JPS627681A - Manufacture of inorganic heat insulator - Google Patents

Manufacture of inorganic heat insulator

Info

Publication number
JPS627681A
JPS627681A JP14242885A JP14242885A JPS627681A JP S627681 A JPS627681 A JP S627681A JP 14242885 A JP14242885 A JP 14242885A JP 14242885 A JP14242885 A JP 14242885A JP S627681 A JPS627681 A JP S627681A
Authority
JP
Japan
Prior art keywords
insulating material
heat insulating
phosphate
inorganic heat
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14242885A
Other languages
Japanese (ja)
Other versions
JPH0443877B2 (en
Inventor
輿石 一麿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP14242885A priority Critical patent/JPS627681A/en
Publication of JPS627681A publication Critical patent/JPS627681A/en
Publication of JPH0443877B2 publication Critical patent/JPH0443877B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、住宅、ビル、冷凍・冷蔵用倉庫等の建造物
の壁、屋根等に使用される不燃性の無機質断熱材の製造
法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a nonflammable inorganic heat insulating material used for walls and roofs of buildings such as houses, buildings, and warehouses for freezing and refrigerated storage. .

[従来の技術] 生活水準の向上に伴い住宅やビル等の冷暖房が普及し、
また、冷凍・冷蔵用倉庫等の大型化が進んで、優れた断
熱性を有する断熱材の開発が要請されるようになり、一
時有機系のものが使用されるようになった。しかしなが
ら、このような有機系断熱材は、可燃性、発煙性、有害
ガス発生性等の防災面からの問題点を有し、次第にその
利用が制限されつつある。
[Conventional technology] With the improvement of living standards, heating and cooling of houses and buildings has become popular.
In addition, as freezers and refrigerated warehouses have become larger, there has been a demand for the development of insulation materials with excellent heat insulation properties, and for a time organic materials have come to be used. However, such organic heat insulating materials have problems from the viewpoint of disaster prevention, such as flammability, smoke-emitting properties, and harmful gas-emitting properties, and their use is gradually being restricted.

そこで、このような可燃性、発煙性、有害ガス発生性等
の問題点を解決し、防災面から安心して使用できる断熱
材として、粒状の無機質発泡体にポルトランドセメント
や珪酸アルカリ系の無機質系バインダーを添加し、この
無機質発泡体を結合成形して得られる無機質系の断熱材
が提案されている。
Therefore, in order to solve these problems such as flammability, smoke generation, and harmful gas generation, we have developed a granular inorganic foam with an inorganic binder such as portland cement or alkali silicate as an insulating material that can be used safely from a disaster prevention perspective. An inorganic heat insulating material has been proposed, which is obtained by adding and bond-molding this inorganic foam.

[発明が解決しようとする問題点] しかしながら、無機質発泡体の結合に使用する無機質系
バインダーとして、ポルトランドセメントを使用すると
、その圧縮強度が大きくなるという利点はあるが、成形
されて得られた断熱材の重量が嵩んで軽量化が損われる
という問題が生じ、また、珪酸アルカリ系のバインダー
を使用すると、軽口化という点では問題がないが、圧縮
強度や耐水性、耐候性の点で不十分であるという問題が
あった。
[Problems to be Solved by the Invention] However, if Portland cement is used as an inorganic binder for bonding inorganic foam, it has the advantage of increasing its compressive strength, but There is a problem that the weight of the material increases and the weight reduction is impaired, and using an alkaline silicate binder does not cause any problem in terms of making the material lighter, but it is insufficient in terms of compressive strength, water resistance, and weather resistance. There was a problem that.

[問題点を解決するための手段] 本発明は、かかる観点に鑑みて創案されたもので、珪酸
アルカリ系バインダーが有する軽量という特長を生かし
つつ、圧縮強度や耐水性を改善し、しかも、硬化に要す
る所用時間を短縮して生産性の向上を図ることができる
無機質断熱材の製造法を提供するものである。
[Means for Solving the Problems] The present invention was devised in view of this point of view, and takes advantage of the lightweight feature of the alkali silicate binder, improves compressive strength and water resistance, and improves hardening. The purpose of the present invention is to provide a method for manufacturing an inorganic heat insulating material that can shorten the time required for manufacturing and improve productivity.

すなわち、本発明は、粒状の無機質発泡体及び必要に応
じて配合される補強用添加材にバインダーとして珪酸ア
ルカリ溶液を混合し、結合成形させて無機質断熱材を製
造するに際し、上記バインダーの硬化剤として金属珪素
粉とリン酸塩とを併用する無機質断熱材の製造法である
That is, in the present invention, when producing an inorganic heat insulating material by mixing an alkali silicate solution as a binder with a granular inorganic foam and reinforcing additives blended as necessary, and bonding and molding the mixture, the curing agent for the binder is used. This is a method for producing an inorganic heat insulating material using a combination of metal silicon powder and phosphate.

本発明において使用する粒状の無機質発泡体としては、
それが従来公知の如何なるものであってもよいが、好ま
しくは黒曜石、蛭石、真珠岩又は松脂岩であり、これら
の無機質発泡体はその1種のみを使用できるほか、2種
以上の混合物としても使用することができる。この無機
質発泡体の粒径及び密度については、目的とする製品断
熱材の種類、用途等によって異なるが、通常0.5〜7
Mの粒径及び通常0.1〜0.25g/cIn3の密度
のものが使用される。また、特に軽量で断熱性に優れた
ものが要求される場合には密度0.1〜0.16g/α
3のものを使用するのが好ましい。
The granular inorganic foam used in the present invention includes:
It may be any conventionally known material, but is preferably obsidian, vermiculite, nacre, or pinestone. These inorganic foams can be used alone or as a mixture of two or more. can also be used. The particle size and density of this inorganic foam vary depending on the type of product insulation material and its intended use, but are usually 0.5 to 7.
A particle size of M and a density of usually 0.1 to 0.25 g/cIn3 are used. In addition, especially when lightweight and excellent heat insulation properties are required, the density is 0.1 to 0.16 g/α.
It is preferable to use No. 3.

また、本発明でバインダーとして使用される珪酸アルカ
リ溶液としては、通常、珪酸ナトリウム水溶液や珪酸カ
リウム水溶液が使用されるが、水に対する溶解性や原料
コストの点から好ましくは珪酸ナトリウム水溶液である
。珪酸ナトリウムとしてはSiOとNa2Oのモル比は
通常2.0〜3.5であるが、好ましくは2.3〜2.
7のものであり、その水溶液の濃度は通常35〜42重
量%、好ましくは40〜42重量%である。また、この
珪酸アルカリ溶液の使用量については、その濃度によっ
て異なるが、無機質発泡体100重量部に対して、通常
30〜120重聞部、好型開くは50〜100重量部で
ある。珪酸アルカリ溶液の使用量が30重量部より少な
いと結合力が小さく、強度の低下という問題が生じ、ま
た、120重量部より多いとバインダーが過剰になり、
発熱・脱水硬化反応の段階でバインダー分を流出してし
まう結果となり、有効に作用しないという問題が生じる
。なお、本発明で使用する珪酸アルカリは、単一物質と
しての珪酸アルカリに限らず、二酸化珪素と水酸化アル
カリとを加熱溶融して得られるいわゆる水ガラスも包含
されるもので、メタ珪酸ナトリウム、オルト珪酸ナトリ
ウム、二珪酸ナトリウム、四珪酸ナトリウム等の混合物
であってもよい。
Further, as the alkaline silicate solution used as a binder in the present invention, a sodium silicate aqueous solution or a potassium silicate aqueous solution is usually used, but a sodium silicate aqueous solution is preferably used from the viewpoint of solubility in water and raw material cost. As for sodium silicate, the molar ratio of SiO and Na2O is usually 2.0 to 3.5, preferably 2.3 to 2.
7, and the concentration of its aqueous solution is usually 35 to 42% by weight, preferably 40 to 42% by weight. The amount of the alkaline silicate solution to be used varies depending on its concentration, but it is usually 30 to 120 parts by weight, and 50 to 100 parts by weight for a good mold, based on 100 parts by weight of the inorganic foam. If the amount of the alkaline silicate solution used is less than 30 parts by weight, the bonding force will be small, resulting in a decrease in strength, while if it is more than 120 parts by weight, the binder will be excessive.
This results in the binder component flowing out during the exothermic/dehydration curing reaction stage, resulting in the problem that it does not work effectively. Note that the alkali silicate used in the present invention is not limited to alkali silicate as a single substance, but also includes so-called water glass obtained by heating and melting silicon dioxide and alkali hydroxide, such as sodium metasilicate, A mixture of sodium orthosilicate, sodium disilicate, sodium tetrasilicate, etc. may be used.

本発明において使用する硬化剤の1成分である金属珪素
粉とは、金属珪素それ自体に限らず、それが金属珪素と
しての性質を有するものも包含されるもので、例えば、
鉄と珪素との合金であるフェロシリコンや金属珪素と二
酸化珪素の混合物等も使用することができる。
The metal silicon powder, which is one component of the curing agent used in the present invention, is not limited to metal silicon itself, but also includes those that have properties as metal silicon, for example,
Ferrosilicon, which is an alloy of iron and silicon, and a mixture of metallic silicon and silicon dioxide can also be used.

この金属珪素粉は、例えば、珪酸ナトリウムと次の反応
によって珪酸(Si02)を生じ、次第にSiO/Na
2Oのモル比の高い珪酸ナトリラムを形成する。
This metal silicon powder produces silicic acid (Si02) through the following reaction with, for example, sodium silicate, and gradually becomes SiO/Na.
Sodium silicate with a high molar ratio of 2O is formed.

Na  O−8to2+l−120,’NaOH+Na
H8i 03 NaH8i 03+H20−p N a OH+ H2S i O3 S i +2NaOH+nH2O→ Na  SiO+2H2↑ この金属珪素粉の使用量は、珪酸アルカリ溶液の種類や
濃度によっても異なるが、この珪酸アルカリ溶液100
重量部に対して、通常10〜20重俗部、好ましくは1
3〜15重指部で型針。金属珪素粉の使用量が10重量
部より少ないと圧縮強度や耐水性の改善が不十分になり
、また、20重量部より多いと金属珪素粉が酸化し有効
に作用しないという問題が生じる。
Na O-8to2+l-120,'NaOH+Na
H8i 03 NaH8i 03+H20-p Na OH+ H2S i O3 Si +2NaOH+nH2O→ Na SiO+2H2↑ The amount of this metal silicon powder used varies depending on the type and concentration of the alkaline silicate solution, but the amount of alkaline silicate solution 100
Usually 10 to 20 parts by weight, preferably 1 part by weight
Type needles at 3 to 15 fingers. If the amount of metal silicon powder used is less than 10 parts by weight, the compressive strength and water resistance will be insufficiently improved, and if it is more than 20 parts by weight, the metal silicon powder will be oxidized and will not work effectively.

また、硬化剤の他の成分として使用されるリン酸塩とし
ては、硬化反応時にそれが珪酸アルカリと反応して水難
溶性で熱安定性に優れたバインダー物質を生成するもの
であればよく、好ましくはリン酸アルミニウム、リン酸
マグネシウム、リン酸鉄、リン酸亜鉛等のリン酸金属塩
や、ポリリン酸の金属塩や、金属酸化物と五酸化リンと
が所定の比率で結合している縮合リン酸金属塩等があり
、より好ましくは縮合リン酸アルミニウムで代表される
縮合リン酸金属塩である。このリン酸塩の使用量は、珪
酸アルカリ溶液のアルカリ量によって決まり、珪酸アル
カリ溶液の種類や濃度によっても異なるが、この珪酸ア
ルカリ溶液100重ω部に対して、通常2〜30重徂部
重量ましくは10〜20重凸部である。リン酸塩の使用
量が2重量部より少ないと圧縮強度や耐水性の改善が不
十分であり、また、30重量部より多くしても圧縮強度
や耐水性に対する改善効果の向上がみられない。
The phosphate to be used as another component of the curing agent may be one that reacts with an alkali silicate during the curing reaction to produce a binder substance that is poorly soluble in water and has excellent thermal stability. are metal phosphates such as aluminum phosphate, magnesium phosphate, iron phosphate, zinc phosphate, metal salts of polyphosphoric acid, and condensed phosphorus in which metal oxides and phosphorus pentoxide are combined in a predetermined ratio. There are acid metal salts, etc., and condensed metal phosphates typified by condensed aluminum phosphate are more preferred. The amount of this phosphate to be used is determined by the amount of alkali in the alkaline silicate solution, and varies depending on the type and concentration of the alkaline silicate solution, but is usually 2 to 30 parts by weight per 100 parts by weight of the alkaline silicate solution. Preferably, it has 10 to 20 convex portions. If the amount of phosphate used is less than 2 parts by weight, the improvement in compressive strength and water resistance will be insufficient, and if it is more than 30 parts by weight, no improvement in the improvement effect on compressive strength or water resistance will be observed. .

本発明において、無機質断熱材を製造する際の成形法と
しては、従来公知の方法を採用することができ、例えば
、上記無機質発泡体と硬化剤としての金属珪素粉及びリ
ン酸塩とを混合し、次いでこの混合物にバインダーとし
ての珪酸アルカリ溶液を添加して混合した後所望の形状
の型に注入し、常温で放置して硬化させる。発熱・脱水
硬化反応が終了した後、型から外して放置し乾燥させる
In the present invention, a conventionally known method can be adopted as a molding method when manufacturing the inorganic heat insulating material. For example, the inorganic foam is mixed with metal silicon powder and phosphate as a hardening agent. Next, an alkaline silicate solution as a binder is added to this mixture, mixed, poured into a mold of a desired shape, and left to stand at room temperature to harden. After the exothermic/dehydration curing reaction is completed, it is removed from the mold and left to dry.

使用する型枠としては、例えばボードを成形する場合、
少なくとも片面にガス抜き孔を有する枠板を設け、均一
性を確保するために撮動を与えながら混合物を注入充填
し、充填完了模、発熱反応時の噴出を防止するためにガ
ス抜き孔を有する蓋をし、締付けて放置する。常温にて
約30分間放置すると、始めは徐々に反応していたもの
が、次第に急激な発熱と水蒸気の蒸発を伴って脱水縮合
の硬化反応を起す。この硬化反応終了後、型枠から外し
て放置し乾燥させる。
For example, when forming a board, the formwork to be used is
A frame plate with gas vent holes on at least one side is provided, and the mixture is injected and filled while giving a motion to ensure uniformity, and when filling is completed, gas vent holes are provided to prevent ejection during exothermic reaction. Cover, tighten and leave. When left at room temperature for about 30 minutes, what initially reacted gradually becomes a hardening reaction of dehydration condensation accompanied by rapid heat generation and evaporation of water vapor. After this curing reaction is completed, it is removed from the mold and left to dry.

なお、本発明において、必要に応じて配合される補強用
添加材としては、例えば、スチールファイバー、ガラス
繊維、ロックウール等の鉱物質繊維を挙げることができ
、その配合割合については、無機質断熱材の用途等に応
じて適宜選択することができる。なお、この補強用添加
材を配合した場合における上記珪酸アルカリ溶液及び硬
化剤の使用量は、この補強用添加材を無機質発泡体の一
部として考鑵し、補強用添加材の種類によって異なるが
、若干の増量を必要とする。
In the present invention, examples of reinforcing additives that may be blended as necessary include mineral fibers such as steel fibers, glass fibers, and rock wool. It can be selected as appropriate depending on the usage etc. In addition, when this reinforcing additive is blended, the amount of the alkali silicate solution and curing agent to be used will vary depending on the type of reinforcing additive, considering this reinforcing additive as a part of the inorganic foam. , requires a slight increase in volume.

[作用] 本発明においては、硬化剤として金属珪素粉とリン酸塩
とを併用したので、この硬化剤がバインダーとしての珪
酸アルカリ溶液に接触してこれを硬化させる際に金属珪
素の酸化によって激しい発熱・脱水縮合反応が起り、ま
た、リン酸塩もこの発熱反応と同時に活性化された珪酸
ナトリウムとの縮合反応を急激に進行させ、高分子化す
るものと考えられる。この結果、硬化物中の酸化珪素の
量は増大され、また、リン酸塩が珪酸アルカリを効率良
く硬化させて安定な硬化物を形成するものと考えられる
[Function] In the present invention, metal silicon powder and phosphate are used together as a hardening agent, so when this hardening agent comes into contact with an alkaline silicate solution as a binder and hardens it, it is violently oxidized by the oxidation of the metal silicon. It is thought that an exothermic dehydration condensation reaction occurs, and that the phosphate rapidly undergoes a condensation reaction with the activated sodium silicate at the same time as this exothermic reaction, resulting in polymerization. As a result, the amount of silicon oxide in the cured product is increased, and it is thought that the phosphate efficiently cures the alkali silicate to form a stable cured product.

[実施例] 以下、実施例及び比較例に基いて、本発明方法を具体的
に説明する。
[Example] Hereinafter, the method of the present invention will be specifically explained based on Examples and Comparative Examples.

実施例 無機質発泡体として平均粒径約11M、密度0゜12g
/α3の黒曜石発泡体120gを使用し、これに40%
珪酸ナトリウム水溶液100gとフェロシリコン25g
及び縮合リン酸アルミニウム(例えばヘキスト社製商品
名:HBハードナー)O〜309とからなる硬化剤とを
配合し、混合して200a+X 200s+X 20m
の板材成形用型に注入し、常温で約30分間放置し発熱
硬化させた後に型から外し、24時間放置して乾燥させ
無機質発泡板を成形した。この発泡板からテストピース
(40mX 40mX 20#l>を切出した。
Example: Inorganic foam with average particle size of about 11M and density of 0°12g.
/α3 obsidian foam 120g is used, and 40%
100g of sodium silicate aqueous solution and 25g of ferrosilicon
and a curing agent consisting of condensed aluminum phosphate (for example, Hoechst product name: HB Hardener) O to 309, and mixed to form 200a+X 200s+X 20m.
The mixture was poured into a mold for forming a board material, left at room temperature for about 30 minutes to heat-cure, then removed from the mold, and left to dry for 24 hours to form an inorganic foam board. A test piece (40 m x 40 m x 20 #l) was cut out from this foam board.

得られたテストピースについて、24時間浸漬及び15
分間熱温点沸処理し、浸漬前と各処理後における圧縮強
度を測定し、珪酸ナトリウム水溶液100gに対する縮
合リン酸アルミニウムの添加量と圧縮強度との関係を求
めた。結果を第1図に示す。なお、圧縮強度はテストピ
ースにその面方向から圧力をかけ、テストピースが潰れ
始める時の圧力の値として求めた。
The obtained test piece was soaked for 24 hours and soaked for 15 hours.
A thermal boiling treatment was carried out for a minute, and the compressive strength was measured before and after immersion, and the relationship between the amount of condensed aluminum phosphate added to 100 g of a sodium silicate aqueous solution and the compressive strength was determined. The results are shown in Figure 1. The compressive strength was determined by applying pressure to the test piece from the surface direction and determining the pressure value when the test piece began to collapse.

比較例1及び2 硬化剤としてフェロシリコンのみを使用した場合を比較
例1とし、また、硬化剤として上記縮合リン酸アルミニ
ウムのみを使用した場合を比較例2とし、比較例1では
30分間常温で放置し発熱硬化させ、また、比較例2で
は168時間常温で硬化させた以外は上記実施例と同様
にしてテストピースを成形し、これらのテストピースに
ついて実施例と同様にその珪酸すトリウム水溶液100
グに対するフェロシリコンの添加量と圧縮強度との関係
(比較例1)及び珪酸ナトリウム水溶液100gに対す
る縮合リン酸アルミニウムの添加量と圧縮強度との関係
(比較例2)を求めた。結果を第2図及び第3図に示す
Comparative Examples 1 and 2 Comparative Example 1 is a case in which only ferrosilicon is used as a curing agent, and Comparative Example 2 is a case in which only the above condensed aluminum phosphate is used as a curing agent. Test pieces were molded in the same manner as in the above Example except that Comparative Example 2 was cured with heat at room temperature for 168 hours.
The relationship between the amount of ferrosilicon added to the sample and compressive strength (Comparative Example 1) and the relationship between the amount of condensed aluminum phosphate added to 100 g of sodium silicate aqueous solution and compressive strength (Comparative Example 2) were determined. The results are shown in FIGS. 2 and 3.

[発明の効果] 本発明によれば、硬化剤として金属珪素粉とリン酸塩と
を併用したので、これら金属珪素粉やリン酸塩を単独で
使用する場合に比べて製品の無機質断熱材における圧縮
強度や耐水性が著しく向上する。しかも、発熱・脱水反
応が生じて化学的に活性化されるため、成形時における
バインダーの硬化時間を著しく短縮させることができ、
その生産性を向上させることができる。
[Effects of the Invention] According to the present invention, since metal silicon powder and phosphate are used together as a hardening agent, the inorganic heat insulating material of the product is improved compared to the case where these metal silicon powder or phosphate are used alone. Compressive strength and water resistance are significantly improved. In addition, because an exothermic and dehydrating reaction occurs and is chemically activated, the curing time of the binder during molding can be significantly shortened.
Its productivity can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係るテストピースにおける硬
化剤添加量と圧縮強度との関係を示すグラフ図、第2図
は比較例1に係るテストピースにおける硬化剤添加量と
圧縮強度との関係を示すグラフ図、第3図は比較例2に
係るテストピースにおける硬化剤添加量と圧縮強度との
関係を示すグラフ図である。 特許出願人    日本軽金属株式会社代  理  人
       弁理士  中  村   智  廣(外
2名)
Fig. 1 is a graph showing the relationship between the amount of curing agent added and compressive strength in the test piece according to the example of the present invention, and Fig. 2 is a graph showing the relationship between the amount of curing agent added and compressive strength in the test piece according to Comparative Example 1 A graph showing the relationship. FIG. 3 is a graph showing the relationship between the amount of curing agent added and the compressive strength in the test piece according to Comparative Example 2. Patent applicant Nippon Light Metal Co., Ltd. Representative Patent attorney Tomohiro Nakamura (2 others)

Claims (5)

【特許請求の範囲】[Claims] (1)粒状の無機質発泡体及び必要に応じて配合される
補強用添加材にバインダーとして珪酸アルカリ溶液を混
合し、結合成形させて無機質断熱材を製造するに際し、
上記バインダーの硬化剤として金属珪素粉とリン酸塩と
を併用することを特徴とする無機質断熱材の製造法。
(1) When manufacturing an inorganic heat insulating material by mixing an alkali silicate solution as a binder with a granular inorganic foam and reinforcing additives blended as necessary, and bonding and molding the mixture,
A method for producing an inorganic heat insulating material, characterized in that a metal silicon powder and a phosphate are used together as a hardening agent for the binder.
(2)無機質発泡体が黒曜石、蛭石、真珠岩及び松脂岩
からなる一群から選択された1種又は2種以上の混合物
である特許請求の範囲第1項記載の無機質断熱材の製造
法。
(2) The method for producing an inorganic heat insulating material according to claim 1, wherein the inorganic foam is one or a mixture of two or more selected from the group consisting of obsidian, vermiculite, perlite, and pinestone.
(3)珪酸アルカリ溶液が珪酸ナトリウム溶液である特
許請求の範囲第1項又は第2項記載の無機質断熱材の製
造法。
(3) The method for producing an inorganic heat insulating material according to claim 1 or 2, wherein the alkaline silicate solution is a sodium silicate solution.
(4)リン酸塩が縮合リン酸塩である特許請求の範囲第
1項ないし第3項のいずれかに記載の無機質断熱材の製
造法。
(4) The method for producing an inorganic heat insulating material according to any one of claims 1 to 3, wherein the phosphate is a condensed phosphate.
(5)バインダー中のリン酸塩配合割合が珪酸アルカリ
溶液100重量部に対して2〜30重量部である特許請
求の範囲第1項ないし第4項のいずれかに記載の無機質
断熱材の製造法。
(5) Production of the inorganic heat insulating material according to any one of claims 1 to 4, wherein the blending ratio of phosphate in the binder is 2 to 30 parts by weight per 100 parts by weight of the alkaline silicate solution. Law.
JP14242885A 1985-07-01 1985-07-01 Manufacture of inorganic heat insulator Granted JPS627681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14242885A JPS627681A (en) 1985-07-01 1985-07-01 Manufacture of inorganic heat insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14242885A JPS627681A (en) 1985-07-01 1985-07-01 Manufacture of inorganic heat insulator

Publications (2)

Publication Number Publication Date
JPS627681A true JPS627681A (en) 1987-01-14
JPH0443877B2 JPH0443877B2 (en) 1992-07-17

Family

ID=15315090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14242885A Granted JPS627681A (en) 1985-07-01 1985-07-01 Manufacture of inorganic heat insulator

Country Status (1)

Country Link
JP (1) JPS627681A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734063A (en) * 1980-08-07 1982-02-24 Shikoku Kaken Kogyo Kk Lightweight body composition
JPS6065777A (en) * 1983-09-22 1985-04-15 東洋電化工業株式会社 Manufacture of lightweight incombustible molded body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734063A (en) * 1980-08-07 1982-02-24 Shikoku Kaken Kogyo Kk Lightweight body composition
JPS6065777A (en) * 1983-09-22 1985-04-15 東洋電化工業株式会社 Manufacture of lightweight incombustible molded body

Also Published As

Publication number Publication date
JPH0443877B2 (en) 1992-07-17

Similar Documents

Publication Publication Date Title
US3707386A (en) Bonding or impregnating composition
US4375516A (en) Rigid, water-resistant phosphate ceramic materials and process for preparing them
US2992930A (en) Low density refractory oxide
CA2231513C (en) Method for forming insulated products and building products formed in accordance therewith
US4871694A (en) Cellular ceramic material and method of production thereof
US4401471A (en) Inorganic cellular material and process for the manufacture thereof
JPS59116163A (en) Manufacture of hardenable water-containing molding material and molded body
KR20030025361A (en) Surface modified-expanded perlite and its usage
CA1186130A (en) Rigid, water-resistant phosphate ceramic materials and processes for preparing them
FI943350A (en) A method of making shaped bodies having heat storage properties
US7354542B1 (en) Lightweight, heat insulating, high mechanical strength shaped product and method of producing the same
JPS627681A (en) Manufacture of inorganic heat insulator
JPS5926957A (en) Manufacture of calcium silicate hydrate hardened body
JPS63151691A (en) Manufacture of inorganic heat insulator
JPS6065777A (en) Manufacture of lightweight incombustible molded body
RU2148045C1 (en) Raw mix for manufacturing heat-insulating material and method of manufacturing thereof
JPH0511758B2 (en)
RU2817369C1 (en) Method of producing foamed silicate material
JPS6046982A (en) Manufacture of flame retardant heat insulator
JPH08268774A (en) Production of inorganic expanded body
CA1191016A (en) Bond stabilization of silicate bonded sands
JP2551421B2 (en) Method for manufacturing ceramic foam
JPH0557402A (en) Heat insulating material for low melting point metal horizontal continuous casting device
JPH0637336B2 (en) Manufacturing method of inorganic foam
JP4126339B2 (en) Ceramic hollow ball and method for producing the same