係わる電力系統脱調予測装置10は、図5に示すように、所定のタイミングごとにM母線4aの電圧実数瞬時値と連絡線2からM母線4aに流れる電流実数瞬時値とを計測する電圧・電流計測手段11、計測された電圧実数瞬時値および電流実数瞬時値をデジタルの電圧実数瞬時値およびデジタルの電流実数瞬時値に変換するA/D変換手段12を有する。   As shown in FIG. 5, the power system step-out prediction apparatus 10 according to the first embodiment includes an actual voltage instantaneous value of the M bus 4a and an actual current instantaneous value flowing from the connection line 2 to the M bus 4a at each predetermined timing. Voltage / current measuring means 11 for measuring the voltage real-time instantaneous value and current real-number instantaneous value, which are measured, are converted into digital voltage real-time instantaneous values and digital current real-time instantaneous values.

さらに、電力系統脱調予測装置10は、所定のタイミングごとにデジタルの電圧実数瞬時値およびデジタルの電流実数瞬時値を記憶する記憶手段13、所定のタイミングごとにデジタルの電圧実数瞬時値から電圧実効値、デジタルの電流実数瞬時値から電流実効値を算出する電圧・電流実効値算出手段14、所定のタイミングごとにデジタルの電圧実数瞬時値およびデジタルの電流実数瞬時値から有効電力、電圧実効値と電流実効値と有効電力から無効電力を算出する有効電力・無効電力算出手段15、所定のタイミングごとに有効電力と無効電力とからM母線4aの電圧と連絡線2からM母線4aに流れる電流との電圧電流間位相差を算出する電圧電流間位相差算出手段16、所定のタイミングごとに電圧実効値と電流実効値とM母線4aの電圧と連絡線2からM母線4aに流れる電流との位相差と予め定められたインピーダンスとからM母線4aの電圧とN母線4bの電圧との母線間位相差を算出する母線間位相差算出手段17を有する。   Further, the power system step-out prediction apparatus 10 stores the digital voltage real number instantaneous value and the digital current real number instantaneous value at every predetermined timing, and the voltage effective from the digital voltage real number instantaneous value at every predetermined timing. Voltage, current effective value calculation means 14 for calculating the current effective value from the value, digital real current instantaneous value, and the effective power, voltage effective value from the digital voltage actual value and digital current actual value at each predetermined timing. Active power / reactive power calculation means 15 for calculating reactive power from the current effective value and active power, the voltage of the M bus 4a from the active power and the reactive power at each predetermined timing, and the current flowing from the communication line 2 to the M bus 4a Voltage-current phase difference calculating means 16 for calculating the voltage-current phase difference of the current, the voltage effective value, the current effective value, and the M bus 4a for each predetermined timing. Inter-bus phase difference calculating means for calculating the inter-bus phase difference between the voltage of the M bus 4a and the voltage of the N bus 4b from the phase difference between the voltage and the current flowing from the connecting line 2 to the M bus 4a and a predetermined impedance. 17.

さらに、電力系統脱調予測装置10は、母線間位相差から母線間位相差1階微分を算出する母線間位相差1階微分算出手段18、母線間位相差1階微分から母線間2階微分を算出する母線間位相差2階微分算出手段19、有効電力から有効電力1階微分を算出する有効電力1階微分算出手段20、電圧実効値と電圧電流間位相差から中心電圧を算出する中心電圧算出手段21、母線間位相差1階微分と母線間位相差2階微分と有効電力1階微分と中心電圧がすべて条件を満たしているとき脱調に至ると予測する脱調予測手段22、脱調と予測されたときデジタル開極操作指令を送信する系統分離指令手段23を有する。   Furthermore, the power system step-out prediction apparatus 10 includes a bus phase difference first-order differential calculation means 18 for calculating a phase difference between the buses from the phase difference between the buses, and a second-order differential between the buses from the phase difference between the buses first-order differential. Phase difference second-order derivative calculating means 19 for calculating the power, first-order effective power calculating means 20 for calculating the first-order effective power from the active power, center for calculating the center voltage from the voltage effective value and the phase difference between the voltage and current Voltage calculation means 21, step-out prediction means 22 that predicts step-out when all of the phase differences between the bus lines, the second-order differential between the bus lines, the active power first-order derivative, and the center voltage satisfy the conditions; It has system separation command means 23 for transmitting a digital opening operation command when the step-out is predicted.

さらに、電力系統脱調予測装置10は、デジタル開極操作指令を受信する遮断器操作指令受信手段24、デジタルな開閉極操作指令を対象機器に送信する遮断器操作実施手段25を有する。   Furthermore, the power system step-out prediction apparatus 10 includes a circuit breaker operation command receiving unit 24 that receives a digital opening operation command, and a circuit breaker operation performing unit 25 that transmits a digital switching pole operation command to a target device.

さらに、記憶手段13、電圧・電流実効値算出手段14、有効電力・無効電力算出手段15、電圧電流間位相差算出手段16、母線間位相差算出手段17、母線間位相差1階微分算出手段18、母線間位相差2階微分算出手段19、有効電力1階微分算出手段20、中心電圧算出手段21、脱調予測手段22、系統分離指令手段23は、コンピュータによって構成されている。コンピュータは、CPU、RAM、ROMおよびインタフェース回路を有している。
また、遮断器操作指令受信手段24と遮断器操作実施手段25は、デジタル量処理ユニットからなる。
Further, storage means 13, voltage / current effective value calculation means 14, active power / reactive power calculation means 15, voltage / current phase difference calculation means 16, bus phase difference calculation means 17, bus phase difference first-order differential calculation means 18, the inter-bus phase difference second-order derivative calculating means 19, the active power first-order derivative calculating means 20, the center voltage calculating means 21, the step-out prediction means 22, and the system separation command means 23 are constituted by a computer. The computer has a CPU, a RAM, a ROM, and an interface circuit.
The circuit breaker operation command receiving means 24 and the circuit breaker operation executing means 25 are composed of digital quantity processing units.

次に、実施の形態1に係わる電力系統脱調予測装置10により脱調を予測する手順を図6を参照して説明する。
電圧実数瞬時値、電流実数瞬時値を計測する時点(以下、計測タイミングと称す。)は、サンプリング周期を定めることにより決まる。サンプリング周期は電力系統の基準波の1周期をN(Nは正の整数)等分できる値であればよい。基準波の1周期は、電気角度で表して2π(ラジアン)である。例えば、基準波の電気角度π/6、π/12、π/24、π/48などをサンプリング周期にあらかじめ設定する。
Next, a procedure for predicting a step-out by the power system step-out prediction apparatus 10 according to the first embodiment will be described with reference to FIG.
The time point (hereinafter referred to as measurement timing) at which the voltage real number instantaneous value and the current real number instantaneous value are measured is determined by determining the sampling period. The sampling period may be a value that can divide one period of the reference wave of the power system into N (N is a positive integer). One period of the reference wave is 2π (radian) expressed in electrical angle. For example, the electrical angle π / 6, π / 12, π / 24, π / 48, etc. of the reference wave is set in advance as the sampling period.

基準波の周波数fは、50Hzとし、基準波の1周期を12等分できるπ/6をサンプリング周期とする。刻み幅Δt(秒)は0.00166666667秒となる。kは計測タイミングの順番を表し、基準波の1周期では1から12となる。計測タイミングk=1とk=2の間で基準波電気角度30度回転する。 The frequency f 0 of the reference wave is 50 Hz, and π / 6 that can divide one period of the reference wave into 12 equal parts is a sampling period. The step size Δt (seconds) is 0.00166666667 seconds. k represents the order of measurement timing, and is 1 to 12 in one cycle of the reference wave. A reference wave electrical angle is rotated by 30 degrees between measurement timings k = 1 and k = 2.

ステップ101で、計測タイミング毎に、電圧・電流計測手段11は測定対象のM母線4aの電圧と連絡線2からM母線4aに流れる電流を計測する。計測タイミングのうちの任意のタイミングをkで表す。このタイミングの1回前のタイミングを(k−1)で、次のタイミングを(k+1)で表す。次に、A/D変換手段12は、アナログ信号である計測した電圧および電流をデジタル電圧信号およびデジタル電流信号にA/D変換する。この値を記憶手段13に記憶する。M母線の電圧瞬時値vMA(k)、vMB(k)、vMC(k)を複素数平面上の原点0を中心に反時計方向に回転する電圧回転ベクトルで表現したとき、この計測した電圧は、電圧実数瞬時値vAre(k)、vBre(k)、vCre(k)である。連絡線2からM母線4aに流れる電流瞬時値i(k)、i(k)、i(k)を複素数平面上の原点0を中心に反時計方向に回転する電流回転ベクトルで表現したとき、この計測した電流は、電流実数瞬時値iAre(k)、iBre(k)、iCre(k)である。 In step 101, the voltage / current measuring means 11 measures the voltage of the M bus 4a to be measured and the current flowing from the communication line 2 to the M bus 4a at each measurement timing. An arbitrary timing among the measurement timings is represented by k. The timing one time before this timing is represented by (k−1), and the next timing is represented by (k + 1). Next, the A / D conversion means 12 A / D converts the measured voltage and current, which are analog signals, into a digital voltage signal and a digital current signal. This value is stored in the storage means 13. This measurement was performed when the voltage instantaneous values v MA (k), v MB (k), and v MC (k) of the M bus are expressed by voltage rotation vectors that rotate counterclockwise around the origin 0 on the complex plane. The voltages are voltage real number instantaneous values v Are (k), v Bre (k), and v Cre (k). The instantaneous current values i A (k), i B (k), i C (k) flowing from the connecting line 2 to the M bus 4a are expressed by current rotation vectors that rotate counterclockwise around the origin 0 on the complex plane. when, the measured current is the current real instantaneous value i are (k), i Bre (k), i Cre (k).

ステップ102で、電圧・電流実効値算出手段14が、計測タイミングのそれぞれのタイミングにおいて、自らのタイミングを含む、自らのタイミングから過去の12個のタイミングで計測された電圧から、基準波の1周期の間の電圧実効値V(k)、V(k)、V(k)を式(10)〜式(12)から電圧実数瞬時値vAre、vBre、vCreを用いて算出する。それから、M母線4aの電圧実効値V(k)を式(13)から電圧実効値V(k)、V(k)、V(k)を用いて算出する。この値を記憶手段13に記憶する。 In step 102, the voltage / current effective value calculation means 14 determines one cycle of the reference wave from the voltages measured at the previous 12 timings including its own timing at each timing of the measurement timing. The effective voltage values V A (k), V B (k), and V C (k) are calculated from the equations (10) to (12) using the real voltage instantaneous values v Are , v Bre , and v Cre. To do. Then, the effective voltage value V M (k) of the M bus 4a is calculated from the equation (13) using the effective voltage values V A (k), V B (k), and V C (k). This value is stored in the storage means 13.

Figure 0004480647
Figure 0004480647

また、電圧・電流実効値算出手段14が、計測タイミングのそれぞれのタイミングにおいて、自らのタイミングを含む、自らのタイミングから過去の12個のタイミングで計測された電流から、基準波の1周期の間の電流実効値I(k)、I(k)、I(k)を式(14)〜式(16)から電流実数瞬時値iAre、iBre、iCreを用いて算出する。それから、連絡線2からM母線4aに流れる電流実効値I(k)を式(17)から電流実効値I(k)、I(k)、I(k)を用いて算出する。この値を記憶手段13に記憶する。 In addition, the voltage / current effective value calculation means 14 calculates the reference wave from the current measured at the previous 12 timings including the own timing for one cycle of the reference wave at each timing of the measurement timing. Current effective values I A (k), I B (k), and I C (k) are calculated from formulas (14) to (16) using current real number instantaneous values i Are , i Bre , and i Cre . Then, the effective current value I (k) flowing from the communication line 2 to the M bus 4a is calculated from the equation (17) using the effective current values I A (k), I B (k), and I C (k). This value is stored in the storage means 13.

Figure 0004480647
Figure 0004480647

ステップ103で、有効電力・無効電力算出手段15が、計測タイミングのそれぞれのタイミングにおいて、連絡線2からM母線4aに流れる有効電力P(k)を式(18)から電圧実数瞬時値vAre(k)、vBre(k)、vCre(k)と電流実数瞬時値iAre(k)、iBre(k)、iCre(k)とを用いて算出する。この値を記憶手段13に記憶する。
また、有効電力・無効電力算出手段15が、計測タイミングのそれぞれのタイミングにおいて、連絡線2からM母線4aに流れる無効電力Q(k)を式(19)から電圧実効値V(k)、V(k)、V(k)、電流実効値I(k)、I(k)、I(k)を用いて算出する。この値を記憶手段13に記憶する。
In step 103, the active power / reactive power calculation means 15 calculates the effective power P (k) flowing from the communication line 2 to the M bus 4a at each timing of the measurement timing from the equation (18) as a real voltage instantaneous value v Are ( k), v Bre (k), v Cre (k) and current real number instantaneous values i Are (k), i Bre (k), i Cre (k) are used for calculation. This value is stored in the storage means 13.
Further, the active power / reactive power calculating means 15 calculates the reactive power Q (k) flowing from the communication line 2 to the M bus 4a at each timing of the measurement timing from the equation (19), the voltage effective value V A (k), Calculation is performed using V B (k), V C (k), current effective value I A (k), I B (k), I C (k). This value is stored in the storage means 13.

Figure 0004480647
Figure 0004480647

ステップ104で、電圧電流間位相差算出手段16が、計測タイミングのそれぞれのタイミングにおいて、M母線4aの電圧と連絡線2を流れる電流との位相差θ(k)(ラジアン)を式(20)から有効電力P(k)と無効電力Q(k)を用いて算出する。この値を記憶手段13に記憶する。   In step 104, the voltage-current phase difference calculation means 16 calculates the phase difference θ (k) (radian) between the voltage of the M bus 4a and the current flowing through the connecting line 2 at each timing of the measurement timing by the equation (20). From active power P (k) and reactive power Q (k). This value is stored in the storage means 13.

Figure 0004480647
Figure 0004480647

ステップ105で、母線間位相差算出手段17が、計測タイミングのそれぞれのタイミングにおいて、M母線4aの電圧とN母線4bの電圧との位相差δ(k)(ラジアン)を式(21)から電圧実効値V(k)、電流実効値I(k)、位相差θ(k)を用いて算出する。この値を記憶手段13に記憶する。なお、XMNは、予め求められているM母線とN母線間のリアクタンスである。 In step 105, the inter-bus phase difference calculating means 17 calculates the phase difference δ (k) (radian) between the voltage of the M bus 4a and the voltage of the N bus 4b from the equation (21) at each timing of the measurement timing. Calculation is performed using the effective value V M (k), the current effective value I (k), and the phase difference θ (k). This value is stored in the storage means 13. X MN is a reactance between the M bus and the N bus that is obtained in advance.

Figure 0004480647
Figure 0004480647

ステップ106で、母線間位相差1階微分算出手段18が、計測タイミングのそれぞれのタイミングにおいて、母線間位相差1階微分ω(k)を式(22)から計測タイミングkと(k−1)における母線間位相差δ(k)、δ(k−1)を用いて算出する。この値を記憶手段13に記憶する。   In step 106, the inter-bus phase difference first-order differential calculation means 18 calculates the inter-bus phase difference first-order differential ω (k) from the equation (22) at the measurement timing k and (k−1) at each timing of the measurement timing. Are calculated using the phase differences δ (k) and δ (k−1) between the buses. This value is stored in the storage means 13.

Figure 0004480647
Figure 0004480647

ステップ107で、母線間位相差2階微分算出手段19が、計測タイミングのそれぞれのタイミングにおいて、母線間位相差2階微分α(k)を式(23)から計測タイミングkと(k−1)における母線間位相差1階微分ω(k)、ω(k−1)を用いて算出する。この値を記憶手段13に記憶する。   In step 107, the inter-bus phase difference second-order differential calculation means 19 calculates the inter-bus phase difference second-order differential α (k) from the equation (23) to the measurement timing k and (k−1) at each timing of the measurement timing. Is calculated using the first-order differentials ω (k) and ω (k−1) between the phase differences between the buses. This value is stored in the storage means 13.

Figure 0004480647
Figure 0004480647

ステップ108で、有効電力1階微分算出手段20が、計測タイミングのそれぞれのタイミングにおいて、線路有効電力1階微分P’(k)を式(24)から計測タイミングkと(k−1)における有効電力P(k)、P(k−1)を用いて算出する。この値を記憶手段13に記憶する。   In step 108, the active power first-order derivative calculating means 20 calculates the line effective power first-order derivative P ′ (k) at the measurement timings k and (k−1) from the equation (24) at each timing of the measurement timing. It calculates using electric power P (k) and P (k-1). This value is stored in the storage means 13.

Figure 0004480647
Figure 0004480647

ステップ109で、中心電圧算出手段21が、計測タイミングのそれぞれのタイミングにおいて、中心電圧V(k)を式(25)から電圧実効値V(k)と位相差θ(k)とを用いて算出する。この値を記憶手段13に記憶する。 In step 109, the center voltage calculation means 21 uses the effective voltage V M (k) and the phase difference θ (k) from the equation (25) as the center voltage V C (k) at each timing of the measurement timing. To calculate. This value is stored in the storage means 13.

Figure 0004480647
Figure 0004480647

ステップ110で、脱調予測手段22が、計測タイミングのそれぞれのタイミングにおいて、母線間位相差1階微分ω(k)、母線間位相差2階微分α(k)、有効電力1階微分P’(k)および中心電圧V(k)が同時に式(26)〜式(29)の関係を満足しているとき、発電機3の運転をそのままにすると脱調に至ると予測する。なお、VSETは、例えば0.3PUのように予め定められた設定値である。
ステップ111で、脱調予測手段22が発電機3が脱調に至ると予測したとき系統分離指令手段23が、デジタル量処理ユニットに開放操作指令を送信する。
In step 110, the step-out prediction unit 22 determines that the phase difference between the buses is the first-order differential ω (k), the phase difference between the buses is the second-order differential α (k), and the active power is the first-order differential P ′. When (k) and the center voltage V C (k) satisfy the relations of the expressions (26) to (29) at the same time, it is predicted that the step-out will occur if the operation of the generator 3 is left as it is. V SET is a preset value such as 0.3 PU, for example.
In step 111, when the out-of-step prediction unit 22 predicts that the generator 3 will be out of step, the system separation command unit 23 transmits an opening operation command to the digital quantity processing unit.

Figure 0004480647
Figure 0004480647

ステップ112で、デジタル量処理ユニットは開放操作指令を受信すると、該当する遮断器9を開放し、連絡線2を遮断する。   In step 112, upon receiving the opening operation command, the digital quantity processing unit opens the corresponding circuit breaker 9 and closes the communication line 2.

このような電力系統脱調予測装置10は、自端情報すなわちM母線4aの電圧とN母線4bにM母線4aを連系する連絡線2からM母線4aに流れる電流との実数瞬時値からM母線4aとN母線4bとの電圧の位相差、連絡線2を流れる有効電力および中心電圧を算出し、算出されたこれらの値の時系列的な傾向がM母線4a側につながる発電機3がそのまま運転したとしたら脱調に至ってしまい、戻ることのできない分岐点を超えたことを示したとき当該連絡線2に脱調中心が表れると予測することができる。   Such a power system out-of-step prediction device 10 can calculate M from the real-time instantaneous value, that is, the real value of the voltage of the M bus 4a and the current flowing from the connecting line 2 connecting the M bus 4a to the N bus 4b to the M bus 4a. The phase difference of the voltage between the bus 4a and the N bus 4b, the active power flowing through the connecting line 2 and the center voltage are calculated, and the generator 3 in which the time-series tendency of these calculated values is connected to the M bus 4a side is If it is operated as it is, it will be out of step, and it can be predicted that the out-of-step center will appear in the connection line 2 when it indicates that the branch point that cannot be returned is exceeded.

また、計測された母線4aの電圧と連絡線2から母線4aに流れる電流とを実数瞬時値としてスパイラルベクトル理論に基づいて有効電力が求められるので、非常に安定している電圧と電流間の位相差を算出することができる。   Further, since the active power is obtained based on the spiral vector theory using the measured voltage of the bus 4a and the current flowing from the connecting line 2 to the bus 4a as a real instantaneous value, the level between the very stable voltage and current is obtained. The phase difference can be calculated.

また、連絡線4の一端で得られた電圧実効値、電流実効値およびM母線4aの電圧と連絡線2からM母線4aに流れる電流との位相差を用いてスパイラルベクトル理論の回転ベクトル方程式によりN母線4bの電圧が求められるので、連絡線2の一端の情報だけで他端の情報を得ることができる。   Further, by using the rotation vector equation of the spiral vector theory using the voltage effective value obtained at one end of the connection line 4, the current effective value, and the phase difference between the voltage of the M bus 4a and the current flowing from the connection line 2 to the M bus 4a. Since the voltage of the N bus 4b is obtained, the information on the other end can be obtained only from the information on one end of the connecting line 2.

なお、電圧実効値V(k)、電流実効値I(k)、有効電力P(k)、無効電力Q(k)は、三相に亘って求めているが、一相だけに関して求めてもよい。 The voltage effective value V M (k), the current effective value I (k), the active power P (k), and the reactive power Q (k) are obtained over three phases. Also good.

実施の形態2.
図7は、この発明の実施の形態2に係わる電力系統脱調予測装置を配備して脱調の予測をシミュレーションしたEAST10モデル系統である。
この発明の実施の形態2に係わる電力系統脱調予測装置は、電気学会の電力系統解析標準モデルの1つであるEAST10モデル系統の11母線に設置されている。すなわち、11母線が自端であり、他の21母線との連絡線が11連絡線であり、11母線につながっている発電機が発電機G1である。
そして、点Aにおいて三相短絡事故が発生し、70ms後に復旧したときのEAST10モデル系統の変化をシミュレーションする。このとき、比較のためにモデル系統に含まれる発電機G1〜G10の内部電圧の位相角を計測すると、図8に示すように、11母線につながっている発電機G1が0.9秒後に脱調していることが分かる。なお、図示しないが、他の発電機は脱調しなかった。
Embodiment 2. FIG.
FIG. 7 shows an EAST10 model system in which the power system step-out prediction apparatus according to the second embodiment of the present invention is provided to simulate the step-out prediction.
The power system step-out prediction apparatus according to the second embodiment of the present invention is installed on the 11 buses of the EAST10 model system, which is one of the power system analysis standard models of the Institute of Electrical Engineers. That is, 11 buses are self-ends, the connection line with the other 21 buses is 11 connection lines, and the generator connected to the 11 buses is the generator G1.
Then, a change in the EAST10 model system is simulated when a three-phase short-circuit accident occurs at point A and recovery is performed after 70 ms. At this time, when the phase angle of the internal voltage of the generators G1 to G10 included in the model system is measured for comparison, the generator G1 connected to the 11 bus is disconnected after 0.9 seconds as shown in FIG. You can see that it is adjusted. Although not shown, other generators did not step out.

11母線に配置された電力系統脱調予測装置10は、11母線の電圧と11連絡線の電流との実数瞬時値を計測し、それから実施の形態1と同様にして11母線と21母線の電圧の母線間位相差、母線間位相差1階微分、母線間位相差2階微分を求める。その結果をそれぞれ図9〜図11に示す。
また、電力系統脱調予測装置10は、11母線の電圧と11連絡線の電流との実数瞬時値を計測し、基準波の1サイクルの実数瞬時値を用いて電圧実効値と電流実効値を算出し、実施の形態1と同様にして11母線に11連絡線から流れる有効電力を算出し、有効電力1階微分を求める。その結果を図12に示す。
また、電力系統脱調予測装置10は、電圧実効値と11母線の電圧と11連絡線から11母線に流れる電流の電圧電流間位相差とを用いて、電圧実効値と電圧電流間位相差の余弦との積からなる中心電圧を求める。その結果を図13に示す。
このようにして求められた母線間位相差1階微分、母線間位相差2階微分、有効電力1階微分、中心電圧に関して式(26)〜式(29)を満足するか否かを図14に示すように判断する。そして、4つの条件が満足したとき発電機G1はこのまま運転すると脱調に至ると予測し11母線を系統から解列する。
The power system step-out prediction apparatus 10 arranged on the 11 bus measures the real number instantaneous value of the voltage of the 11 bus and the current of the 11 connecting line, and then the voltage of the 11 bus and the 21 bus as in the first embodiment. The phase difference between the buses, the first-order differential between the buses, and the second-order differential between the buses are obtained. The results are shown in FIGS.
Moreover, the power system step-out prediction apparatus 10 measures the real number instantaneous value of the voltage of the 11 bus and the current of the 11 connecting line, and uses the real number instantaneous value of one cycle of the reference wave to calculate the voltage effective value and the current effective value. In the same manner as in the first embodiment, the effective power flowing from the 11 connecting lines to the 11 buses is calculated, and the first derivative of the effective power is obtained. The result is shown in FIG.
Moreover, the power system step-out prediction apparatus 10 uses the voltage effective value, the voltage of the 11 buses, and the phase difference between the voltage currents of the current flowing from the 11 connecting lines to the 11 buses to calculate the voltage effective value and the phase difference between the voltage currents. Find the center voltage, which is the product of the cosine. The result is shown in FIG.
Whether or not the equations (26) to (29) are satisfied with respect to the bus phase phase difference first-order differential, bus-phase phase difference second-order differentiation, active power first-order differentiation, and center voltage thus obtained is shown in FIG. Judge as shown. When the four conditions are satisfied, the generator G1 predicts that step-out will occur if it operates as it is, and disconnects the 11 buses from the system.

このシミュレーションによれば発電機G1に対する脱調予測が0.53秒で行うことができ、特許文献1の脱調を検出する方法により1.03秒掛かるのに対比して0.5秒も早期に脱調を予測できる。   According to this simulation, the out-of-step prediction for the generator G1 can be performed in 0.53 seconds, which is as early as 0.5 seconds compared to 1.03 seconds according to the method of detecting the out-of-step of Patent Document 1. Can predict step-out.

実施の形態3.
実施の形態1に係わる発電機は電力系統に対して同期を失い内部電圧の位相角が単調に発散する発電機を例に挙げて、脱調を予測する4つの条件のすべてを同時に満足したとき発電機が脱調に至ると予測している。
しかし、発電機の中には制動トルク係数が負で、内部電圧の位相角が複数回振動してから発散する発電機がある。このような発電機に連系している母線の場合、脱調を予測する4つの条件のすべてを同時に所定の回数だけ満足したとき、発電機がそのまま運転を継続すると脱調に至ると予測する。
Embodiment 3 FIG.
When the generator according to Embodiment 1 loses synchronization with the power system and the phase angle of the internal voltage diverges monotonously is taken as an example, all four conditions for predicting step-out are satisfied simultaneously It is predicted that the generator will step out.
However, some generators have a negative braking torque coefficient and diverge after the internal voltage phase angle oscillates multiple times. In the case of a bus connected to such a generator, when all of the four conditions for predicting the step-out are satisfied a predetermined number of times at the same time, it is predicted that the step-out will occur if the generator continues operating as it is. .

このような電力系統脱調予測装置は、脱調を予測する4つの条件のすべてを同時に所定の回数だけ満足したとき脱調に至ると予測するので、発電機の内部電圧の位相角が複数回振動してから発散する発電機に対しても正確に脱調を予測できる。   Such a power system step-out prediction device predicts that step-out will occur when all four conditions for predicting step-out are satisfied a predetermined number of times at the same time. Step-out can be accurately predicted even for generators that diverge after vibration.

実施の形態4.
図15は、この発明の実施の形態4に係わる電力系統脱調予測装置が配備された電力系統の構成図である。図16は、実施の形態4に係わる電力系統脱調予測装置の機能ブロック図である。
実施の形態4に係わる電力系統は、図15に示すように、A系統に2台の発電機3a、3bが連系されており、発電機3a、3bと母線4aとの間に遮断器9b、9cが介設されていることが実施の形態1に係わる電力系統と異なりその他は同様である。このように2台の発電機3a、3bが連系されていると、遮断器9b、9cを遮断することにより電力系統の安定度を制御することができる。なお、電力系統の安定度を制御する装置として遮断器9b、9cを例に挙げて以下説明するが、制動抵抗器、高速バルブ制御装置、超高速励磁装置、直列コンデンサなど電力系統の安定度を制御できるものであればこの発明に適用することができる。
Embodiment 4 FIG.
FIG. 15 is a configuration diagram of a power system provided with a power system step-out prediction apparatus according to Embodiment 4 of the present invention. FIG. 16 is a functional block diagram of the power system step-out prediction apparatus according to the fourth embodiment.
As shown in FIG. 15, in the power system according to the fourth embodiment, two generators 3a and 3b are connected to the A system, and the circuit breaker 9b is connected between the generators 3a and 3b and the bus 4a. 9c is different from the power system according to the first embodiment in that the other is the same. When the two generators 3a and 3b are linked in this way, the stability of the power system can be controlled by cutting off the circuit breakers 9b and 9c. The circuit breakers 9b and 9c will be described below as an example of a device for controlling the stability of the power system. However, the stability of the power system such as a braking resistor, a high-speed valve control device, an ultra-high speed excitation device, and a series capacitor will be described. Anything that can be controlled can be applied to the present invention.

また、実施の形態4に係わる電力系統脱調予測装置10Bは、図16に示すように、実施の形態1に係わる電力系統脱調予測装置10に安定度制御手段30が追加されており、それ以外は同様であるので、同様な部分に同じ符号を付記して説明は省略する。
実施の形態4に係わる安定度制御手段30は、脱調予測手段22が発電機3a、3bを1つの発電機と見なして脱調に至ると予測したとき、一方の発電機3bを母線4aから解列することにより不安定平衡点を大きな位相側に移して発電機3aの内部電圧の位相角を不安定平衡点より小さい位相側に来るようにする。このように発電機3bを一台解列することにより、他の発電機3aが脱調に至ることを防止することができる。
Moreover, as shown in FIG. 16, the power system step-out prediction apparatus 10B according to the fourth embodiment has a stability control means 30 added to the power system step-out prediction apparatus 10 according to the first embodiment. Since the other parts are the same, the same reference numerals are attached to the same parts and the description thereof is omitted.
The stability control means 30 according to the fourth embodiment, when the out-of-step predicting means 22 predicts that the generators 3a and 3b are regarded as one generator and will be out of step, one of the generators 3b is connected to the bus 4a. By disconnecting, the unstable equilibrium point is shifted to a larger phase side so that the phase angle of the internal voltage of the generator 3a is closer to the phase side than the unstable equilibrium point. By disconnecting one generator 3b in this way, it is possible to prevent the other generator 3a from being stepped out.

また、実施の形態4に係わる電力系統脱調予測装置10Bは、安定度制御手段30により電力系統の安定度を制御した後で再度脱調を予測する4つの条件のすべてを同時に満足したとき、遮断器9aを遮断することにより、A系統1aをB系統1bから解列する。   Further, the power system out-of-step prediction apparatus 10B according to the fourth embodiment simultaneously satisfies all of the four conditions for predicting out-of-step again after controlling the stability of the power system by the stability control means 30. By disconnecting the circuit breaker 9a, the A system 1a is disconnected from the B system 1b.

このような電力系統脱調予測装置10Bは、脱調と予測したときに電力系統の安定度を制御する装置に対して安定度向上対策を電力系統に施すように指令するので、系統分離を避けることができる。   Such a power system out-of-step prediction device 10B instructs the device that controls the stability of the power system when it is predicted to be out of step so that a measure for improving the stability is applied to the power system, thus avoiding system separation. be able to.

また、一旦安定度向上対策を電力系統に施した後でも脱調に至ると予測したとき系統分離を指令するので、発電機が脱調する前に系統分離を行うことができる。   Moreover, since the system separation is commanded when it is predicted that a step-out will occur even after the measures for improving the stability are once applied to the power system, the system separation can be performed before the generator steps out.

1機無限大母線系統に接続される発電機の内部電圧の位相角δと電気的出力Peとの関係を示すP−δ曲線図である。It is a P-delta curve figure showing relation between phase angle delta G of an internal voltage of an electric generator connected to one machine infinite bus system, and electric output Pe. 2つの電力系統が連絡線により連系されている様子を示す図である。It is a figure which shows a mode that two electric power systems are connected by the connection line. 複素数平面上に回転ベクトルを表した図である。It is a figure showing a rotation vector on a complex number plane. 実施の形態1に係わる電力系統脱調予測装置を配備した電力系統である。2 is a power system provided with the power system step-out prediction apparatus according to the first embodiment. 実施の形態1に係わる電力系統脱調予測装置の機能ブロック図である。1 is a functional block diagram of a power system step-out prediction apparatus according to Embodiment 1. FIG. 実施の形態1に係わる電力系統脱調予測装置により脱調を予測する手順を示すフローチャートである。3 is a flowchart illustrating a procedure for predicting a step-out by the power system step-out prediction apparatus according to the first embodiment. この発明の実施の形態2に係わる電力系統脱調予測装置を配備して脱調の予測をシミュレーションしたEAST10モデル系統である。This is an EAST10 model system in which a power system step-out prediction apparatus according to Embodiment 2 of the present invention is provided and simulation of step-out prediction is performed. 図7の発電機G1の内部電圧の位相角の推移を示す図である。It is a figure which shows transition of the phase angle of the internal voltage of the generator G1 of FIG. 図7の11母線と21母線との間の位相差の推移を示す図である。It is a figure which shows transition of the phase difference between 11 bus lines of FIG. 7, and 21 bus lines. 図9の位相差の1階微分の推移を示す図である。It is a figure which shows transition of the 1st-order differentiation of the phase difference of FIG. 図9の位相差の2階微分の推移を示す図である。It is a figure which shows transition of the 2nd-order differentiation of the phase difference of FIG. 図7の11連絡線から11母線に流れる有効電力の1階微分の推移を示す図である。It is a figure which shows transition of the 1st-order differentiation of the active electric power which flows into 11 buses from 11 connection lines of FIG. 中心電圧の推移を示す図である。It is a figure which shows transition of a center voltage. 脱調を予測する4つの条件を満足している様子を示す図である。It is a figure which shows a mode that four conditions which predict a step-out are satisfied. 実施の形態4に係わる電力系統脱調予測装置を配備した電力系統である。5 is a power system provided with a power system step-out prediction apparatus according to a fourth embodiment. 実施の形態4に係わる電力系統脱調予測装置の機能ブロック図である。FIG. 10 is a functional block diagram of a power system step-out prediction apparatus according to a fourth embodiment.

符号の説明Explanation of symbols

1a、1b 電力系統、2 連絡線、3、3a、3b 発電機、4a、4b 母線、7 電圧計、8 計器用変流器、9、9a、9b、9c 遮断器、10、10b 電力系統脱調予測装置、11 電圧・電流計測手段、12 A/D変換手段、13 記憶手段、14 電圧・電流実効値算出手段、15 有効電力・無効電力算出手段、16 電圧電流間位相差算出手段、17 母線間位相差算出手段、18 母線間位相差1階微分算出手段、19 母線間位相差2階微分算出手段、20 有効電力1階微分算出手段、21 中心電圧算出手段、22 脱調予測手段、23 系統分離指令手段、24 遮断器操作指令受信手段、25 遮断器操作実施手段、30 安定度制御手段。   1a, 1b Power system, 2 Connection line, 3, 3a, 3b Generator, 4a, 4b Bus line, 7 Voltmeter, 8 Current transformer for instrument, 9, 9a, 9b, 9c Breaker, 10, 10b Power system disconnection Key prediction device, 11 voltage / current measurement means, 12 A / D conversion means, 13 storage means, 14 voltage / current effective value calculation means, 15 active power / reactive power calculation means, 16 voltage-current phase difference calculation means, 17 Phase difference calculating means between buses, 18 Phase difference first order differential calculating means between buses, 19 Phase difference second order differential calculating means between buses, 20 Active power first order derivative calculating means, 21 Center voltage calculating means, 22 Step out prediction means, 23 System separation command means, 24 Circuit breaker operation command receiving means, 25 Circuit breaker operation execution means, 30 Stability control means.

Claims (5)

少なくとも1つの発電機と母線とを含むとともに上記母線が連絡線を介して接続されることにより連系されている複数の電力系統における上記発電機の脱調を予測する電力系統脱調予測装置にあって、
上記連絡線の両端間の位相差に関する1階微分および2階微分がそれぞれ零を超え、且つ上記連絡線から上記一端に流れる有効電力に関する1階微分が零未満であるとともに上記連絡線から上記一端に流れる電流と同位相の中心電圧が所定の閾値より小さいという4つの条件のすべてを同時に予め定められた回数満足したとき、上記一端に連系された上記発電機がそのまま運転を継続したとき脱調に至ることを予測するとともに上記連絡線に脱調中心が現れると予測することを特徴とする電力脱調予測装置。
A power system step-out prediction device that includes at least one generator and a bus and predicts step-out of the generator in a plurality of power systems that are interconnected by connecting the bus through a connection line. There,
The first and second derivatives relating to the phase difference between both ends of the connecting line exceed zero, and the first derivative relating to the active power flowing from the connecting line to the one end is less than zero, and from the connecting line to the one end When all of the four conditions that the center voltage in phase with the current flowing in the current is smaller than a predetermined threshold value are satisfied at the same time, the generator connected to the one end continues to operate. A power step-out prediction apparatus characterized by predicting that a step-out center appears in the connecting line while predicting that the step will be reached.
基準波の1周期のN(Nは正の整数)分の1の周期で上記母線の電圧と上記連絡線から該母線に流れる電流とを計測する電圧・電流計測手段と、
上記電圧と上記電流とを計測した各タイミングにおいて、自らのタイミングを含む過去のN個のタイミングにおける計測された上記電圧および上記電流から自らのタイミングにおける電圧実効値および電流実効値を求める電圧実効値・電流実効値算出手段と、
上記電圧と上記電流とを計測した各タイミングにおいて、自らのタイミングを含む過去のN個のタイミングにおける計測された上記電圧および上記電流から
Figure 0004480647
(但し、vAre、vBre、vCreは自らのタイミングを含む過去のN個のタイミングにおける計測された各電圧、iAre、iBre、iCreは自らのタイミングを含む過去のN個のタイミングにおける計測された各電流、Pは自らのタイミングにおける算出された有効電力)
に従って上記各タイミングにおける上記連絡線から該母線に流れる有効電力を算出し、
Figure 0004480647
(但し、V、V、Vは自らのタイミングにおける算出された相毎の電圧実効値、I、I、Iは自らのタイミングにおける算出された相毎の電流実効値、Qは自らのタイミングにおける算出された無効電力)
に従って上記各タイミングにおける上記連絡線から該母線に流れる無効電力を算出する有効電力・無効電力算出手段と、
上記電圧と上記電流とを計測した各タイミングにおいて、上記無効電力と上記有効電力とから
Figure 0004480647
(但し、θは自らのタイミングにおける該母線の電圧と上記連絡線から該母線に流れる電流との位相差)
に従って上記各タイミングにおける該母線の電圧と上記連絡線から該母線に流れる電流との位相差を算出する電圧電流間位相差算出手段と、
を有することを特徴とする請求項1に記載する電力系統脱調予測装置。
Voltage / current measuring means for measuring the voltage of the bus and the current flowing from the connecting line to the bus in a cycle of N (N is a positive integer) of one cycle of the reference wave;
At each timing when the voltage and the current are measured, a voltage effective value for obtaining a voltage effective value and a current effective value at the own timing from the voltage and the current measured at the past N timings including the own timing. -Current effective value calculation means,
At each timing at which the voltage and the current are measured, from the measured voltage and current at the past N timings including its own timing.
Figure 0004480647
(However, v Are, v Bre, v Cre each voltage measured in the past of N timing including their timing, i Are, i Bre, i past the N timings Cre, including their timing , Each measured current in P, P is the active power calculated at its own timing)
To calculate the effective power flowing from the connection line to the bus at each timing according to
Figure 0004480647
(Where V A , V B , and V C are the calculated voltage effective values for each phase at their own timing, I A , I B , and I C are the calculated current effective values for each phase at their own timing, Q Is the reactive power calculated at its own timing)
Active power / reactive power calculating means for calculating reactive power flowing from the connection line to the bus at each timing according to
At each timing when the voltage and the current are measured, the reactive power and the active power are used.
Figure 0004480647
(Where θ is the phase difference between the voltage of the bus at its own timing and the current flowing from the connecting line to the bus)
Voltage-current phase difference calculating means for calculating the phase difference between the voltage of the bus at each timing and the current flowing from the connecting line to the bus according to
The power system step-out prediction apparatus according to claim 1, comprising:
上記電圧と上記電流とを計測した各タイミングにおいて、
Figure 0004480647
(但し、Vは自らのタイミングにおける算出された電圧実効値、Iは自らのタイミングにおける算出された電流実効値、Xは上記連絡線のリアクタンス、δは自らのタイミングにおける算出された上記連絡線の両端間の位相差)
に従って上記各タイミングにおける上記連絡線の両端間の位相差を算出する母線間位相差算出手段を有することを特徴とする請求項2に記載する電力系統脱調予測装置。
At each timing of measuring the voltage and current,
Figure 0004480647
(However, V is the effective voltage value calculated at its own timing, I is the effective current value calculated at its own timing, X is the reactance of the connection line, and δ is the calculated effective value of the connection line at its own timing. Phase difference between both ends)
3. The power system step-out prediction apparatus according to claim 2, further comprising: an inter-bus phase difference calculation unit that calculates a phase difference between both ends of the connection line at each timing according to the above.
脱調に至ると予測したとき電力系統の安定度を制御する装置に対して安定度向上対策を上記電力系統に施すように指令することを特徴とする請求項1乃至のいずれか一項に記載する電力系統脱調予測装置。 4. The apparatus according to any one of claims 1 to 3 , wherein when it is predicted that a step-out will occur, a device for controlling the stability of the power system is instructed to take a measure for improving the stability of the power system. Electric power system step-out prediction device to be described. 上記電力系統に安定度向上対策を施した後で再度脱調に至ると予測したとき上記連絡線を遮断するように遮断器に指令することを特徴とする請求項に記載する電力系統脱調予測装置。 5. The power system step-out according to claim 4 , wherein the circuit breaker is instructed to shut off the connection line when it is predicted that the step-out will occur again after taking measures for improving the stability of the power system. Prediction device.
JP2005246105A 2005-08-26 2005-08-26 Power system step-out prediction device Active JP4480647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005246105A JP4480647B2 (en) 2005-08-26 2005-08-26 Power system step-out prediction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005246105A JP4480647B2 (en) 2005-08-26 2005-08-26 Power system step-out prediction device

Publications (2)

Publication Number Publication Date
JP2007060870A JP2007060870A (en) 2007-03-08
JP4480647B2 true JP4480647B2 (en) 2010-06-16

Family

ID=37923815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005246105A Active JP4480647B2 (en) 2005-08-26 2005-08-26 Power system step-out prediction device

Country Status (1)

Country Link
JP (1) JP4480647B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102265368B (en) 2008-12-25 2014-09-17 三菱电机株式会社 Phase-control switchgear and method for controlling switchgear
JP2011083077A (en) * 2009-10-05 2011-04-21 Mitsubishi Electric Corp System for separation control of electric power system
KR101118375B1 (en) * 2010-09-07 2012-03-09 엘에스산전 주식회사 Apparatus for swift determination of fault in electric power system
JP6128931B2 (en) * 2013-04-22 2017-05-17 三菱電機株式会社 System stabilization device
JP6141138B2 (en) * 2013-08-05 2017-06-07 三菱電機株式会社 Power system control device and control system
KR101606919B1 (en) * 2015-11-20 2016-03-28 (주)오엔앰 코리아 Cutoff device for preventing non-synchronization connection with voltage regulating function
CN109787215B (en) * 2017-11-10 2023-11-03 中国电力科学研究院有限公司 Out-of-step disconnection section searching method and system for power system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003032894A (en) * 2001-07-09 2003-01-31 Toshiba Corp Stabilizer for power system, and storage medium having stored program for executing it
JP2003270277A (en) * 2002-03-13 2003-09-25 Mitsubishi Electric Corp Instantaneous reactive power in ac circuit, method for calculating reactive power effective value and method for measuring instantaneous reactive power, reactive power effective value and phase difference

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277016A (en) * 1985-09-26 1987-04-09 東京電力株式会社 Stepout predicting device for power system
JPS6277827A (en) * 1985-09-30 1987-04-10 東京電力株式会社 Power system stabilizing system
JPH0446520A (en) * 1990-06-13 1992-02-17 Toshiba Corp System separator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003032894A (en) * 2001-07-09 2003-01-31 Toshiba Corp Stabilizer for power system, and storage medium having stored program for executing it
JP2003270277A (en) * 2002-03-13 2003-09-25 Mitsubishi Electric Corp Instantaneous reactive power in ac circuit, method for calculating reactive power effective value and method for measuring instantaneous reactive power, reactive power effective value and phase difference

Also Published As

Publication number Publication date
JP2007060870A (en) 2007-03-08

Similar Documents

Publication Publication Date Title
JP4657151B2 (en) Rotational phase angle measuring device, frequency measuring device using the same, synchronous phasor measuring device, switching pole phase control device, synchronous input device and phase discrimination device
JP4480647B2 (en) Power system step-out prediction device
JP3823248B2 (en) AC motor stator rotation fault detector and detection system and method thereof
JP4879319B2 (en) Frequency measuring device
US6433980B1 (en) Controlled switching device
JP4766434B2 (en) Power system step-out detection method and apparatus
JPH10336883A (en) Method and device for detecting out-of-step of power supply system
Tallam et al. Self-commissioning training algorithms for neural networks with applications to electric machine fault diagnostics
WO2008148428A1 (en) Method and device to predict a state of a power system in the time domain
CA2771380C (en) Systems and methods for asynchronous sampling data conversion
CN111458666A (en) Permanent magnet synchronous motor winding open-circuit fault diagnosis method
JP4977481B2 (en) Insulation monitoring device
CN113460122B (en) State detection method, device, equipment and medium for electric turnout switch machine system
CN101889377A (en) Method for setting free detection of out of step condition in electrical power system
RU2305292C1 (en) METHOD OF DETECTING FAULT IN 6( 10 )-35 kV ELECTRIC CIRCUIT WITH ISOLATED OR COMPENSATED NEUTRAL POINT
JP4507092B2 (en) Switching pole phase controller
JP2619194B2 (en) Power system stabilizer
RU2657290C1 (en) Automated system of diagnosing and monitoring the insulation of power cable lines
JPH10271686A (en) Stabilizer of power system
JP7257352B2 (en) POWER SYSTEM MONITORING DEVICE, POWER SYSTEM MONITORING METHOD, AND POWER SYSTEM MONITORING PROGRAM
CN104242245A (en) Method and device for generator out-of-step protection
JP2012220485A (en) Quality determination system for electric facility
JP5078763B2 (en) Transmission line accident location device and transmission line accident location method
JP3400118B2 (en) System stabilizer and phase difference measuring device
JP5349037B2 (en) Current differential protection relay device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4480647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250