JPS627668A - Carbon fiber reinforced carbon composite material - Google Patents

Carbon fiber reinforced carbon composite material

Info

Publication number
JPS627668A
JPS627668A JP60145988A JP14598885A JPS627668A JP S627668 A JPS627668 A JP S627668A JP 60145988 A JP60145988 A JP 60145988A JP 14598885 A JP14598885 A JP 14598885A JP S627668 A JPS627668 A JP S627668A
Authority
JP
Japan
Prior art keywords
carbon
composite material
carbon fiber
coating layer
reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60145988A
Other languages
Japanese (ja)
Inventor
奥山 公平
松浦 一志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP60145988A priority Critical patent/JPS627668A/en
Publication of JPS627668A publication Critical patent/JPS627668A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、摩擦特性の優れ九炭素繊維強化炭素複合材に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a nine-carbon fiber-reinforced carbon composite material with excellent frictional properties.

〔従来技術〕[Prior art]

炭素繊維強化炭素複合材(以下、r C/C複合材」と
記す。)は一般にポリアクリロニトリル系、ピッチ系あ
るいはレーヨン系等の長繊維もしくは短繊維の炭素繊維
にフェノール樹脂、フラン樹脂などの熱硬化性樹脂、あ
るいはピッチなどの熱可塑性樹脂等のマトリックス物質
を含浸又は混合して、加熱成型したものを不活性ガス等
の非酸化性雰囲気においてCOO〜t000cで焼成す
るととくより製造されている。
Carbon fiber-reinforced carbon composites (hereinafter referred to as rC/C composites) are generally made by adding heat to long or short carbon fibers such as polyacrylonitrile, pitch, or rayon with phenolic resin or furan resin. It is particularly manufactured by impregnating or mixing a matrix material such as a curable resin or a thermoplastic resin such as pitch, heating and molding the product, and firing the product at COO to t000c in a non-oxidizing atmosphere such as an inert gas.

しかしながら、この方法によって得られるC/C複合材
はマトリックス炭素の炭素化収率が4Io〜SO%であ
るため、得られるC/C複合材の密度は理論密度の6側
根度しか達せず、その強度も低い。また一般に摩擦部材
、特に摺動部材の動摩擦係数がo、17以上になると摩
擦量が増加し、摺動部材等の交換頻度が多くなり、逆に
0、/以下では摺動部材等としての性能面で問題がある
ので、動R1擦係数として0.7〜O,aの範囲が適当
てあり、かつ摩耗螢が7回の使用においてQ、Q / 
fl以下であることが望まれるが、従来のC/C複合材
は耐摩耗性が充分ではなく、摺動部材等として使用する
のは問題があった。
However, in the C/C composite obtained by this method, the carbonization yield of the matrix carbon is 4Io~SO%, so the density of the C/C composite obtained only reaches the theoretical density of 6 sides, and its The strength is also low. Additionally, in general, when the coefficient of dynamic friction of a friction member, especially a sliding member, exceeds o, 17, the amount of friction increases and the frequency of replacement of the sliding member, etc. increases; Since there is a problem with the surface, a range of 0.7 to O,a is appropriate for the dynamic R1 friction coefficient, and the wear fireflies are Q, Q / after 7 uses.
Although it is desired that the wear resistance is below fl, conventional C/C composite materials do not have sufficient wear resistance, and there are problems in using them as sliding members.

そこで、その強度を改良するために、上記方法により得
られたC/C複合材を更に樹脂又はピッチ等で再含浸し
、次いで再焼成する工程を繰り返して緻密化処理を行な
いC/C複合材の密度を上げる方法、あるいは化学蒸着
法(以下、r CVD法」と記す。)を用いて熱分解炭
素等をC/C複合材中に存在する空隙に充填して数置化
処理を行ないC/C複合材の密度を上げる方法等が提案
されている。
Therefore, in order to improve its strength, the C/C composite material obtained by the above method is further impregnated with resin or pitch, etc., and then the process of re-firing is repeated to perform a densification treatment. C/C composite material is filled with pyrolytic carbon, etc., using a method of increasing the density of C/C, or chemical vapor deposition method (hereinafter referred to as "rCVD method") to fill the voids existing in the C/C composite material and perform a numerical conversion process. A method of increasing the density of the /C composite material has been proposed.

〔発明が解決しようとする問題点〕 しかしながら、かかる緻密化方法により c/c複合材
の密度を理論密度の約S側根度とすることが可能である
が、得られたC/C複合材は未だ耐摩耗性、摺動性の点
で更に改善が望まれていた。
[Problems to be Solved by the Invention] However, although it is possible to make the density of the C/C composite material approximately S side rootness of the theoretical density by this densification method, the obtained C/C composite material is Further improvements in wear resistance and sliding properties were still desired.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

そこで、本発明者等はCVD法だよる緻密化処理に着目
して鋭意検討を行なった結果、従来の単なるマトリック
ス炭素中の空隙に熱分解炭素等を充填するのではなく、
C/C複合材の表面に炭素からなる被覆層を設けること
により、耐摩耗性、摺動性を大幅に改善することができ
ることを知得し、本発明を完成するに到った。
Therefore, the inventors of the present invention focused on densification treatment using the CVD method, and as a result, they found that instead of simply filling the voids in the matrix carbon with pyrolytic carbon, etc., as in the past,
The present invention was completed based on the finding that abrasion resistance and sliding properties can be significantly improved by providing a carbon coating layer on the surface of a C/C composite material.

すなわち、本発明の目的は摩擦特性の優れた炭素繊維強
化炭素複合材を提供することKあり、その目的は炭素繊
維強化炭素複合材の表面に、化学蒸着法により形成さ九
た炭素被覆層を有することを特徴とする炭素繊維強化炭
素複合材により達成される。
That is, an object of the present invention is to provide a carbon fiber-reinforced carbon composite material with excellent friction properties, and the purpose is to provide a carbon coating layer formed by chemical vapor deposition on the surface of the carbon fiber-reinforced carbon composite material. This is achieved by a carbon fiber-reinforced carbon composite material having the following characteristics.

以下1本発明の詳細な説明する。Hereinafter, one aspect of the present invention will be explained in detail.

本発明で用いる炭素繊維としては、ピッチ系、ポリアク
リロニトリル系、レーヨン系等の公知のいずれの炭素S
維をも使用できる。更に必要て応じて、炭化ケイ素1、
l1ltアルミナ05.カーボンブラックなどの無機繊
維、あるいは無機物などを添加してもよい。それらの形
状としては、織布、不織布、短繊維等いずれのものであ
ってもよい。
The carbon fiber used in the present invention may be any known carbon fiber such as pitch-based, polyacrylonitrile-based, rayon-based, etc.
fibers can also be used. Furthermore, if necessary, silicon carbide 1,
l1lt alumina 05. Inorganic fibers such as carbon black, or inorganic substances may be added. Their shape may be any of woven fabrics, nonwoven fabrics, short fibers, etc.

かかる炭素繊維にフェノール樹脂、フラン樹脂あるいは
石油系・石炭系ピッチ等のマトリックス物質を混合ある
いは含浸させた後乾燥して、炭素繊維とマトリックス物
質からなる組成物を得る。その際、マトリックス物質は
アルコール、アセトン、アントラセン油等の溶媒に溶解
して適当な粘度に調製したものを使用する。
The carbon fibers are mixed with or impregnated with a matrix material such as a phenol resin, a furan resin, or petroleum-based or coal-based pitch, and then dried to obtain a composition comprising the carbon fibers and the matrix material. In this case, the matrix material used is one that has been dissolved in a solvent such as alcohol, acetone, anthracene oil, etc. and adjusted to an appropriate viscosity.

次いで、該組成物を炭素繊維の体積含有率がlO〜7θ
係、好ましくは、コO〜よθチとして、金型に充填し、
too−!00Cの温度で加圧成型する。その後、窒素
ガスなどの不活性ガス雰囲気中でl−一〇〇℃/時間の
昇温速度でgoo〜/、000℃まで昇温し焼成してC
/C複合材を得る。
Next, the composition is prepared such that the volume content of carbon fibers is 1O to 7θ.
filling the mold, preferably as
Too-! Pressure molding is performed at a temperature of 00C. After that, in an inert gas atmosphere such as nitrogen gas, the temperature is raised to goo~/,000℃ at a heating rate of 1-100℃/hour and fired.
/C composite material is obtained.

不発gAにおいては、このC/C複合材にそのままか、
あるいは先の焼成温度より高い温度で再熱処理をした後
C/C複合材表面にCVD法により熱分解炭素を堆積さ
せて熱分解炭素の被覆層全形成することが重要である。
In the case of unexploded gA, this C/C composite material may be left as it is, or
Alternatively, it is important to perform reheat treatment at a temperature higher than the previous firing temperature and then deposit pyrolytic carbon on the surface of the C/C composite material by CVD to form a complete coating layer of pyrolytic carbon.

CVD法としては、通常の方法即ち、熱Cv    ′
D法、プラズマCVD法が挙げられる。熱CVD法の場
合、熱分解炭素の原料として、メタン、プロパン、プロ
ピレン、ベンゼン、アセチレン、ハロゲン化炭化水素な
どを用い、lI0θ℃以上の温度(基板温度)で、s〜
りA OtpmHf程度の減圧、もしくは常圧下に、該
原料を熱分解する方法が挙げられる。
As the CVD method, a normal method, that is, thermal Cv'
Examples include D method and plasma CVD method. In the case of the thermal CVD method, methane, propane, propylene, benzene, acetylene, halogenated hydrocarbons, etc. are used as raw materials for pyrolytic carbon, and s ~
Examples include a method of thermally decomposing the raw material under a reduced pressure of approximately A OtpmHf or under normal pressure.

本発明においては、特に、ハロゲン化炭化水素を原料と
し、’l00−/、ユoo℃、好まし゛くは、100〜
/、100℃の温度で熱分解する方法がより耐摩耗性の
良好な熱分解炭素被覆層が形成されるので好ましい。
In the present invention, in particular, a halogenated hydrocarbon is used as a raw material, and the temperature is preferably 100 to 100°C.
The method of thermal decomposition at a temperature of /100° C. is preferable because a pyrolytic carbon coating layer with better wear resistance is formed.

この様なハロゲン化炭化水素としては、種々     
□のものが使用できるが、具体的には、l、/、! −
トリクロロエタン、 /、/−一トリクロロエタン、/
、コージクロロエチレン、/、/−ジ−クロロエチレン
などがある。これらのハロゲン化炭化水素は単独でも二
種以上併用してもよい。
There are various types of halogenated hydrocarbons.
□ can be used, but specifically, l, /,! −
trichloroethane, /, /-monotrichloroethane, /
, cordichloroethylene, /,/-di-chloroethylene, and the like. These halogenated hydrocarbons may be used alone or in combination of two or more.

上記ハロゲン化炭化水素はそのまま気化させるか、窒素
、ヘリウム、アルゴン等の不活性ガスで希釈して用いて
もよい。好ましくはio〜J Oyo1%の濃度を希釈
し、上記温度の範囲で熱分解させて熱分解炭素を被覆す
る方法が低温で、析出速度も大きく好ましい。
The above-mentioned halogenated hydrocarbon may be vaporized as it is, or may be diluted with an inert gas such as nitrogen, helium, or argon. Preferably, a method in which the carbon is diluted to a concentration of 1% to 1% and thermally decomposed in the above temperature range to coat the pyrolytic carbon is preferred because it is low temperature and has a high precipitation rate.

本発明において炭素被覆J−は、通常20μm以上、好
ましくは!00μm以上、特に好ましくはQ、j;−1
0mとなる様に化学蒸着法により熱分解炭素?堆積させ
る。
In the present invention, the carbon coating J- is usually 20 μm or more, preferably! 00 μm or more, particularly preferably Q, j; -1
Pyrolytic carbon by chemical vapor deposition method to make it 0m? deposit

上記の様にして、炭素被覆層を形成した後、本発明のC
/C複合材は、更にl、θθ0〜.7,000Cで適宜
再熱処理を行なってもよい。
After forming the carbon coating layer as described above, the C of the present invention
/C composite material further has l, θθ0~. Reheat treatment may be performed at 7,000C as appropriate.

また、本発明だおいては、炭素被覆層を形成する前に従
来の緻密化処理を行なっておいてもよい。
Further, in the present invention, a conventional densification treatment may be performed before forming the carbon coating layer.

即ち、成型後too−iooocで焼成を行なったC/
C複合材にピッチ等を含浸した後、600〜lθθθ℃
の温度で焼成する工程金、操り返したものをそのま゛ま
か、あるいは先の焼成湛より高い温度で再熱処理をした
後、本発明に基づいてCVD法により炭素被覆層を設け
てもよい。
In other words, C/
After impregnating pitch etc. into C composite material, 600~lθθθ℃
In the process of firing at a temperature of .

あるいは、前記化学蒸着法により、マトリックス炭素中
の空隙を充填化したものを、そのまま引続き熱分解炭素
を堆積させ、炭素被覆層を形成させるか、あるいは10
00℃〜3θ0θCの温度で再熱処理をした後、炭素被
覆層を形成させてもよい。
Alternatively, the voids in the matrix carbon are filled by the chemical vapor deposition method, and pyrolyzed carbon is then deposited to form a carbon coating layer.
After reheating at a temperature of 00° C. to 3θ0θC, a carbon coating layer may be formed.

(効果) 本発明によれば、 C/C複合材の表面全面に炭素被覆
層を設けることにより摩擦特性が大福に改善された摺動
部材等を藺便に得ることができる。
(Effects) According to the present invention, by providing a carbon coating layer on the entire surface of a C/C composite material, it is possible to easily obtain a sliding member etc. whose frictional characteristics are significantly improved.

以下、実施例により本発明をより具体的に説明するが1
本発明はその要旨をこえない限シ。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention does not go beyond its gist.

下記実施例に限定されるものではない。The present invention is not limited to the following examples.

実施例1 長さ、フキのピッチ系炭素繊維31重量部をフエ27−
ル樹脂77重量部及びエタノール52重量部と共だ混合
した後、約、211.時間乾燥し、これを金型に充填し
7て21θ℃の温度で加圧することKよ°り炭素繊維の
体積含有率(Vf)がSθ秀の成型体を得た。この成型
体を加熱炉にて窒素ガス雰囲気中1000℃で焼成して
C/C複合複合材全欠いでとのC/C複合材を約コOO
℃の温度の液状ピップで含浸した後、再び加熱炉で窒素
ガス雰囲気中gooc、で焼成した。同様の処理条件で
含浸−焼成操作1+回繰り返した後、更に窒素ガス雰囲
気中/A(100℃で熱処理1−で。
Example 1 31 parts by weight of pitch-based carbon fibers of length and length were
After mixing with 77 parts by weight resin and 52 parts by weight ethanol, about 211. After drying for a long time, this was filled into a mold and pressurized at a temperature of 21θ°C to obtain a molded body with a carbon fiber volume content (Vf) of Sθ. This molded body is fired at 1000°C in a nitrogen gas atmosphere in a heating furnace to produce a C/C composite material with a complete absence of C/C composite material.
After being impregnated with liquid pip at a temperature of °C, it was fired again in a heating furnace in a nitrogen gas atmosphere. After repeating the impregnation-firing operation 1+ times under the same treatment conditions, further heat treatment 1- in a nitrogen gas atmosphere (100° C.).

嵩密度ハロ?/鷹の緻密化されたC/C複合材を得た。Bulk density halo? /Taka densified C/C composite material was obtained.

得られたC/C複合材全円板状に加工した後、CvD処
理装置内に載置し、高周波誘導コイルを用い700℃で
加熱するとともに該装置下部よυアルゴンガスをキャリ
アーガスとしIJ体lj[の6111−/、2−ジクロ
ルエチレン蒸気をIQ時間供給してCVD処理を行ない
、c7c複合材の表面に約コ0θμの均質な炭素被覆層
を生成させた。この炭素被覆層を有するC/C複合材を
再度アルゴンガス雰囲気中/ AOOCで熱処理し、本
発明のC/C複合体を得た。
After processing the obtained C/C composite into a full disk shape, it was placed in a CvD processing device, heated at 700°C using a high-frequency induction coil, and processed into an IJ body using υ argon gas as a carrier gas from the bottom of the device. CVD treatment was performed by supplying 6111-/2-dichloroethylene vapor for IQ hours to produce a homogeneous carbon coating layer of about 0θμ on the surface of the c7c composite. This C/C composite material having a carbon coating layer was heat-treated again in an argon gas atmosphere/AOOC to obtain a C/C composite material of the present invention.

この炭素被覆層を有する円板状のC/C複合材を互いに
擦り合わせることてより摩擦試験全行なった。その結果
を第1表に示す。
All friction tests were carried out by rubbing the disk-shaped C/C composite materials having the carbon coating layer against each other. The results are shown in Table 1.

比較例1 実施例/において得られたCVD処理前の嵩密度ハAy
−/c111のC/C複合材を円板状に加工したものを
実施例1と同様にして摩擦試験を行なった。その結果を
第1表に示す。
Comparative Example 1 Bulk density before CVD treatment obtained in Example/Ay
-/c111 C/C composite material processed into a disk shape was subjected to a friction test in the same manner as in Example 1. The results are shown in Table 1.

実施例二〜ダ CVD処理時間をそれぞれ/、コθ、50時間とし各々
コSμ、Sθ071,2000μの炭素被覆層をC/C
複合材表面に生成させた以外は実施例/と同様の方法に
より行ない、その後実施例/と同様にアルゴンガス雰囲
気中i&00Cで熱処理して同様の摩擦試験を行なった
。その結果を第1表に示す。
Example 2 - The CVD treatment time was 50 hours, respectively, and the carbon coating layer of Sμ, Sθ071, and 2000μ was C/C.
The same method as in Example 1 was carried out except that the particles were formed on the surface of the composite material, and then the same friction test was carried out by heat treatment at i&00C in an argon gas atmosphere in the same manner as in Example. The results are shown in Table 1.

第1表から明らかなようにC/C複合材表面に炭素被覆
層が残存している限り、実施例1と同様に優れた摩擦特
性を有することがわかる。
As is clear from Table 1, as long as the carbon coating layer remains on the surface of the C/C composite material, it can be seen that it has excellent frictional properties similar to Example 1.

実施例j、6 炭素繊維の体積含有率(Vf)を20、りOチとした以
外は実施例1同様にして炭素被覆層の厚さが約200μ
のC/C複合材を得た。これを実施例1と同様にして摩
擦試験を行ない、その結果を第1表に示した。
Examples j, 6 The thickness of the carbon coating layer was approximately 200μ in the same manner as in Example 1 except that the volume content (Vf) of the carbon fiber was 20 and 0.
A C/C composite material was obtained. A friction test was conducted on this in the same manner as in Example 1, and the results are shown in Table 1.

実施例り、g 実施例1で得られた炭素被覆層の厚さが約−〇θμのC
/C複合材をアルゴンガス雰囲気中lコOOC,コoo
or:、で再度熱処理して炭素被覆層を有した円板状の
C/C複合材を得た。これを実施例1と同様にして摩擦
試験を行なった。
Example 1, g C in which the carbon coating layer obtained in Example 1 has a thickness of about -〇θμ
/C composite material in argon gas atmosphere
or:, to obtain a disk-shaped C/C composite material having a carbon coating layer. A friction test was conducted in the same manner as in Example 1.

その結果をgt表に示す。The results are shown in the gt table.

比較例コ 実施例1で得られた炭素繊維の体積含有率(vf)がよ
Oチの成型体を窒素ガス雰囲気中7000℃で焼成して
C70初、合材を得、次いで実施例1と同様の条件でC
VD処理してc7c複合材中に存在する空隙に熱分解炭
素を充填するように緻密化処理を行ない緻密化したC/
C複合材を得た。このC/C複合材をアルゴンガス雰囲
気中/A00Cで熱処理した後1円板状に加工し、摩擦
面が炭素繊維とマ) IJラックス分解炭素からなる嵩
密!/、jg−/cfAのC/C複合材を得た。これを
実施例/と同様圧して摩擦試験を行ない、その結果をv
J1表に示した。
Comparative Example The molded body obtained in Example 1 with a carbon fiber volume content (vf) of 0 was fired at 7000°C in a nitrogen gas atmosphere to obtain a composite material of C70, and then Example 1 and C under similar conditions
C7C is densified by VD treatment and densification treatment is performed to fill the voids existing in the C7C composite with pyrolytic carbon.
A C composite material was obtained. After heat-treating this C/C composite material at A00C in an argon gas atmosphere, it is processed into a disk shape, and the friction surface is made of carbon fiber and ma) A bulky material made of IJ Lux decomposed carbon! /, jg-/cfA C/C composite material was obtained. This was subjected to a friction test by applying pressure in the same manner as in Example/, and the results were
It is shown in Table J1.

(参考写真の簡単な説F!4) (375倍)であり、第2図は比較例コで得られたc/
c複合材の表面部分を示した走査型電子顕微鏡写真(3
り5倍)である。
(Simple theory of reference photo F!4) (375 times), and Figure 2 shows c/
c Scanning electron micrograph showing the surface part of the composite material (3
5 times).

手続ネ市正書(方式) 昭和60年1り月/タ日Procedure Ne City Official Book (Method) January 1985/Ta day

Claims (4)

【特許請求の範囲】[Claims] (1)炭素繊維強化炭素複合材の表面に、化学蒸着法に
より形成された炭素被覆層を有することを特徴とする炭
素繊維強化炭素複合材。
(1) A carbon fiber-reinforced carbon composite material characterized by having a carbon coating layer formed by chemical vapor deposition on the surface of the carbon fiber-reinforced carbon composite material.
(2)炭素被覆層が、ハロゲン化炭化水素を含有するガ
スを400℃以上の温度で熱分解させることによつて形
成されたものであることを特徴とする特許請求の範囲第
1項記載の炭素繊維強化炭素複合材。
(2) The carbon coating layer is formed by thermally decomposing a gas containing a halogenated hydrocarbon at a temperature of 400°C or higher. Carbon fiber reinforced carbon composite material.
(3)炭素被覆層の厚さが、20μ以上であることを特
徴とする特許請求の範囲第1項記載の炭素繊維強化炭素
の複合材。
(3) The carbon fiber-reinforced carbon composite material according to claim 1, wherein the carbon coating layer has a thickness of 20 μm or more.
(4)炭素繊維強化炭素複合材が、炭素繊維の体積含有
率が10〜70%である炭素繊維とマトリックス物質か
らなる成型体を炭化焼成して得られたものであることを
特徴とする特許請求の範囲第1項記載の炭素繊維強化炭
素複合材。
(4) A patent characterized in that the carbon fiber-reinforced carbon composite material is obtained by carbonizing and firing a molded body made of carbon fibers and a matrix material in which the volume content of carbon fibers is 10 to 70%. The carbon fiber reinforced carbon composite material according to claim 1.
JP60145988A 1985-07-03 1985-07-03 Carbon fiber reinforced carbon composite material Pending JPS627668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60145988A JPS627668A (en) 1985-07-03 1985-07-03 Carbon fiber reinforced carbon composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60145988A JPS627668A (en) 1985-07-03 1985-07-03 Carbon fiber reinforced carbon composite material

Publications (1)

Publication Number Publication Date
JPS627668A true JPS627668A (en) 1987-01-14

Family

ID=15397585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60145988A Pending JPS627668A (en) 1985-07-03 1985-07-03 Carbon fiber reinforced carbon composite material

Country Status (1)

Country Link
JP (1) JPS627668A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0251301A2 (en) * 1986-07-01 1988-01-07 Mitsubishi Kasei Corporation Carbon fiber-reinforced carbon composite material
JPH01188468A (en) * 1988-01-22 1989-07-27 Kobe Steel Ltd Carbon fiber-reinforced carbon composite material and its production
JP2011126776A (en) * 2009-12-16 2011-06-30 Messier Bugatti Method of fabricating friction member based on c/c composite
JP2013511465A (en) * 2009-11-23 2013-04-04 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー CNT-infused fibers in carbon-carbon composites
US9907174B2 (en) 2010-08-30 2018-02-27 Applied Nanostructured Solutions, Llc Structural energy storage assemblies and methods for production thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0251301A2 (en) * 1986-07-01 1988-01-07 Mitsubishi Kasei Corporation Carbon fiber-reinforced carbon composite material
JPH01188468A (en) * 1988-01-22 1989-07-27 Kobe Steel Ltd Carbon fiber-reinforced carbon composite material and its production
US5554354A (en) * 1988-01-22 1996-09-10 Kabushiki Kaisha Kobe Seiko Sho Carbon fiber-reinforced carbon composite material and process for producing the same
JP2013511465A (en) * 2009-11-23 2013-04-04 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー CNT-infused fibers in carbon-carbon composites
JP2011126776A (en) * 2009-12-16 2011-06-30 Messier Bugatti Method of fabricating friction member based on c/c composite
US9907174B2 (en) 2010-08-30 2018-02-27 Applied Nanostructured Solutions, Llc Structural energy storage assemblies and methods for production thereof

Similar Documents

Publication Publication Date Title
US9028914B2 (en) Method for manufacturing high-density fiber reinforced ceramic composite materials
JP2722198B2 (en) Method for producing carbon / carbon composite material having oxidation resistance
JPH0737345B2 (en) Carbon fiber reinforced carbon composite
US8268207B2 (en) Densification of C-C composites with pitches followed by CVI/CVD
US8003026B2 (en) Pitch-only densification of carbon-carbon composite materials
US20040155382A1 (en) Manufacture of carbon/carbon composites by hot pressing
US5882726A (en) Low-temperature densification of carbon fiber preforms by impregnation and pyrolysis of sugars
JPS627668A (en) Carbon fiber reinforced carbon composite material
JPH03150266A (en) Production of carbon/carbon composite material
US4929472A (en) Surface-coated SiC whiskers, processes for preparing the same, ceramic reinforced with the same, and process for preparing said reinforced ceramic
JPS60200860A (en) Manufacture of high strength acid-resistance carbon/carbon composite material
Marković Use of coal tar pitch in carboncarbon composites
Zhu et al. Fabricating 2.5 D SiCf/SiC composite using polycarbosilane/SiC/Al mixture for matrix derivation
EP0575748A1 (en) Self-adhesive carbonaceous grains and high density carbon artifacts derived therefrom
JPH0848509A (en) Production of carbonaceous porous body
JPH02111679A (en) Production of oxidation-resistant carbon fiber-reinforced carbon material
JP2607409B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
JPH0292886A (en) Production of carbon fiber-reinforced composite material having oxidation resistance
JPH0225686A (en) Heat insulating material for heating furnace
JP3058180B2 (en) Boron carbide-containing carbon fiber reinforced carbon composite material, method for producing the same, and hot press material using the same
KR950011212B1 (en) Caron composite material for friction article
JP2001048664A (en) Production of carbon fiber-reinforced carbon material
JPS6126563A (en) Manufacture of oxidation-resistant carbon fiber reinforced carbon material
Davies Mechanical and physical properties of low density carbon-carbon composites
JPS63182256A (en) Manufacture of carbon/carbon composite material