JPS6276320A - Logic circuit - Google Patents

Logic circuit

Info

Publication number
JPS6276320A
JPS6276320A JP60215326A JP21532685A JPS6276320A JP S6276320 A JPS6276320 A JP S6276320A JP 60215326 A JP60215326 A JP 60215326A JP 21532685 A JP21532685 A JP 21532685A JP S6276320 A JPS6276320 A JP S6276320A
Authority
JP
Japan
Prior art keywords
transistor
gate
level
type
transistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60215326A
Other languages
Japanese (ja)
Inventor
Shinobu Miyata
忍 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60215326A priority Critical patent/JPS6276320A/en
Publication of JPS6276320A publication Critical patent/JPS6276320A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0008Arrangements for reducing power consumption
    • H03K19/0013Arrangements for reducing power consumption in field effect transistor circuits

Abstract

PURPOSE:To suppress a through-current by providing an N type transistor (TR) whose gate and drain are connected between P type the 1st TR and N type the 2nd TR. CONSTITUTION:When the gate input signals of TRs QP1, QN1 changes from an H level to an L level, the potential of a gate S2 is a potential lower by the threshold value of the TR QN1 than the potential of the gate S1. When the signal S changes from an L level to an H level, the potential change of the gate S2 is faster than that of the gate S1, and since the timing when the TR QN2 is turned on by the gate S2 is faster than the timing when the TR QP2 is turned on by the gate S1, the time of simultaneous-on is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は論理回路に関し、特に貫通電流を抑止した論理
回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a logic circuit, and particularly to a logic circuit in which through-current is suppressed.

〔従来の技術〕[Conventional technology]

従来の論理回路は、$4図に示すように、電源vDDと
接地端子GND間に一導電型トランジスタ(本例ではP
型エンハンスメントトランジスタとする)QPl QP
□と、反対導電型トランジスタ(本例ではN型エンハン
スメントトランジスタとする)QN1QN2とをそれぞ
れ直列に接続したインバータを更に直列接続することに
より構成されている。
A conventional logic circuit has a transistor of one conductivity type (in this example, P
type enhancement transistor) QPl QP
□ and transistors of opposite conductivity type (in this example, N-type enhancement transistors) QN1QN2 are connected in series, and inverters are further connected in series.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の論理口んのDC的Δチ力作を考えると、
入力信号Sがl )4 Wレベル及びl L ルベルの
いずれの状態でも、トランジスタQ、1QN1のいずれ
か一方とQr’2 QN2のいずれか一力(は、必ずオ
フ状態となっており、電源VDDと接地端子GND間に
はDC的な径路がないため、電源電流は流れる事はない
Considering the above-mentioned conventional logic theory DC delta masterpiece,
Regardless of whether the input signal S is at the l )4 W level or the l L level, one of the transistors Q and QN1 and one of the transistors Qr'2 and QN2 are always in the off state, and the power supply VDD Since there is no DC path between the terminal and the ground terminal GND, no power supply current flows.

一力、AC的な動作を考えると、入力信号Sが1)1“
レベルかうI L lレベル又は”Llレベルから1H
ルベルに変化する場合、トランジスタQ、、QN、の出
力S3は、IHIレベルでもIILlレベルでもない中
間レベルとなるため、トランジスタQP□、QN2が同
時にオン状態となり、電源”DD−接地端子GND間に
パルス状に貫通電流工。、が流れる。
Considering AC-like operation, the input signal S is 1) 1"
From level to I L level or "Ll level to 1H
When the voltage changes to the level, the output S3 of the transistors Q, QN, becomes an intermediate level that is neither the IHI level nor the IILl level, so the transistors QP□ and QN2 are simultaneously turned on, and the voltage between the power supply "DD" and the ground terminal GND is The through current flows in a pulsed manner.

第5図に示す様に電源vDD−接地端子GND間にパル
ス状に貫通電流■。Nが流れることにより電源vDD及
び″!J、地端子G N Dにノイズを生じさせ、回路
の誤動作を起すことKなる。又消費′に力を増大させる
という欠点がある。
As shown in FIG. 5, there is a pulsed through current ■ between the power supply vDD and the ground terminal GND. The flow of N causes noise in the power supply vDD, ``!J, and ground terminal GND, causing malfunction of the circuit.Also, there is a drawback that power consumption increases.

本発明の目的は、貫通電流を抑止し、それによってノイ
ズをi′:i<’じ、泊費電力金少くするt、11埋回
路を提供す、乙ととilCち乙。
An object of the present invention is to provide an embedded circuit that suppresses through current, thereby reducing noise and reducing electricity costs.

〔問題点をf!イ決するyこめの手段〕本発明の6、;
d理回路(・よ、寛弛犀4子と接地端子との間に直列に
もi続さzL;そ−導電型の第1のトランジスタと反対
導を型の第2のトランジスタと、嵐保端子と接地端子と
の間に直列にかつ前記第1及び第2のトランジスタに並
列に接続される一導電型の第3のトランジスタと反対導
電型の第4のトランジスタとを含む論理回路において、
ゲートとドレインが接続された第5のトランジスタのソ
ースとドレインとを前記第1のトランジスタと第2のト
ランジスタとの間に接続しかつ第5のトランジスタのソ
ースとドレインとをそれぞれ前記第3及び第4のトラン
ジスタのゲートに接続したものである。
[f the problem! 6. Means for deciding] of the present invention;
A circuit is also connected in series between the loose rhinoceros and the ground terminal; a first transistor of the conductivity type, a second transistor of the opposite conductivity type, and a storm protection circuit. A logic circuit including a third transistor of one conductivity type and a fourth transistor of the opposite conductivity type connected in series between a terminal and a ground terminal and in parallel to the first and second transistors,
The source and drain of a fifth transistor whose gate and drain are connected are connected between the first transistor and the second transistor, and the source and drain of the fifth transistor are connected to the third and drain transistors, respectively. This is connected to the gate of transistor No. 4.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は、本発明の第1の実施例の回路図である。FIG. 1 is a circuit diagram of a first embodiment of the present invention.

この実施例の回路は、第4図に示した従来の回路に対し
て、P型の第1のトランジスタQP□とN型の第2のト
ランジスタQNIの間にゲートとドレインが接続された
N型の第5のトランジスタQN3を接続し、第5のトラ
ンジスタQN3のゲートS7をP型の第3のトランジス
タQP□のゲートに、第2のトランジスタQN□のソー
スをN型の第4のトランジスタQN2のゲートS、に接
続したものである。
The circuit of this embodiment differs from the conventional circuit shown in FIG. 4 in that it is an N-type transistor whose gate and drain are connected between a P-type first transistor QP , the gate S7 of the fifth transistor QN3 is connected to the gate of the P-type third transistor QP□, and the source of the second transistor QN□ is connected to the N-type fourth transistor QN2. It is connected to gate S.

トランジスタQP□及びQN□のゲート入力信号Sが“
HalレベルらILルベルに変わる場合、ゲートS、の
電位はゲートSIの電位に対して第1のトランジスタQ
N工のしきい電圧■t11だげ低い電位となるため、A
C的にはゲートS、の電位変化はゲートSlに対して遅
れることになる。従って、ゲートS、により第4のトラ
ンジスタQN2がオン状居忙ンするタイミングが、ゲー
トS、により第3のトランジスタQp2がオフ状態とな
る タイミングに対し、で遅れ、その結果トランジスタ
QP□及びQN2が同時にオン状態となる時間t。N 
I2短くなる。
The gate input signal S of transistors QP□ and QN□ is “
When changing from the Hal level to the IL level, the potential of the gate S is higher than that of the first transistor Q with respect to the potential of the gate SI.
The threshold voltage of N-type ■ t11 is a low potential, so A
From a C point of view, the change in potential of the gate S lags behind that of the gate Sl. Therefore, the timing at which the fourth transistor QN2 is turned on by the gate S is delayed by the timing at which the third transistor Qp2 is turned off by the gate S, and as a result, the timing at which the fourth transistor QN2 is turned on by the gate S is delayed by . The time t when the state is simultaneously turned on. N
I2 becomes shorter.

入力4R”5 Sが、”■、ルベルから“1−16レベ
ルに変わる包k(よ、AC的には、ゲートS2の電位変
化はゲートS、Vこ対して早くなり、ゲートS2により
トランジスタQN2がオフ状態となるタイミングがゲー
トSIによりトランジスタQ1,2が」ン状態となるタ
イミングに対して早くなるため、同様にt。Nは短くな
る。従って、ton  の間に流れる貫通電流IoN 
は極めて少なくなる。
Input 4R"5S changes from "■, level to "1-16 level" (In AC terms, the potential change of gate S2 is faster than gates S and V, Since the timing when transistors Q1 and Q2 are turned off is earlier than the timing when transistors Q1 and Q2 are turned on due to gate SI, t.N is similarly shortened. Therefore, the through current IoN flowing during ton
becomes extremely small.

ゲートS、及びS2に分ける信号のAC的なタイミング
のずれはゲートS、及び8.における信号の立上シ時間
tr 、立下シ時間tf とほぼ等しいため、論理回路
の動作速度は、はとんど低下することはない。
The AC timing deviation of the signals divided into gates S and S2 is the difference between gates S and 8. Since the rising time tr and the falling time tf of the signal are approximately equal to each other, the operating speed of the logic circuit does not decrease at all.

DC的にはトランジスタQP□及びQN2の一方はゲー
1−8..S、のいずれかで必ずオフ状態となるため、
DC的な動作は従来の論理回路と同じである。。
In terms of DC, one of the transistors QP□ and QN2 has a gate of 1-8. .. Since it is always in the off state in either S,
DC operation is the same as a conventional logic circuit. .

上記実施例では第5のトランジスタQN3にN型トラン
ジスタを用いたが、P型トランジスタを用いても全く、
同様に本発明を適用できることは言うまでもな(八。
In the above embodiment, an N-type transistor is used as the fifth transistor QN3, but even if a P-type transistor is used, the
It goes without saying that the present invention can be applied in the same way (8.

第2図(1本発明の第2の実施例の回路図である。FIG. 2 (1) is a circuit diagram of a second embodiment of the present invention.

この第2の実施例は、トランジスタQP2QN2を直接
接続せずにゲートとドレインが接続されグこN型トラン
ジスタQN4’ff介して接続した構造にしている。こ
れにより、前述した様にタイミングをずらした信号01
0.が出力として得られるので、この回路を、接続して
行くことにより貫通電流工。、を抑止した大規模な論理
回路が得られる。
This second embodiment has a structure in which the transistors QP2QN2 are not directly connected, but have their gates and drains connected via an N-type transistor QN4'ff. As a result, as mentioned above, the signal 01 whose timing is shifted
0. is obtained as the output, so by connecting this circuit, you can create a through current. , it is possible to obtain a large-scale logic circuit that suppresses .

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、動作速度を低下
することなく、貫通電流I。Nを抑止する効果のある論
理回路が得られる。
As described above, according to the present invention, the through current I can be reduced without reducing the operating speed. A logic circuit that is effective in suppressing N can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれ本発明の第1及び第2の実
施例を示す回路図、第3図は本発明の第1の実施例の動
作を説明するための波形図、第4図は従来の論理回路の
一例を示す回路図、第5図は第4図に示す回路の動作を
説明するための波形図である。 GND・・・・・・接地端子、IoN・・・・・・貫通
電流、01゜0、・・・・・・出力信号、QNII Q
N2P QN3# QN4 ゛°゛°゛Nuエンハンス
メントートランジスタ、QP!QP□・・・・・・Pm
エンハンスメント拳トランジスタ、s、s’・・・・・
・入力信号、S1+ s、 l s、−・・・・−ゲー
ト、ton・・・両トランジスタの導通時間、vDD・
・・・・・電源。 第4図 時間T 時間下
1 and 2 are circuit diagrams showing the first and second embodiments of the present invention, respectively, FIG. 3 is a waveform diagram for explaining the operation of the first embodiment of the present invention, and FIG. 4 5 is a circuit diagram showing an example of a conventional logic circuit, and FIG. 5 is a waveform diagram for explaining the operation of the circuit shown in FIG. 4. GND...Ground terminal, IoN...Through current, 01゜0,...Output signal, QNII Q
N2P QN3# QN4 ゛°゛°゛Nu enhancement transistor, QP! QP□・・・・・・Pm
Enhancement fist transistor, s, s'...
・Input signal, S1+ s, l s, -...-gate, ton...conduction time of both transistors, vDD・
·····power supply. Figure 4 Time T Time bottom

Claims (1)

【特許請求の範囲】[Claims] 電源端子と接地端子との間に直列に接続された一導電型
の第1のトランジスタと反対導電型の第2のトランジス
タと、電源端子と接地端子との間に直列にかつ前記第1
及び第2のトランジスタに並列に接続される一導電型の
第3のトランジスタと反対導電型の第4のトランジスタ
とを含む論理回路において、ゲートとドレインが接続さ
れた第5のトランジスタのソースとドレインとを前記第
1のトランジスタと第2のトランジスタとの間に接続し
かつ第5のトランジスタのソースとドレインとをそれぞ
れ前記第3及び第4のトランジスタのゲートに接続した
ことを特徴とする論理回路。
A first transistor of one conductivity type and a second transistor of the opposite conductivity type are connected in series between the power supply terminal and the ground terminal, and the first transistor is connected in series between the power supply terminal and the ground terminal.
and a logic circuit including a third transistor of one conductivity type and a fourth transistor of the opposite conductivity type connected in parallel to the second transistor, the source and drain of the fifth transistor whose gate and drain are connected. is connected between the first transistor and the second transistor, and the source and drain of the fifth transistor are connected to the gates of the third and fourth transistors, respectively. .
JP60215326A 1985-09-27 1985-09-27 Logic circuit Pending JPS6276320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60215326A JPS6276320A (en) 1985-09-27 1985-09-27 Logic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60215326A JPS6276320A (en) 1985-09-27 1985-09-27 Logic circuit

Publications (1)

Publication Number Publication Date
JPS6276320A true JPS6276320A (en) 1987-04-08

Family

ID=16670444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60215326A Pending JPS6276320A (en) 1985-09-27 1985-09-27 Logic circuit

Country Status (1)

Country Link
JP (1) JPS6276320A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0435450U (en) * 1990-07-18 1992-03-25

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0435450U (en) * 1990-07-18 1992-03-25

Similar Documents

Publication Publication Date Title
US8378739B2 (en) Semiconductor chip
JP2009510847A (en) Semiconductor integrated circuit having a leakage current reduction mechanism
US7236002B2 (en) Digital CMOS-input with N-channel extended drain transistor for high-voltage protection
JPH0716158B2 (en) Output circuit and logic circuit using the same
Kursun et al. Node voltage dependent subthreshold leakage current characteristics of dynamic circuits
EP0606766A1 (en) Logic amplifier
JP2002164775A (en) Transistor circuit
US20070063738A1 (en) CMOS logic circuitry
US7218151B1 (en) Domino logic with variable threshold voltage keeper
JPS6276320A (en) Logic circuit
JP3490045B2 (en) Low noise buffer circuit
JPH07202677A (en) Cmos output buffer circuit
JP3565067B2 (en) Power supply circuit for CMOS logic
JP2621140B2 (en) Sense amplifier circuit
KR20150119618A (en) Logig gate using schmitt trigger circuit
JPH08181600A (en) Level shift circuit
KR20080045351A (en) Logic circuit having transistors of the same type and related application circuits
Amuthavalli et al. Revisited Design of Short-pulse Power Gated Approach of Subthreshold Leakage Reduction Technique in Combinational Circuits
Chavan et al. High performance and low power ONOFIC approach for VLSI CMOS circuits design
US8994415B1 (en) Multiple VDD clock buffer
Indira et al. Low Power Flip-Flop Design Using Tri-State Inverter Logic
JPS63283315A (en) Output buffer circuit
Huang et al. CMOS bulk input technique
KR100457343B1 (en) Double buffer circuit for low consumption current in uncertainty region
JPS6057724A (en) Semiconductor integrated circuit