JPS6276490A - Control rod for nuclear reactor - Google Patents

Control rod for nuclear reactor

Info

Publication number
JPS6276490A
JPS6276490A JP60217585A JP21758585A JPS6276490A JP S6276490 A JPS6276490 A JP S6276490A JP 60217585 A JP60217585 A JP 60217585A JP 21758585 A JP21758585 A JP 21758585A JP S6276490 A JPS6276490 A JP S6276490A
Authority
JP
Japan
Prior art keywords
reactor
neutron absorption
rods
neutron
control rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60217585A
Other languages
Japanese (ja)
Inventor
徹 山本
衛 三瓶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Toshiba Corp
Original Assignee
Toshiba Engineering Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp, Toshiba Corp filed Critical Toshiba Engineering Corp
Priority to JP60217585A priority Critical patent/JPS6276490A/en
Publication of JPS6276490A publication Critical patent/JPS6276490A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Vibration Dampers (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は沸騰水型原子炉等の炉停止余裕の増大を図った
原子炉用制御棒に関覆る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a control rod for a nuclear reactor, such as a boiling water reactor, which increases the reactor shutdown margin.

〔発明の技術的昔日とその問題点〕[Technical past of invention and its problems]

一般に、沸騰水型原子炉には炉心周辺部を除いて、4体
の燃料集合体に1体の割で制御棒が設置され、出力分布
を制御している。第6図はこのように組合せた4体の燃
料集合体と1体の制御棒を横断面で示1゜即ち、1は多
数の燃料棒束1aと燃料棒束を囲むチャンネルボックス
1bから成る燃料集合体、2は中性子吸収棒3を束ねた
原子炉用制御棒である。
Generally, in a boiling water reactor, one control rod is installed in every four fuel assemblies, excluding the area around the core, to control the power distribution. FIG. 6 shows a cross section of four fuel assemblies and one control rod assembled in this way 1°, that is, 1 is a fuel rod consisting of a large number of fuel rod bundles 1a and a channel box 1b surrounding the fuel rod bundles. The assembly 2 is a control rod for a nuclear reactor in which neutron absorption rods 3 are bundled.

また、第7図は原子炉用制御棒の全体斜視構成を示づ。Further, FIG. 7 shows the overall perspective configuration of a control rod for a nuclear reactor.

原子炉用制御棒2は、中央構造材4に細長いU字状のシ
ース5を取付けて形成した複数個のウィング内に、多数
の中性子吸収棒3を装置眞して構成されている。中性子
吸収棒3はSUSから成る被覆管内にB4C等の中性子
吸収断面積の大きい物質(以下、中性子吸収材という)
を充填し、被覆管内に一定間隔で粉末移動防止用の仕切
法を配置して構成されている。また、前記中性子吸収棒
3(ま同一長さのものが各ウィング内に、同一本数づつ
配列されている。
The control rod 2 for a nuclear reactor is constructed by installing a large number of neutron absorption rods 3 within a plurality of wings formed by attaching an elongated U-shaped sheath 5 to a central structural member 4. The neutron absorption rod 3 has a material with a large neutron absorption cross section such as B4C (hereinafter referred to as neutron absorption material) in the cladding tube made of SUS.
The cladding tube is filled with partitions arranged at regular intervals to prevent powder movement. Further, the same number of neutron absorption rods 3 (of the same length) are arranged in each wing.

中性子吸収棒3中の84Cは中性子を吸収して中性子吸
収能力を次第に失い、またその間10sが中性子と反応
して1−10ガスを発生し被覆管内の圧力を上昇させる
。以下、中性子吸収能力によって定まる寿命を核的寿命
といい、管内ガス圧によって定まる寿命を癲械的寿命と
いう。
84C in the neutron absorption rod 3 absorbs neutrons and gradually loses its neutron absorption ability, and during that time 10s reacts with the neutrons to generate 1-10 gas and increase the pressure inside the cladding tube. Hereinafter, the lifetime determined by the neutron absorption capacity will be referred to as the nuclear lifetime, and the lifetime determined by the pipe gas pressure will be referred to as the mechanical lifetime.

沸騰水型原子炉において特有なものの1つとして中性子
増倍率を減少させる0の反応度があり、これによって原
子炉が安全に、かつ安定に運転されている。この負の反
応度は炉内の状態が変化することににって生じるもので
あり、減速材である水の温度変化によるもの(減速材湯
境反応度、ボイド反応泣)、燃料棒の温度変化によるも
の(ドツプラー反応度)がある。減速材の編成変化によ
゛ るものは、減速材の密度が減少し、さらに減速材の
飽和4度に達すると減速材の中に気泡が発生し、温度上
界に伴って気泡の割合が増加する。この減速材の密度の
減少と減速材中の気泡の増加は原子炉内の中性子の核分
裂の割合(これを中性子増倍率という)を減少させる方
向に働く。燃料棒の温度変化によるものは、燃料棒の温
度が上昇すると、原子核の熱運動が激しくなり、中性子
を吸収しゃすい原子核と中性子との相対速麿が大きくな
り、中性子の吸収される数が増加し、原子炉内の中性子
の核分裂の割合を減少さμ゛ることになる。
One of the unique features of boiling water nuclear reactors is a zero reactivity that reduces the neutron multiplication factor, which allows the reactor to operate safely and stably. This negative reactivity occurs due to changes in the conditions inside the reactor, including changes in the temperature of the moderator water (moderator hot water reactivity, void reaction), and fuel rod temperature changes. There is a change (Doppler reactivity). Due to changes in the composition of the moderator, the density of the moderator decreases, and when the saturation of the moderator reaches 4 degrees, bubbles are generated in the moderator, and the proportion of bubbles increases as the temperature rises. To increase. This reduction in the density of the moderator and the increase in the number of bubbles in the moderator work to reduce the rate of neutron fission within the reactor (this is called the neutron multiplication factor). Temperature changes in the fuel rods are caused by increases in the temperature of the fuel rods, which intensifies the thermal motion of the atomic nuclei, increases the relative velocity between the neutron-absorbing atomic nuclei, and increases the number of neutrons absorbed. This will reduce the rate of neutron fission in the reactor.

このにうに炉内の温度が上昇すると、中性子増倍率は逆
に減少し、温度上昇を下げる方向に動くので負の反応度
という。原子炉内の温度が上昇すると負の反応度により
、中性子増倍率は減少するが、原子炉内の温度が下がる
と逆に負の反応度がな(なる方向となるので、中性子増
倍率は増加づ゛る。したがって、沸騰水型原子炉の最低
温度である水の温度20℃で最も中性子増倍率が大きく
なり、このとき制御aIl棒が全挿入された状態ぐ炉心
が暴走することのないように中性子の従来の炉内での漏
れを考えた中性子増倍率(実効増倍率)を1゜0未満に
する必要がある。実際の炉心では安全的に余裕を見込ん
で制御棒全挿入から、最大反応度価値を持つ制御棒1本
が完全に引扱かれた状態においても、炉心の実効増倍率
が常に0.99未満になるようにしている。また、この
ときの実効増倍率を1.0から差し引いたものを炉停止
余裕という。
When the temperature inside the reactor increases in this way, the neutron multiplication factor decreases and moves in the direction of lowering the temperature rise, which is called negative reactivity. When the temperature inside the reactor rises, the neutron multiplication factor decreases due to negative reactivity, but when the temperature inside the reactor falls, the negative reactivity becomes negative, so the neutron multiplication factor increases. Therefore, the neutron multiplication factor is highest at a water temperature of 20°C, which is the lowest temperature in a boiling water reactor. The neutron multiplication factor (effective multiplication factor), which takes into account the leakage of neutrons inside a conventional reactor, must be kept below 1°0.In an actual reactor core, the maximum Even when one control rod with reactivity value is completely handled, the effective multiplication factor of the core is always kept below 0.99.In addition, the effective multiplication factor at this time is set to 1.0. The amount subtracted from this is called the reactor shutdown margin.

沸騰水型原子炉においては、炉心底部からザブクール状
態にある単相流が流入し、炉内の発熱によりボイドが発
止し、炉心上部では70%もボイドが発生する。そのた
め、炉心上部と下部を比べた場合下部の方が中性子の熱
化が進み、沸騰水型原子炉では中性子ピークの位置が下
部で大きくなり、出力分布も同様の挙動をする。このよ
うに、炉心上部は運転時のボイド率が高(出力密度がや
や低くなるため、核分裂性物質であるU−235の残存
量が比較的多く、またボイド率が烏いことからPu−2
39の生成率が高くなる。
In a boiling water reactor, a subcooled single-phase flow flows from the bottom of the reactor core, and voids occur due to heat generation within the reactor, and 70% of the voids occur in the upper part of the reactor core. Therefore, when comparing the upper and lower parts of the reactor core, the thermalization of neutrons is more advanced in the lower part, and in boiling water reactors, the position of the neutron peak becomes larger in the lower part, and the power distribution behaves in the same way. In this way, the upper part of the core has a high void ratio during operation (the power density is somewhat low, so there is a relatively large amount of fissile material U-235 remaining, and the void ratio is high, so Pu-2
39 production rate increases.

そのため、原子炉の運転後炉心上部の核分裂性物質の濃
度が高くなり、その部分の原子炉停止余裕が低下するの
である。
Therefore, after the reactor is in operation, the concentration of fissile material in the upper part of the reactor core increases, reducing the margin for reactor shutdown in that area.

従来の燃料では、ウランの濃縮度が低かったため、従来
の制御棒でも炉停止余裕を大きくすることがでさたが、
時代の変化に伴って、原子炉の運転期間の長期化、燃料
の経済性等の理由がら、ウランの濃縮度が増加づる傾向
にあり、したがって、これにより炉停止余裕が小さくな
ってきている。
With conventional fuel, the enrichment of uranium was low, so it was possible to increase the margin for reactor shutdown even with conventional control rods.
As times change, the enrichment of uranium tends to increase due to reasons such as the lengthening of reactor operating periods and fuel economy, and as a result, the margin for reactor shutdown is decreasing.

〔発明の目的〕[Purpose of the invention]

本発明はさのJ:うな事情に鑑みてなされたもので、従
来の制御棒に比較して炉停止余裕を増大化することがで
き、それにより原子炉運転期間の長期化、稼動率向上等
が図れる原子炉用制御棒を提供することを目的とする。
The present invention was made in view of the above circumstances, and can increase reactor shutdown margin compared to conventional control rods, thereby extending the reactor operation period and improving the operating rate. The purpose is to provide a control rod for a nuclear reactor that can achieve this.

(発明の概要) 上記の目的を達成するために、本発明は中性子吸収物質
を金属製被覆管に密封してなる中性子吸収棒をウィング
内に配列した原子炉用制御棒にd3いて、前記中性子吸
収棒の本数を、炉停止−余裕の軸方向分布が小さくなる
部位では多くし、また炉停止余裕の軸方向分布が大ぎく
なる部位では少なくしたことを特徴とづるものである。
(Summary of the Invention) In order to achieve the above object, the present invention provides a system in which neutron absorbing rods made by sealing a neutron absorbing substance in a metal cladding tube are installed in a nuclear reactor control rod d3 arranged in a wing, and the neutron absorbing rod is The feature is that the number of absorption rods is increased in areas where the axial distribution of the reactor shutdown margin is small, and is decreased in areas where the axial distribution of the reactor shutdown margin is large.

〔発明の実施例〕 以下、本発明の一実施例を第1図〜第5図を参照して本
発明の詳細な説明9゛る。なJ3、制御211棒自体の
概略構成は従来のものと略同様であるがら第6図J′3
よび第7図もそのまま参照する。
[Embodiments of the Invention] Hereinafter, one embodiment of the present invention will be described in detail with reference to FIGS. 1 to 5. Although the general structure of J3 and the control 211 rod itself is almost the same as that of the conventional one,
Also refer to FIG.

第1図は原子か用制御棒に使用する中性子吸収棒3の配
列を示したしのである。原子炉用制御棒の4つのウィン
グのうら1つのウィング内の中性子吸収棒3の配列構成
を示している。なお、他の3つのウィング内の中性子吸
収棒3の配列構成も同一のものである。
Figure 1 shows the arrangement of neutron absorption rods 3 used as atomic control rods. The arrangement configuration of neutron absorption rods 3 in one of the four wings of a nuclear reactor control rod is shown. Note that the arrangement configuration of the neutron absorption rods 3 in the other three wings is also the same.

即ち、中性子吸収棒3は2種類の長さをもって構成され
、各々の中性子吸収棒3の長さは下記の如く決定される
That is, the neutron absorption rod 3 is configured to have two different lengths, and the length of each neutron absorption rod 3 is determined as follows.

第5図に中性子吸収棒本数と、炉心の実効増倍率の減少
値の関係の公知の実験例を示す。この図から、中性子吸
収棒本数と実効増倍率の減少値が比例関係にあることが
わかる。
FIG. 5 shows a known experimental example of the relationship between the number of neutron absorption rods and the reduction value of the effective multiplication factor of the core. From this figure, it can be seen that there is a proportional relationship between the number of neutron absorption rods and the reduction value of the effective multiplication factor.

中性子吸収棒3の配列の仕方について説明すると以下の
通りである。
The method of arranging the neutron absorption rods 3 will be explained as follows.

第2図(△)はり1方向に一様な反応度分布の従来の制
御棒を用いて原子炉を運転した時の原子炉停止余裕(未
臨界度)の炉心軸方向分布を示している。この図から、
未臨界度は炉心上部において大きく、上りtJ、り若干
下がった位置て・1μ小であることがわかる。前記した
ように炉心軸長りとしたとき、下から1/2L−Lの炉
心上部は運転時のボイド率が高く出力密度がやや低くな
るため、核分裂性物質であるU−235の残存迅が比較
的多く、またボイド率が高いことがらPu−239の生
成率が高くなる。そのため、原子炉の運転後の炉心上部
の核分裂物質の濃度が高くなり、その部分の炉停止余裕
が低下するのである。
FIG. 2 (Δ) shows the axial distribution of the reactor shutdown margin (subcriticality) when the reactor is operated using conventional control rods with a uniform reactivity distribution in one direction. From this figure,
It can be seen that the degree of subcriticality is large in the upper part of the core, and is 1μ smaller at a position slightly lower than the upstream tJ. As mentioned above, when the core axis length is set, the upper part of the core, which is 1/2 L-L from the bottom, has a high void ratio during operation and has a slightly low power density, so the remaining time of U-235, which is a fissile material, is low. Since the amount of Pu-239 is relatively large and the void rate is high, the production rate of Pu-239 is high. As a result, the concentration of fissile material in the upper part of the reactor core increases after the reactor is in operation, reducing the margin for reactor shutdown in that area.

この実施例においては、上記したような炉心軸方向未臨
界度分布を考慮して、中性子吸収棒3の本数と長さを定
める。
In this embodiment, the number and length of the neutron absorption rods 3 are determined in consideration of the subcriticality distribution in the axial direction of the core as described above.

すなわち、第2図(C)に示すように同図(A)の未臨
界度軸方向分布曲線を粗く近似した折線状に、中性子吸
収棒3の割合を定める。即ち、未臨界度(炉停止余裕)
が小さい部分の中−性子吸収棒本数を増やしている。
That is, as shown in FIG. 2(C), the proportion of the neutron absorption rods 3 is determined in the form of a broken line that roughly approximates the subcriticality axial distribution curve of FIG. 2(A). In other words, subcriticality (reactor shutdown margin)
The number of neutron absorption rods in the small part is increased.

第1図において、下端1/2L〜Lの中性子吸収棒3の
本数は第2図(C)の折線に合うように本数を定めてい
る。
In FIG. 1, the number of neutron absorption rods 3 at the lower end 1/2L to L is determined to match the broken line in FIG. 2(C).

ここで、第2図(C)の折線のように増加した第1図の
中性子吸収棒3の断面図を第4図に30で示す。
Here, a cross-sectional view of the neutron absorption rod 3 of FIG. 1, which has increased as shown by the broken line in FIG. 2(C), is shown at 30 in FIG.

第4図の3aで示されるように第1図の増加した中性子
吸収棒3の1 / 2 L−1−に相当する部分は中性
子吸収H3arを含み、それ以外の部分は減速材である
水が自由に流出可能な側面に小さな穴を有した中空管3
8″である。
As shown by 3a in Fig. 4, the part corresponding to 1/2 L-1- of the increased neutron absorption rod 3 in Fig. 1 contains neutron absorption H3ar, and the other part contains water, which is a moderator. Hollow tube 3 with a small hole on the side that can flow freely
It is 8″.

上記のように中性子吸収棒本数ににす、軸方向反応度分
布を調整しであるので、この実施例に係る原子、炉用制
御棒2によれば、?t52図(B)の実tfAぐ示づよ
うに、未臨界度(炉停止り余裕)の軸方向分布はほぼ一
様とすることができる。
As mentioned above, since the axial reactivity distribution is adjusted depending on the number of neutron absorption rods, according to the atomic reactor control rod 2 according to this embodiment, ? As shown in the actual tfA in the t52 diagram (B), the axial distribution of the subcriticality (furnace shutdown margin) can be made almost uniform.

現存の沸底水型原子炉の原子炉用制御棒におりる中性子
吸収棒3の増加可能な本数は、燃料集合体1ど原子炉用
制御棒2の配列構成から約4木である。したがって、の
沸11!!水型原子炉に木光明を適用り−る場合は、こ
の範囲内で中性子吸収棒の増減を調整づることかできる
The number of neutron absorption rods 3 that can be added to the reactor control rods of existing boiling water reactors can be increased to about 4, based on the arrangement of the fuel assembly 1 and the reactor control rods 2. Therefore, Noboru 11! ! When applying Mokkomei to a water reactor, the number of neutron absorption rods can be adjusted within this range.

第3図は他の実施例を示したもので、第3図(A)は第
2図(A)と同一の軸方向に一様な反応度分布の従来の
制御棒を用いて原子炉を運転した時の原子炉の未臨界度
(炉停止余裕)の炉心軸方向分布を示している。第3図
(C)は同図(A)の未臨界度軸方向分布曲線をm2図
(C)よりb細く近似した折線状に中性子吸収棒3の割
合を定めている。
Figure 3 shows another embodiment, and Figure 3 (A) shows a nuclear reactor using conventional control rods with uniform reactivity distribution in the same axial direction as in Figure 2 (A). It shows the axial distribution of subcriticality (reactor shutdown margin) of the reactor during operation. In FIG. 3(C), the ratio of the neutron absorption rods 3 is defined in a broken line shape that approximates the subcriticality axial distribution curve in FIG. 3(A) to be thinner by b than in the m2 diagram (C).

ずなわら、第2図(C)では中性子吸収棒3の種類を2
種類としたものを、第3図(−C)では3種類に増やし
ている。
However, in Figure 2 (C), the type of neutron absorption rod 3 is 2.
The number of types has been increased to three in Fig. 3 (-C).

つまり、第4図に38’、38″で示すように、第3図
(C)の折線の中性子吸収棒増加本数に相当する1/2
L−L、1/3L−1に中性子吸収材3a’、3a″を
含み、それ以外の部分を中空管3a’、3a″とした2
種類の中性子吸収棒を増やし、3種類としている。
In other words, as shown at 38' and 38'' in Figure 4, 1/2 corresponds to the increased number of neutron absorption rods on the broken line in Figure 3 (C).
L-L, 1/3L-1 contains neutron absorbers 3a', 3a'', and the other parts are hollow tubes 3a', 3a''2
The number of types of neutron absorption rods has been increased to three types.

上記のように中性子吸収棒3の本数の軸方向分布を第3
図(Δ)の未臨界度の軸方向分布に、より正確に近似し
ているので、第3図(B)の実線で示ずように未臨界e
、(炉停止余裕)の軸方向分布はさらに一様とすること
ができる。
As mentioned above, the axial distribution of the number of neutron absorption rods 3 is
Since it more accurately approximates the axial distribution of subcriticality in Figure 3(Δ), the subcriticality e as shown by the solid line in Figure 3(B)
, (furnace shutdown margin) can be made more uniform in the axial direction.

なお、本発明は上記実施例のみに限定されない。Note that the present invention is not limited to the above embodiments.

例えば中性子吸収棒3の炉心軸方向の本数の種数を3種
類以上の多種類に分けて、炉心軸方向の中性子吸収棒3
の配列構成を決定することもできる。
For example, the number of neutron absorption rods 3 in the core axis direction is divided into three or more types, and the number of neutron absorption rods 3 in the core axis direction is divided into three or more types.
It is also possible to determine the array configuration of

また、前記実施例の中性子吸収棒3の増加位置を炉心軸
方向の上端に限らず、未臨界度の炉心軸方向分布に倒せ
て、炉心軸方向の中央部、または下端にて、中性子吸収
棒3の増加を行なってもJ:い。さらに、未臨界度の大
ぎな炉心軸り向部位において中性子吸収棒の本数を減少
させて−しよい。
In addition, the position where the neutron absorption rods 3 are increased is not limited to the upper end in the axial direction of the reactor core, but can be adjusted to a subcritical distribution in the axial direction of the reactor core, and the neutron absorption rods 3 can be installed at the center or lower end in the axial direction of the reactor core. Even if you increase it by 3, it will not work. Furthermore, the number of neutron absorption rods may be reduced in a region along the core axis where the degree of subcriticality is large.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の原子炉用制御棒によれば
、原子炉の炉停止余裕の軸方向分布が小さくなる部位で
は中性子吸収棒を多くし、また炉停止余裕の軸方向分布
が大きくなる部位では、中性子吸収棒を少なくしている
ので、従来の制御棒に比べて炉停止余裕を増大化し、ウ
ランの高濃縮度化・原子炉の運転期間の長期化にも十分
対応でき、そのため稼動率を向上させることができる。
As explained above, according to the nuclear reactor control rod of the present invention, the number of neutron absorbing rods is increased in the region where the axial distribution of the reactor shutdown margin is small, and the axial distribution of the reactor shutdown margin is large. Since there are fewer neutron absorption rods in the control rods, the reactor shutdown margin is increased compared to conventional control rods, and it is sufficient to cope with higher uranium enrichment and longer reactor operating periods. Operation rate can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を承り中性子吸収棒の配置図
、第2図(△)、(B)、(C)は第1図にLl<作用
を示J−特性線図、第3図(△)。 (B)、(C)は本発明の他の実施例に基く作用を示寸
特性線図、第4図は前記各実施例に係る中性子吸収棒の
構成を示V説明図、第5図は中性子吸収棒本数と炉心の
実効増倍率の減少値の関係を示すグラフ、第6図は沸騰
水型原子炉の燃r(集合体および制御棒ブレードの横面
図、第7図はR,IJ御棒全体の斜視図である。 2・・・原子炉用制御棒、3.3a’ 、3a″・・・
中性子吸収棒。 出願人代理人   波 多 野   久毛 4 回 中セー千吸駅勝本、敷 も 5 図 毫 6 図
Fig. 1 is a layout diagram of a neutron absorption rod according to an embodiment of the present invention, Fig. 2 (△), (B), and (C) are J-characteristic diagrams showing Ll< action in Fig. Figure 3 (△). (B) and (C) are dimensional characteristic diagrams showing the functions based on other embodiments of the present invention, FIG. A graph showing the relationship between the number of neutron absorption rods and the reduction value of the effective multiplication factor of the core. Figure 6 is a side view of the fuel r (assembly and control rod blades) of a boiling water reactor. Figure 7 is a side view of the R, IJ It is a perspective view of the entire control rod. 2... Nuclear reactor control rods, 3.3a', 3a''...
Neutron absorption rod. Applicant's agent Kuge Hatano 4th Chuse Sensu Station Katsumoto, Shikimo 5 Illustration 6 Illustration

Claims (1)

【特許請求の範囲】[Claims] 1、中性子吸収物質を金属製被覆管に密封してなる中性
子吸収棒をウィング内に配列した原子炉用制御棒におい
て、前記中性子吸収棒の本数を、炉停止余裕の軸方向分
布が小さくなる部位では多くし、また炉停止余裕の軸方
向分布が大きくなる部位では少なくしたことを特徴とす
る原子炉用制御棒。
1. In a nuclear reactor control rod in which neutron absorption rods made by sealing a neutron absorption material in a metal cladding tube are arranged in a wing, the number of the neutron absorption rods is adjusted to the position where the axial distribution of the reactor shutdown margin is small. A control rod for a nuclear reactor, characterized in that the control rod is increased in areas where the axial distribution of the reactor shutdown margin becomes large, and decreased in areas where the axial distribution of the reactor shutdown margin becomes large.
JP60217585A 1985-09-30 1985-09-30 Control rod for nuclear reactor Pending JPS6276490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60217585A JPS6276490A (en) 1985-09-30 1985-09-30 Control rod for nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60217585A JPS6276490A (en) 1985-09-30 1985-09-30 Control rod for nuclear reactor

Publications (1)

Publication Number Publication Date
JPS6276490A true JPS6276490A (en) 1987-04-08

Family

ID=16706588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60217585A Pending JPS6276490A (en) 1985-09-30 1985-09-30 Control rod for nuclear reactor

Country Status (1)

Country Link
JP (1) JPS6276490A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218893A (en) * 1986-03-20 1987-09-26 株式会社日立製作所 Control rod
JPS63204194A (en) * 1987-02-20 1988-08-23 株式会社日立製作所 Control rod

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218893A (en) * 1986-03-20 1987-09-26 株式会社日立製作所 Control rod
JPS63204194A (en) * 1987-02-20 1988-08-23 株式会社日立製作所 Control rod

Similar Documents

Publication Publication Date Title
JP3428150B2 (en) Light water reactor core and fuel assemblies
EP0204288B1 (en) Fuel assembly
US3053743A (en) Method of making a compartmented nuclear reactor fuel element
JPS60192294A (en) Non-deceleration nuclear reactor
US5265139A (en) Fuel assembly
EP0196655A1 (en) Fuel assembly for nuclear reactor
JPS6276490A (en) Control rod for nuclear reactor
JP2003222694A (en) Light water reactor core, fuel assembly, and control rod
Afanasieva et al. The characteristics of the RBMK core
JP6588155B2 (en) Fuel assemblies and reactor cores loaded with them
JPS60201284A (en) Fuel aggregate
JP2007192784A (en) Channel box, fuel body, fuel assembly, and method of assembling fuel assembly
KR20100076464A (en) Nuclear fuel grid assembly with hydraulically balanced mixing vane pattern
JP3031644B2 (en) Fuel assemblies and cores
JP2022006420A (en) Boiling water reactor
JP2509625B2 (en) Core structure of fast breeder reactor
JPS6247115Y2 (en)
JP2023115583A (en) Boiling-water reactor and fuel assembly
JPS6353490A (en) Nuclear fuel aggregate
Nakagawa et al. Status of axial heterogeneous liquid-metal fast breeder reactor core design studies and research and development
JPS63293494A (en) Boiling water reactor
JPH0527066A (en) Fuel assembly
JPS63172990A (en) Nuclear-reactor fuel aggregate
JPH026784A (en) Fuel assembly for nuclear reactor
JP2002328192A (en) Fuel assembly