JPS63151691A - Manufacture of inorganic heat insulator - Google Patents

Manufacture of inorganic heat insulator

Info

Publication number
JPS63151691A
JPS63151691A JP29747986A JP29747986A JPS63151691A JP S63151691 A JPS63151691 A JP S63151691A JP 29747986 A JP29747986 A JP 29747986A JP 29747986 A JP29747986 A JP 29747986A JP S63151691 A JPS63151691 A JP S63151691A
Authority
JP
Japan
Prior art keywords
inorganic
compressive strength
heat insulating
inorganic heat
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29747986A
Other languages
Japanese (ja)
Other versions
JPH0455151B2 (en
Inventor
輿石 一麿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nikkei Co Ltd
Original Assignee
Shin Nikkei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nikkei Co Ltd filed Critical Shin Nikkei Co Ltd
Priority to JP29747986A priority Critical patent/JPS63151691A/en
Publication of JPS63151691A publication Critical patent/JPS63151691A/en
Publication of JPH0455151B2 publication Critical patent/JPH0455151B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、住宅、ビル、冷凍・冷蔵用0庫等の建造物
の壁、屋根等に使用される不燃性の無機質断熱材の製造
法に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a method for manufacturing a nonflammable inorganic heat insulating material used for walls and roofs of buildings such as houses, buildings, and freezer/refrigerator storage units. Regarding.

[従来の技術] 今日、住宅やビル等の冷暖房設備の普及や冷凍・冷蔵用
0庫等の大型化が進み、軽量で優れた断熱性を有するだ
けでなく、可燃性、発煙性、有害ガス発生性等の問題も
なくて防災上の観点からも優れた断熱材の開発が要請さ
れている。
[Conventional technology] Today, heating and cooling equipment for homes and buildings has become more widespread, and freezers and refrigerators have become larger. There is a need for the development of a heat insulating material that is excellent from the viewpoint of disaster prevention and does not have problems such as occurrence of heat.

そして、このような要請に応えるものとして、粒状の無
機質発泡体に珪酸アルカリ系の無機質系バインダーを添
加し、この無機質発泡体を結合成形して得られる無機質
系の断熱材が提案されていたが、このような無機質断熱
材は、軽量で断熱性に優れているという点では満足し1
qるものであったが、圧縮強度や耐水性、耐候性の点で
不十分であるという問題があった。
In order to meet these demands, an inorganic heat insulating material has been proposed which is obtained by adding an alkali silicate inorganic binder to a granular inorganic foam and bonding and molding the inorganic foam. , such inorganic heat insulating materials are satisfactory in that they are lightweight and have excellent heat insulating properties.
However, there was a problem that the compressive strength, water resistance, and weather resistance were insufficient.

そこで、このような問題点を解決するものとして、バイ
ンダーの硬化剤として金属硅素あるいはその合金の粉末
と燐酸塩とを使用し、軽量という特長を損うことなく、
圧縮強度や耐水性を改善し、しかも、従来の方法に比べ
て硬化に要する所用時問を短縮して生産性の向上を図る
こともできる無機質断熱材の製造法を開発し提案したく
特願昭60−142,428号発明)。
Therefore, in order to solve these problems, we used metallic silicon or its alloy powder and phosphate as a hardening agent for the binder, without sacrificing the lightweight feature.
A patent application to develop and propose a manufacturing method for inorganic insulation materials that improves compressive strength and water resistance, and also shortens the time required for curing compared to conventional methods, thereby increasing productivity. Invention No. 142,428 of 1980).

[発明が解決しようとする問題点] 本発明は、先に提案した上記発明を改良したもので、硬
化に要する反応時間をさらに短縮して生産性の向上を図
ると共に、硬化反応をより均一に遂行させるにより特に
圧縮強度を均一化して製品品質の均一化を図ることがで
きる無機質断熱材の製造法を提供するものである。
[Problems to be Solved by the Invention] The present invention is an improvement on the above-mentioned invention proposed previously, and aims to further shorten the reaction time required for curing to improve productivity, and to make the curing reaction more uniform. The purpose of the present invention is to provide a method for manufacturing an inorganic heat insulating material that can uniformize compressive strength and uniform product quality by carrying out the process.

[問題点を解決するための手段] すなわち、本発明は、粒状の無機質発泡体と、バインダ
ーとして使用される珪酸アルカリ溶液と、金属硅素粉を
主体とする上記バインダーの硬化剤 ゛とを混合し、得
られた反応混合物を成形用型内に注入して無機質断熱材
を成形するに際し、上記成形用型内の反応混合物を加熱
手段を用いて積極的に加熱する無機質断熱材の製造法で
ある。
[Means for Solving the Problems] That is, the present invention mixes a granular inorganic foam, an alkaline silicate solution used as a binder, and a curing agent for the binder mainly consisting of metal silicon powder. , a method for producing an inorganic heat insulating material, in which the reaction mixture in the mold is actively heated using a heating means when the obtained reaction mixture is injected into a mold to mold the inorganic heat insulating material. .

本発明において使用する粒状の無機質発泡体としては、
それが従来公知の如何なるものであってもよいが、好ま
しくは黒曜石、蛭石、真珠岩又は松脂岩であり、これら
の無機質発泡体はその1種のみを使用できるほか、2種
以上の混合物としても使用することができる。この無機
質発泡体の粒径及び密度については、目的とする製品断
、熱材の種類、用途等によって異なるが、通常0.5〜
7mの粒径及び通常0.1〜0.25g/cm3の密度
のものが使用される。また、特に軽量で断熱性に優れた
ものが要求される場合には密度0.1〜0.16g/c
m3のものを使用するのが好ましい。
The granular inorganic foam used in the present invention includes:
It may be any conventionally known material, but is preferably obsidian, vermiculite, nacre, or pinestone. These inorganic foams can be used alone or as a mixture of two or more. can also be used. The particle size and density of this inorganic foam vary depending on the intended product insulation, type of heat material, application, etc., but are usually 0.5~
A particle size of 7 m and a density of usually 0.1 to 0.25 g/cm3 are used. In addition, especially when lightweight and excellent heat insulation properties are required, the density is 0.1 to 0.16 g/c.
It is preferable to use m3.

また、本発明でバインダーとして使用する珪酸アルカリ
溶液としては、通常、珪酸ナトリウム水溶液や珪酸カリ
ウム水溶液が使用されるが、水に対する溶解性や原料コ
ストの点から好ましくは珪酸ナトリウム水溶液である。
Further, as the alkaline silicate solution used as a binder in the present invention, a sodium silicate aqueous solution or a potassium silicate aqueous solution is usually used, but a sodium silicate aqueous solution is preferable from the viewpoint of solubility in water and raw material cost.

珪酸ナトリウムとしては、SiO2とNa2Oのモル比
が通常2.0〜3.5の範囲のものであるが、好ましく
は2゜3〜2.7のものであり、その水溶液の濃度は通
常35〜42重伍%、好ましくは40〜42重量%であ
る。また、この珪酸アルカリ溶液の使用量については、
その濃度によって異なるが、無機質発泡体10011部
に対して、通常30〜120重量部、好ましくは50〜
100重量部である。
As sodium silicate, the molar ratio of SiO2 to Na2O is usually in the range of 2.0 to 3.5, preferably 2.3 to 2.7, and the concentration of its aqueous solution is usually in the range of 35 to 3.5. 42% by weight, preferably 40-42% by weight. Also, regarding the usage amount of this alkaline silicate solution,
Although it varies depending on the concentration, it is usually 30 to 120 parts by weight, preferably 50 to 120 parts by weight, per 10,011 parts of the inorganic foam.
It is 100 parts by weight.

珪酸アルカリ溶液の使用量が30重量部より少ないと結
合力が小さく、強度の低下という問題が生じ、また、1
20重1部より多いとバインダーが過剰になり、発熱・
脱水硬化反応の段階でバインダー分を流出してしまう結
果となり、有効に作用しないという問題が生じる。なお
、本発明で使用する珪酸アルカリは、単一物質としての
珪酸アルカリに限らず、二酸化珪素と水酸化アルカリと
を加熱溶融して得られるいわゆる水ガラスも包含される
もので、メタ珪酸ナトリウム、オルト珪酸ナトリウム、
二珪酸ナトリウム、四珪酸ナトリウム等の混合物であっ
てもよい。
If the amount of the alkaline silicate solution used is less than 30 parts by weight, the bonding force will be small, resulting in a decrease in strength;
If the amount is more than 1 part by weight, the binder will be excessive, causing heat generation and
This results in the binder component flowing out during the dehydration curing reaction stage, resulting in the problem that it does not work effectively. Note that the alkali silicate used in the present invention is not limited to alkali silicate as a single substance, but also includes so-called water glass obtained by heating and melting silicon dioxide and alkali hydroxide, such as sodium metasilicate, sodium orthosilicate,
A mixture of sodium disilicate, sodium tetrasilicate, etc. may be used.

ざらに、本発明で使用するバインダーの硬化剤としては
、例えば、金属硅素、鉄と珪素との合金であるフェロシ
リコン、金属珪素と二酸化珪素の混合物等、金属硅素と
しての性質を有する金属硅素粉を単独又は2種以上の混
合物として使用することができるが、好ましくは圧縮強
度や耐水性の改善を目的に硬化剤の他の成分として燐酸
塩を併用使用する。この目的で使用する燐酸塩としては
、硬化反応時にそれが珪酸アルカリと反応して水難溶性
で熱安定性に優れたバインダー物質を生成するものであ
ればよく、好ましくは燐酸アルミニウム、燐酸マグネシ
ウム、燐酸鉄、燐酸亜鉛等の燐酸金属塩や、ポリ燐酸の
金属塩や、金属酸化物と五酸化リンとが所定の比率で結
合している縮合燐酸金属塩等があり、より好ましくは縮
合燐酸アルミニウムで代表される縮合燐酸金属塩である
In general, examples of the hardening agent for the binder used in the present invention include metal silicon, ferrosilicon which is an alloy of iron and silicon, and metal silicon powder having properties as metal silicon, such as a mixture of metal silicon and silicon dioxide. These can be used alone or as a mixture of two or more types, but preferably a phosphate is used in combination as another component of the curing agent for the purpose of improving compressive strength and water resistance. The phosphate used for this purpose may be one that reacts with alkali silicate during the curing reaction to produce a binder substance that is poorly water soluble and has excellent thermal stability, and preferably aluminum phosphate, magnesium phosphate, phosphoric acid There are metal phosphates such as iron and zinc phosphate, metal salts of polyphosphoric acid, and metal salts of condensed phosphates in which a metal oxide and phosphorus pentoxide are combined at a predetermined ratio. More preferably, condensed aluminum phosphates are used. It is a representative condensed phosphoric acid metal salt.

上記金属硅素粉の使用量は、珪酸アルカリ溶液の種類や
濃度によっても異なるが、この珪酸アルカリ100重量
部に対して、通常10〜20重但部、重量しくは13〜
15重量部である。金属硅素粉の使用量が10重量部よ
り少ないと圧縮強度や耐水性の改善が不十分になり、ま
た、20重量部より多いと金属硅素粉が酸化し有効に作
用しないという問題が生じる。また、圧縮強度や耐水性
の改善を目的として添加する燐酸塩の使用量は、珪酸ア
ルカリ溶液のアルカリ量によって決まり、珪酸アルカリ
溶液の種類や濃度によっても異なるが、この珪酸アルカ
リ溶液100小母部に対して、通常2〜30重最部小母
ましくは10〜20重量部である。燐酸塩の使用量が2
重量部より少ないとこの燐酸塩を添加する効果がなく、
また、30重量部より多くしても圧縮強度や耐水性に対
する改善効果の向上がみられない。
The amount of the metal silicon powder used varies depending on the type and concentration of the alkali silicate solution, but is usually 10 to 20 parts by weight, or 13 to 20 parts by weight, per 100 parts by weight of the alkali silicate solution.
It is 15 parts by weight. If the amount of metal silicon powder used is less than 10 parts by weight, the compressive strength and water resistance will not be sufficiently improved, and if it is more than 20 parts by weight, the metal silicon powder will be oxidized and will not work effectively. In addition, the amount of phosphate added for the purpose of improving compressive strength and water resistance is determined by the amount of alkali in the alkaline silicate solution, and varies depending on the type and concentration of the alkaline silicate solution. The amount is usually 2 to 30 parts by weight, preferably 10 to 20 parts by weight. Phosphate usage is 2
If it is less than 1 part by weight, there is no effect of adding this phosphate,
Further, even if the amount is more than 30 parts by weight, no improvement in compressive strength or water resistance is observed.

本発明において、上記バインダーとして使用される硅酸
アルカリ、例えば硅酸ナトリウムは、硬化剤として使用
される金属硅素粉、例えば金属硅素と次のように反応し
て珪M(Si02>を生じ、Na20 ”S i 02
 +H20=NaOH+NaH3!03 NaH8iO3+H20≠ NaOH+H2S i 03 S i +2 N aOH+ n H20−Na2 S
 ! 03 +2町↑ 次第にこの珪酸弁の高い珪酸ナトリウムを生成する。
In the present invention, the alkali silicate, e.g., sodium silicate, used as the binder reacts with metal silicon powder, e.g., metal silicon, used as the hardening agent as follows to produce silicon M (Si02>, and Na20 “S i 02
+H20=NaOH+NaH3!03 NaH8iO3+H20≠ NaOH+H2S i 03 S i +2 N aOH+ n H20−Na2 S
! 03 +2 town ↑ Gradually produces sodium silicate with a high silicate valve.

本発明において、無機質断熱材を製造する際には、粒状
の無機質発泡体と、バインダーとして使用される珪酸ア
ルカリ溶液と、このバインダーの硬化剤とを混合し、得
られた反応混合物を成形用型内に注入し、この成形用型
内の反応混合物を適当な加熱手段を用いて積極的に加熱
して硬化させ、硬化終了後成形用型から外して乾燥させ
る。
In the present invention, when manufacturing an inorganic heat insulating material, a granular inorganic foam, an alkaline silicate solution used as a binder, and a hardening agent for this binder are mixed, and the resulting reaction mixture is poured into a mold. The reaction mixture in the mold is actively heated using an appropriate heating means to harden it, and after curing, it is removed from the mold and dried.

この硬化反応の際に外部から加熱する加熱温度について
は、成形時における種々の条件、例えば反応混合物の配
合あるいは使用する成形用型の種類や大きさ等によって
異なるが、通常40〜150℃であり、製造工程をオン
ライン化するためには反応完了までの反応時間を2〜3
分程度に短縮する必要があり、このために好ましくは8
0〜120℃の範囲である。加熱温度が40℃より低い
と加熱手段を使用して積極的に加熱する効果が充分に発
揮されず、また、150℃より高いと硬化反応の際の温
度上昇があまりにも急激になりすぎて反応の制御ができ
なくなり、かえって均一な品質の製品の製造が困難にな
るほか、硅酸アルカリによるガラス結合が弱くなり製品
物性を低下させるという問題が生じる。
The heating temperature applied externally during this curing reaction varies depending on various conditions during molding, such as the composition of the reaction mixture and the type and size of the mold used, but is usually 40 to 150°C. , in order to bring the manufacturing process online, the reaction time until the reaction is completed is 2 to 3.
It is necessary to shorten the time to about 8 minutes, and for this purpose it is preferable to
It is in the range of 0 to 120°C. If the heating temperature is lower than 40°C, the effect of active heating using a heating means will not be sufficiently demonstrated, and if it is higher than 150°C, the temperature rise during the curing reaction will be too rapid, causing the reaction to occur. In addition to making it difficult to manufacture products of uniform quality, the glass bonding caused by the alkali silicate becomes weaker, causing problems such as deterioration of product properties.

そして、成形用型内の反応混合物を加熱するための加熱
手段としては、例えば加熱室内に設置して熱風により加
熱する熱風加熱機等従来公知の如何なる手段であっても
よいが、好ましくは高周波加熱炉等を使用する高周波加
熱がよい。この高周波加熱によれば、高周波が金属板以
外のものを透過するので、木板製や無機質板製等の成形
用型を使用することにより、たとえこの成形用型の厚さ
を大きくしてもこの成形用型内の反応混合物を均一に加
熱することができ、均一な品質の製品を製造する上で特
に有利である。なお、製品の無機質断熱材中にその強度
向上のためのラス網を入れる場合には、このラス網に通
電して加熱することもできる。
The heating means for heating the reaction mixture in the mold may be any conventionally known means, such as a hot air heater installed in a heating chamber and heated with hot air, but preferably high frequency heating. High frequency heating using a furnace or the like is recommended. According to this high-frequency heating, the high-frequency waves pass through things other than metal plates, so by using a mold made of wood or inorganic plate, even if the thickness of the mold is increased, this The reaction mixture in the mold can be heated uniformly, which is particularly advantageous for producing products of uniform quality. In addition, when a lath net is inserted into the inorganic heat insulating material of the product to improve its strength, the lath net can also be heated by supplying electricity.

ざらに、本発明において、使用する成形用型としては、
例えばボードを成形する場合、少なくとも片面にガス扱
き孔を有する枠板を有し、反応混合物を均一に注入充填
し得られる製品の均一性を確保するために振動を与える
ことができ、充填完了後の硬化反応時に発熱して反応混
合物が噴出するのを防止するためガス扱き孔を有する蓋
を有するものがよい。
In general, the molds used in the present invention include:
For example, when molding a board, a frame plate with gas handling holes on at least one side can be used to inject and fill the reaction mixture uniformly, and can be vibrated to ensure uniformity of the resulting product. It is preferable to have a lid with gas handling holes to prevent the reaction mixture from spewing out due to heat generation during the curing reaction.

また、必要に応じて補強用添加材を配合し、製造される
製品の機械的強度、例えば引張り強度等の向上を図るこ
とができ、この目的で使用される補強用添加材としては
、例えばスチールファイバー、ガラス繊維、ロックウー
ル等の鉱物質m維を挙げることができ、その配合割合に
ついては、無機質断熱材の用途等に応じて適宜選択する
ことができる。なお、この補強用添加材を配合した場合
における上記珪酸アルカリ溶液及び硬化剤の使用量は、
この補強用添加材を無機質発泡体の一部として考慮し、
補強用添加材の種類によって異なるが、若干の増量を必
要とする。
Additionally, if necessary, reinforcing additives can be added to improve the mechanical strength of manufactured products, such as tensile strength. Examples of reinforcing additives used for this purpose include, for example, steel Examples include mineral fibers such as fibers, glass fibers, and rock wool, and the blending ratio thereof can be appropriately selected depending on the use of the inorganic heat insulating material. In addition, when this reinforcing additive is blended, the amounts of the above-mentioned alkaline silicate solution and curing agent used are:
Considering this reinforcing additive as part of the inorganic foam,
Although it depends on the type of reinforcing additive, a slight increase in the amount is required.

[作 用] 本発明方法によれば、無機質発泡体、珪酸アルカリ溶液
及び金属硅素粉を主体とする硬化剤からなる反応混合物
を成形用型内で加熱手段を用いて積極的に加熱するので
、硬化反応の反応速度が速くなるので反応時間を短縮で
きるほか、加熱の程度を制御することによりこの反応時
間を制御でき、また、加熱によって硬化反応を強制的に
進行させるので、反応混合物を完全に反応させることが
でき、未反応部分が残留して製品の品質に悪影響を及ぼ
すことがない。
[Function] According to the method of the present invention, a reaction mixture consisting of an inorganic foam, an alkali silicate solution, and a curing agent mainly composed of metal silicon powder is actively heated in a mold using a heating means. The reaction time of the curing reaction can be shortened by increasing the reaction rate, and this reaction time can be controlled by controlling the degree of heating, and the curing reaction is forced to proceed by heating, so that the reaction mixture is completely absorbed. The reaction can be carried out without any unreacted parts remaining and adversely affecting the quality of the product.

[実施例] 以下、実施例及び比較例に基いて、本発明方法を具体的
に説明する。
[Example] Hereinafter, the method of the present invention will be specifically explained based on Examples and Comparative Examples.

実施例1 無機質発泡体として平均粒径約2.0m、密度0、13
’j/cm3の黒曜石発泡体260g、水ガラス200
g、フェロシリコン60g及び燐酸アルミニウム20g
とを配合し混合して反応混合物を調製し、この反応混合
物を縦200mX横200 mm X深ざ50Mの木製
上面開口箱形の成形用型に注入し、多数の小孔を有する
蓋で閉じてこの蓋を固定し、高周波加熱炉内に設置して
高周波加熱により約100〜120’Cに加熱した。加
熱開始約40秒後に激しい脱水反応が始まり、50秒後
にはこの脱水反応がほとんどおさまって硬化反応が終了
し、成形用型内から取出された製品の無機質断熱板は、
はぼ完全に脱水乾燥が行われており、また、周辺部での
粒子の脱落や欠落も認められなかった。
Example 1 Inorganic foam with an average particle diameter of about 2.0 m and a density of 0.13
'j/cm3 obsidian foam 260g, water glass 200g
g, 60 g of ferrosilicon and 20 g of aluminum phosphate
A reaction mixture was prepared by blending and mixing, and this reaction mixture was poured into a wooden box-shaped mold measuring 200 m long x 200 mm wide x 50 m deep with an open top and closed with a lid having many small holes. This lid was fixed, placed in a high frequency heating furnace, and heated to about 100 to 120'C by high frequency heating. Approximately 40 seconds after the start of heating, an intense dehydration reaction begins, and after 50 seconds, this dehydration reaction has almost subsided and the curing reaction is completed, and the inorganic heat insulating board of the product is taken out from the mold.
The grains were completely dehydrated and dried, and no particles were observed to fall off or be missing from the periphery.

このようにして製造された無機質断熱板について、これ
を縦横それぞれ50#の大きさに等分してテストピース
(50#X 50#X 50711111> 16個を
切出し、1qられた各テストピースについてその圧縮強
度を測定し、周辺部に位置する12個のテストピースの
圧縮強度の平均値(周辺部圧縮強度)と中央部に位置す
る4個のテストピースの圧縮強度の平均値(中央部圧縮
強度〉とを求めて比較した。結果は、周辺部のテストピ
ースの圧縮強度は20.0〜21 、3KI/CIiの
範囲内にあってその平均値(周辺部圧縮強度〉が20.
8KI/criであったのに対し、中央部のテストピー
スの圧縮強度は20.5〜21.5に’j/criの範
囲内にあってその平均値(中央部圧縮強度)が21.2
にび/dであり、その差は0.4KI/criであった
。なお、圧縮強度はテストピースにその面方向から圧力
をかけ、テストピースが潰れ始める時の圧力の値として
求めた。
The inorganic heat insulating board manufactured in this way was equally divided into 50# test pieces (50# x 50# The compressive strength was measured, and the average value of the compressive strength of the 12 test pieces located at the periphery (peripheral compressive strength) and the average value of the compressive strength of the 4 test pieces located at the center (center compressive strength) The results were as follows: The compressive strength of the test piece at the periphery was within the range of 20.0 to 21, 3KI/CIi, and the average value (compressive strength at the periphery) was 20.0 to 21.
8KI/cri, whereas the compressive strength of the central test piece was within the range of 20.5 to 21.5'j/cri, and the average value (central compressive strength) was 21.2.
The difference was 0.4 KI/cri. The compressive strength was determined by applying pressure to the test piece from the surface direction and determining the pressure value when the test piece began to collapse.

実施例2 加熱手段として100″Cに設定された熱風h口熱機を
使用した以外は上記実施例1と同様にして無機質断熱板
を製造した。加熱開始約5分後に激しい脱水反応が始ま
り、約1分間この激しい脱水反応が続いた後、6分後に
はこの脱水反応がほとんどおざまって硬化反応が終了し
た。この実施例2の場合も上記実施例1の場合と同様に
、成形用型内から取出された製品の無機質断熱板は、は
ぼ完全に脱水乾燥が行われており、また、周辺部での粒
子の脱落や欠落も認められなかった。
Example 2 An inorganic heat insulating board was produced in the same manner as in Example 1, except that a hot air heater set at 100"C was used as the heating means. Approximately 5 minutes after the start of heating, an intense dehydration reaction began, and approximately After this intense dehydration reaction continued for 1 minute, the dehydration reaction almost subsided after 6 minutes and the curing reaction was completed.In the case of this Example 2, as in the case of Example 1, the molding mold was The inorganic heat insulating board of the product taken out from inside was almost completely dehydrated and dried, and no particles were observed to fall off or be missing around the periphery.

得られた無機質断熱板について、上記実施例1の場合と
同様にして周辺部圧縮強度と中央部圧縮強度とを求めた
。、結果は、周辺部のテストピースの圧縮強度は18.
0〜20.5に’J/ct/rの範囲内に必ってその平
均値(周辺部圧縮強度)が、19゜5 K’j / c
mであったのに対し、中央部のテストピースの圧縮強度
は19.0〜21 、 OK’J/cmの範囲内にあっ
てその平均値(中央部圧縮強度)が20゜2 K9 /
 ciであり、その差は0.6Kg/cmであった。
Regarding the obtained inorganic heat insulating board, the peripheral compressive strength and central compressive strength were determined in the same manner as in Example 1 above. As a result, the compressive strength of the peripheral test piece was 18.
The average value (peripheral compressive strength) must be within the range of 0 to 20.5'J/ct/r, and the average value (peripheral compressive strength) is 19°5 K'j/c
m, whereas the compressive strength of the central test piece was within the range of 19.0 to 21, OK'J/cm, and the average value (central compressive strength) was 20°2 K9/cm.
ci, and the difference was 0.6 Kg/cm.

比較例1 h0熱手段を使用することなく気温20℃の室内に放置
して反応させた以外は上記実施例1と同様にして無機質
断熱板を製造した。反応混合物を調製した直後から硬化
反応が始まっていたが、脱水反応が終了するまでに92
分間かかり、また、成形用型内から取出された製品の無
機質断熱板は、その脱水乾燥が不十分でさらに乾燥する
工程が必要であり、また、周辺部ではその一部に粒子の
脱落が認められた。
Comparative Example 1 An inorganic heat insulating board was produced in the same manner as in Example 1, except that the reaction was allowed to occur indoors at a temperature of 20° C. without using any h0 heating means. The curing reaction started immediately after preparing the reaction mixture, but by the time the dehydration reaction was completed, 92.
In addition, the inorganic heat insulating board of the product taken out from the mold was not sufficiently dehydrated and required a further drying process, and some particles were found to have fallen off around the periphery. It was done.

得られた無機質断熱板について、上記実施例]の場合と
同様にして周辺部圧縮強度と中央部圧縮強度とを求めた
。結果は、周辺部のテストピースの圧縮強度は10.4
〜’16.7に’j/crAの範囲内に必ってその平均
値(周辺部圧縮強度)が14゜2 K3 / cmであ
ったのに対し、中央部のテストピースの圧縮強度は18
.7〜21 、0に3/crAの範囲内にあってその平
均値(中央部圧縮強度)が19゜4 Kg / cit
tであり、その差は5.2KI/ctr、であった。
Regarding the obtained inorganic heat insulating board, the peripheral compressive strength and central compressive strength were determined in the same manner as in the above example. The result was that the compressive strength of the peripheral test piece was 10.4.
~'16.7, the average value (peripheral compressive strength) within the range of 'j/crA was 14°2 K3/cm, while the compressive strength of the central test piece was 18.
.. 7 to 21, 0 to 3/crA, and the average value (center compressive strength) is 19°4 Kg/cit
t, and the difference was 5.2KI/ctr.

比較例2 気温が30℃の室内に放置して硬化反応をさせた以外は
上記比較例1と同様にして無機質繊維板を製造した。脱
水反応が終了するまでに56分間かかり、この比較例2
の場合にも成形用型内から取出された製品の無機質断熱
板はその脱水乾燥が不十分でざらに乾燥する工程が必要
であり、また、周辺部の一部に粒子の脱落が認められた
Comparative Example 2 An inorganic fiberboard was produced in the same manner as in Comparative Example 1, except that it was left in a room at a temperature of 30° C. to undergo a curing reaction. It took 56 minutes to complete the dehydration reaction, and this Comparative Example 2
In this case, the inorganic insulation board of the product removed from the mold was insufficiently dehydrated and required a rough drying process, and some particles were observed to have fallen off in some of the surrounding areas. .

得られた無機質断熱板について、上記実施例1の場合と
同様にして周辺部圧縮強度と中央部圧縮強度とを求めた
。結果は、周辺部のテストピースの圧縮強度は11.1
〜16.9KI/critの範囲内にあってその平均値
(周辺部圧縮強度)が14゜5に!j/cIIiであっ
たのに対し、中央部のテストピースの圧縮強度は18.
7〜21 、0Kg/cIiの範囲内にあってその平均
値(中央部圧縮強度)が19゜8に’j / crjで
あり、その差は5.3に!j/ar+であった。
Regarding the obtained inorganic heat insulating board, the peripheral compressive strength and central compressive strength were determined in the same manner as in Example 1 above. The result was that the compressive strength of the peripheral test piece was 11.1.
It is within the range of ~16.9 KI/crit, and its average value (peripheral compressive strength) is 14°5! j/cIIi, whereas the compressive strength of the central test piece was 18.
7 to 21, within the range of 0Kg/cIi, the average value (center compressive strength) is 19°8'j/crj, and the difference is 5.3! It was j/ar+.

実施例3 燐酸アルミニウムの使用量を23として反応混合物を調
製した以外は実施例1と同様にして無機質繊維板の製造
を行った。得られた無機質断熱板からテストピース(4
0mX40mX10m>を切出し、このテストピースを
沸騰水中に15分間浸漬して煮沸試験を行った。結果は
、水の変色は全く認められず、また、テストピースの崩
壊も全く認められなかった。このことから、テストピー
ス中のバインダーは水中に溶出せず、優れた耐水性を有
することが判明した。
Example 3 An inorganic fiberboard was produced in the same manner as in Example 1 except that the amount of aluminum phosphate used was 23 to prepare a reaction mixture. A test piece (4
0 m x 40 m x 10 m> was cut out, and the test piece was immersed in boiling water for 15 minutes to perform a boiling test. As a result, no discoloration of the water was observed, and no disintegration of the test piece was observed at all. This revealed that the binder in the test piece did not dissolve into water and had excellent water resistance.

比較例3 加熱手段を使用することなく気温20℃の室内に放置し
て反応させた以外は上記実施例3と同様にして無機質繊
維板の製造を行った。実施例3と同様に得られた無機質
断熱板からテストピースを切出して煮沸試験を行った。
Comparative Example 3 An inorganic fiberboard was produced in the same manner as in Example 3, except that the reaction was allowed to occur in a room at a temperature of 20° C. without using any heating means. A test piece was cut out from the inorganic heat insulating board obtained in the same manner as in Example 3, and a boiling test was conducted.

結果は、約30秒後に沸騰水が黒く変色し、テストピー
スは約2分後に崩壊した。
As a result, the boiling water turned black after about 30 seconds, and the test piece disintegrated after about 2 minutes.

比較例4 燐酸アルミニウムを使用しなかった以外は上記実施例3
と同様にして無機質繊維板の製造を行った。実施例3と
同様に得られた無機質断熱板からテストピースを切出し
て煮沸試験を行った。結果は、約30秒後に沸騰水が黒
く変色し、テストピースは1分以内に崩壊して粒状の浮
遊物となった。
Comparative Example 4 Example 3 above except that aluminum phosphate was not used
An inorganic fiberboard was produced in the same manner. A test piece was cut out from the inorganic heat insulating board obtained in the same manner as in Example 3, and a boiling test was conducted. As a result, the boiling water turned black after about 30 seconds, and the test piece disintegrated into granular suspended matter within one minute.

[発明の効果] 本発明方法によれば、無機質断熱材を製造する際におけ
る硬化に要する反応時間をざらに短縮して生産性の向上
を図ることができると共に、この硬化反応をより均一に
遂行させることができ、特に周辺部や中心部における圧
縮強度を均一化して製品品質の均一化を図ることができ
る。
[Effects of the Invention] According to the method of the present invention, it is possible to significantly shorten the reaction time required for curing when producing an inorganic heat insulating material, thereby improving productivity, and to perform the curing reaction more uniformly. In particular, the compressive strength in the peripheral portion and the center portion can be made uniform, thereby making it possible to make the quality of the product uniform.

Claims (3)

【特許請求の範囲】[Claims] (1)粒状の無機質発泡体と、バインダーとして使用さ
れる珪酸アルカリ溶液と、金属硅素粉を主体とする上記
バインダーの硬化剤とを混合し、得られた反応混合物を
成形用型内に注入して無機質断熱材を成形するに際し、
上記成形用型内の反応混合物を加熱手段を用いて積極的
に加熱することを特徴とする無機質断熱材の製造法。
(1) Mix granular inorganic foam, an alkaline silicate solution used as a binder, and a curing agent for the binder, which is mainly composed of metal silicon powder, and inject the resulting reaction mixture into a mold. When forming inorganic insulation materials,
A method for producing an inorganic heat insulating material, comprising actively heating the reaction mixture in the mold using a heating means.
(2)加熱温度範囲が40〜150℃の範囲内である特
許請求の範囲第1項記載の無機質断熱材の製造法。
(2) The method for producing an inorganic heat insulating material according to claim 1, wherein the heating temperature range is from 40 to 150°C.
(3)加熱手段が高周波加熱である特許請求の範囲第1
項又は第2項記載の無機質断熱材の製造法。
(3) Claim 1 in which the heating means is high frequency heating
A method for producing an inorganic heat insulating material according to item 1 or 2.
JP29747986A 1986-12-16 1986-12-16 Manufacture of inorganic heat insulator Granted JPS63151691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29747986A JPS63151691A (en) 1986-12-16 1986-12-16 Manufacture of inorganic heat insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29747986A JPS63151691A (en) 1986-12-16 1986-12-16 Manufacture of inorganic heat insulator

Publications (2)

Publication Number Publication Date
JPS63151691A true JPS63151691A (en) 1988-06-24
JPH0455151B2 JPH0455151B2 (en) 1992-09-02

Family

ID=17847029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29747986A Granted JPS63151691A (en) 1986-12-16 1986-12-16 Manufacture of inorganic heat insulator

Country Status (1)

Country Link
JP (1) JPS63151691A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2655996A1 (en) * 1989-12-20 1991-06-21 Mtu Muenchen Gmbh PROCESS PROTECTION LAYER FOR PREVENTING FRAGILIZATION BY OXYGEN OF TITANIUM CONSTRUCTION PARTS.
WO1999051543A3 (en) * 1998-04-06 1999-12-23 Herding Gmbh Dimensionally stable, cross-flow permeable fluid treatment element, especially a hot liquid filter element
JP2006143484A (en) * 2004-11-16 2006-06-08 Kazuo Kume Thermal insulating material and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4957021A (en) * 1972-10-03 1974-06-03
JPS60122778A (en) * 1983-12-02 1985-07-01 東洋電化工業株式会社 Manufacture of lightweight incombustible moldings
JPS60161380A (en) * 1984-01-26 1985-08-23 日本ゼオン株式会社 Refractory heat insulator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4957021A (en) * 1972-10-03 1974-06-03
JPS60122778A (en) * 1983-12-02 1985-07-01 東洋電化工業株式会社 Manufacture of lightweight incombustible moldings
JPS60161380A (en) * 1984-01-26 1985-08-23 日本ゼオン株式会社 Refractory heat insulator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2655996A1 (en) * 1989-12-20 1991-06-21 Mtu Muenchen Gmbh PROCESS PROTECTION LAYER FOR PREVENTING FRAGILIZATION BY OXYGEN OF TITANIUM CONSTRUCTION PARTS.
WO1999051543A3 (en) * 1998-04-06 1999-12-23 Herding Gmbh Dimensionally stable, cross-flow permeable fluid treatment element, especially a hot liquid filter element
JP2006143484A (en) * 2004-11-16 2006-06-08 Kazuo Kume Thermal insulating material and method of manufacturing the same

Also Published As

Publication number Publication date
JPH0455151B2 (en) 1992-09-02

Similar Documents

Publication Publication Date Title
US4226277A (en) Novel method of making foundry molds and adhesively bonded composites
US4298554A (en) Coherent rigid solid material
JPH09239485A (en) Binder composition for cast element and its production
US4297252A (en) Aging-resistant fireproofing material
US2992930A (en) Low density refractory oxide
CA1138478A (en) Lightweight silicate aggregate
CN109796175A (en) A kind of fire resisting autoclave aerated concrete building block brick
US3285756A (en) Mold or core composition for metal casting purposes
EP4105190A1 (en) Fire-resistant and thermal insulation material and preparation process therefor
US3661602A (en) Silane-stabilized silicate foams
US4871694A (en) Cellular ceramic material and method of production thereof
US4401471A (en) Inorganic cellular material and process for the manufacture thereof
US3247556A (en) Sand mold process using resinous binder from alkaline condensation of urea, formaldehyde, and furfuryl alcohol
JPS63151691A (en) Manufacture of inorganic heat insulator
US3994836A (en) Process for preparing flame resistant molded articles of foamed polystyrene
JPS6096345A (en) Production of casting mold
JPS6338254B2 (en)
JPH0311619B2 (en)
JPH0443877B2 (en)
JP2004174598A (en) Molding sand for water-soluble core and method for making water-soluble core and water-soluble core
JPH0511758B2 (en)
SU1678494A1 (en) Composition for manufacturing casting forms and mold core
CN108609965A (en) A kind of fire-proof plate and preparation method thereof
JPS6046982A (en) Manufacture of flame retardant heat insulator
JPS58217433A (en) Manufacture of expanded and molded body of natural glass