JPS6275378A - Fuel aggregate - Google Patents

Fuel aggregate

Info

Publication number
JPS6275378A
JPS6275378A JP60217000A JP21700085A JPS6275378A JP S6275378 A JPS6275378 A JP S6275378A JP 60217000 A JP60217000 A JP 60217000A JP 21700085 A JP21700085 A JP 21700085A JP S6275378 A JPS6275378 A JP S6275378A
Authority
JP
Japan
Prior art keywords
fuel
centers
small
distance
fuel rods
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60217000A
Other languages
Japanese (ja)
Inventor
桜田 光一
ひろみ 石田
庄一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP60217000A priority Critical patent/JPS6275378A/en
Publication of JPS6275378A publication Critical patent/JPS6275378A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Inert Electrodes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、軽水型原子炉に用いられる燃料集合体に関づ
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fuel assembly used in a light water nuclear reactor.

[発明の技術的背景とその問題点] 近年、軽水型原子炉においては、発電コストの低下を目
指して運転サイクルの長期化および燃料の高燃焼度化が
計画され、多(の開発、研究が准められている。
[Technical background of the invention and its problems] In recent years, in light water nuclear reactors, plans have been made to lengthen the operation cycle and increase fuel burnup with the aim of reducing power generation costs, and many developments and research efforts have been made in light water reactors. It is agreed.

運転サイクルの長期化および高燃焼度化を達成するため
には、燃料中の初期ウラン−235濃縮度を高くする必
要があり、このような燃料を配置された原子炉では、炉
心の核的特性に種々の影響が生じる。
In order to achieve a longer operating cycle and higher burnup, it is necessary to increase the initial enrichment of uranium-235 in the fuel, and in a reactor equipped with such fuel, the nuclear characteristics of the core Various effects occur.

これらの影響のうち、現行炉心の核的設計基準に関して
最も厳しくなるものは、冷態時の十分な未臨界度(炉停
止余裕)の確保である。これは燃料中のウラン−235
濃縮度が高くなるために、水素対ウラン−235の原子
数比が減少し、減速材(軽水)密度変化による反応度係
数が大きくなるため、運転時と冷態時の増倍率の差が大
きくなり、冷態時の余剰反応度が大きくなるためである
Among these effects, the most stringent nuclear design standard for current reactor cores is ensuring sufficient subcriticality (reactor shutdown margin) during cold state. This is uranium-235 in fuel.
As the enrichment level increases, the atomic ratio of hydrogen to uranium-235 decreases, and the reactivity coefficient due to changes in moderator (light water) density increases, resulting in a large difference in the multiplication factor between operating and cold conditions. This is because the surplus reactivity in the cold state becomes large.

この対策として従来では、沸騰水型原子炉(BWR)で
はパーナブルポイズンの増量、加圧水型原子炉(PWR
)ではケミカルシムの濃度増加が考えられているが、炉
心特性や燃料経済性の面で不利になるという問題がある
Conventional countermeasures have been to increase the amount of pernable poison in boiling water reactors (BWRs) and to increase the amount of pernable poison in pressurized water reactors (PWRs).
), increasing the concentration of chemical shim is considered, but this poses a problem in terms of core characteristics and fuel economy.

[発明の目的] 本発明は、かかる従来の事情に対処してなされたもので
、高濃縮度の燃料を用いても、燃料経済性および炉心の
諸特性を悪化させることなく、十分な炉停止余裕を確保
することのできる燃料集合体を提供しようとするもので
ある。
[Object of the Invention] The present invention has been made in response to the above-mentioned conventional circumstances, and it is possible to sufficiently shut down the reactor without deteriorating fuel economy and various core characteristics even when using highly enriched fuel. The purpose is to provide a fuel assembly that can secure a margin.

[発明の概要] すなわち本発明は、円柱状の燃料ベレットが封入された
燃料棒が、正方もしくは六方格子状に規則正しく束ねら
れて構成される燃料集合体において、前記燃料棒を隣接
した燃料棒の中心間の距離を一定にして少数本束ねて小
単位を構成し、この小単位を複数個組合せ、かつ各々別
な前記小単位に属する隣接した前記燃料棒の中心間の距
離が前記小単位内の隣接した前記燃料棒の中心間の距離
より大とされていることにより、高濃縮度の燃料を用い
ても、燃料経済性および炉心の諸特性を悪化させること
なく、十分な炉停止余裕を確保することのできるように
したものである。
[Summary of the Invention] That is, the present invention provides a fuel assembly in which fuel rods in which cylindrical fuel pellets are enclosed are regularly bundled in a square or hexagonal lattice. A small unit is formed by bundling a small number of fuel rods with a constant distance between their centers, and a plurality of these small units are combined, and the distance between the centers of adjacent fuel rods belonging to different small units is within the small unit. Since the distance between the centers of adjacent fuel rods is greater than the distance between the centers of the adjacent fuel rods, even when using highly enriched fuel, sufficient reactor shutdown margin can be maintained without deteriorating fuel economy and various core characteristics. It was designed so that it could be secured.

[発明の実施例] 以下本発明の詳細を図面に示す実施例について説明する
[Embodiments of the Invention] Details of the present invention will be described below with reference to embodiments shown in the drawings.

第1図は本発明の一実施例の燃料集合体を示ずものであ
る。第1図に示す集合体は、チャンネルボックス1内に
、3行3列の燃料棒2、または燃料棒2と制御棒案内管
3との集まりからなる小単位が9個配置され、構成され
ている。また、別個の小単位にまたがる燃料棒ピッチP
2は小単位内の燃料棒ピッチP1の1.5倍とされてい
る。
FIG. 1 shows a fuel assembly according to an embodiment of the present invention. The assembly shown in FIG. 1 consists of nine small units each consisting of fuel rods 2 arranged in three rows and three columns, or a collection of fuel rods 2 and control rod guide tubes 3, arranged in a channel box 1. There is. Also, the fuel rod pitch P which spans separate small units
2 is 1.5 times the fuel rod pitch P1 within the small unit.

第2図は一定の燃料棒ピッチで正方格子状に配列した従
来の燃料集合体の体系を基準として、この実施例の燃料
集合体と同様に、2行2列、3行3列〜6行6列の燃料
棒からなる小単位を正方格子状に配列し、かつ小単位に
またがる燃料棒ピッチを小単位内の燃料棒ピッチより大
きくした体系の無限増倍率の変化を示すグラフで、縦軸
は無限増倍率、横軸は行、列数を示し、実f51Aは高
温運転時(軽水は286℃で40%蒸気体積率)の無限
増倍率、点線Bは冷態時(軽水は20℃で蒸気なし)を
示している。なお、小単位を有する体系では、基準とす
る一定ピッチの従来の体系と軽水と燃料の体積比が同じ
にされている。このため小単位の燃料棒行列数が増すに
つれて、小単位間の間隔も大きくなっている。
Figure 2 shows a system of 2 rows and 2 columns, 3 rows and 3 columns to 6 rows, similar to the fuel assembly of this embodiment, based on a conventional fuel assembly system arranged in a square lattice with a constant fuel rod pitch. This is a graph showing the change in the infinite multiplication factor of a system in which small units consisting of six rows of fuel rods are arranged in a square lattice, and the fuel rod pitch spanning the small units is larger than the fuel rod pitch within the small unit. is the infinite multiplication factor, the horizontal axis shows the number of rows and columns, the actual f51A is the infinite multiplication factor during high temperature operation (light water is 40% steam volume fraction at 286℃), and the dotted line B is the infinite multiplication factor when it is cold (light water is 20℃). (no steam). In addition, in the system having small units, the volume ratio of light water and fuel is set to be the same as in the conventional system with a constant pitch as a standard. For this reason, as the number of fuel rod rows and columns of small units increases, the spacing between the small units also increases.

第2図のグラフに示されるように、3行、3列配列の小
単位により構成されたこの実施例の燃料集合体では、高
温運転時の無限増倍率は従来型の燃料集合体に比べてほ
とんど低下しない。これに対して冷態時では、無限増倍
率は有効に減少しているので、十分な炉停止余裕を確保
することができる。これは軽水のπ度が高温運転時と冷
態時で大きく異なるため、冷態時において小単位間の軽
水領域における中性子吸収が大きく、高温時にはこの中
性子吸収が小さくなるためである。
As shown in the graph of Fig. 2, the fuel assembly of this embodiment, which is composed of small units arranged in 3 rows and 3 columns, has a higher infinite multiplication factor during high-temperature operation than the conventional fuel assembly. Almost no decline. On the other hand, in the cold state, the infinite multiplication factor is effectively reduced, so a sufficient margin for reactor shutdown can be ensured. This is because the π degree of light water differs greatly between high temperature operation and cold operation, so neutron absorption in the light water region between small units is large during cold operation, and this neutron absorption is small at high temperature.

なお、小単位の燃料棒行列数すなわち小単位間の間隔を
大ぎくすると、高温運転時の無限増倍率も低下するので
、小単位の行数は正方配列の場合には、3行3列〜5行
5列程度が適当である。
Note that if the number of fuel rod matrices of small units, that is, the spacing between small units, is increased, the infinite multiplication factor during high-temperature operation will also decrease. Approximately 5 rows and 5 columns is appropriate.

第3図はBWR用大型集合体に本発明を適用した他の実
施例を示すものである。この実施例の燃料集合体では、
3行3列に配置された燃料棒2 /)Sらなる小単位が
、その小単位内の燃料棒ピッチより広い間隔を設けて2
5個チャンネルボックス1a内に配置されており、各燃
料集合体内には、十字型の制御棒5が挿入される。
FIG. 3 shows another embodiment in which the present invention is applied to a large assembly for BWR. In the fuel assembly of this example,
Fuel rods 2/)S arranged in 3 rows and 3 columns are arranged in 2 small units with an interval wider than the fuel rod pitch within the small unit.
Five fuel assemblies are arranged in the channel box 1a, and a cross-shaped control rod 5 is inserted into each fuel assembly.

このように構成された大型の燃料集合体でも前述の実施
例と同様な効果を得ることができる。
Even with a large fuel assembly configured in this manner, the same effects as in the above-described embodiment can be obtained.

第4図は4行4列に配置された燃料棒2からなる小単位
ごとにスペーサ6が設けられ、小単位間に2枚の仕切り
板7が設けられ、チャンネルボックス1内に収容された
他の実施例の燃ね集合体を示すものである。この実施例
では仕切り板7に挾まれた軽水領域8では蒸気は発生し
ない。
In FIG. 4, a spacer 6 is provided for each small unit consisting of fuel rods 2 arranged in 4 rows and 4 columns, two partition plates 7 are provided between the small units, and the fuel rods 2 are housed in a channel box 1. 2 shows a combustion assembly according to an embodiment of the present invention. In this embodiment, no steam is generated in the light water area 8 sandwiched between the partition plates 7.

このように構成された燃料集合体でも前述の実施例と同
様な効果を得ることができる。
Even with a fuel assembly configured in this manner, the same effects as those of the above-mentioned embodiments can be obtained.

本発明は現行のBWRおよびPWRの集合体にも適用可
能である。第5図は、現行のB W R8X8燃料集合
体に本発明を適用した実施例を示すもので、この実施例
では、チャンネルボックス1c内に、4行4列に配置さ
れた燃料棒2からなる小単位が4個配置されている。
The present invention is also applicable to current BWR and PWR aggregations. FIG. 5 shows an embodiment in which the present invention is applied to the current BW R8X8 fuel assembly. In this embodiment, fuel rods 2 are arranged in 4 rows and 4 columns in a channel box 1c. Four small units are arranged.

このように構成された燃料集合体で6、前述の実施例と
同様な効果を1qることができる。
With the fuel assembly constructed in this manner, it is possible to obtain the same effects as in the above-mentioned embodiments.

またこれらの実施例では正方格子の燃料集合体について
示したが、本発明はかかる実施例に限定される〜bのC
はなく、たとえば六方格子の燃料集合体についてb同様
に適用できることは明らかである。
In addition, although the fuel assemblies of square lattice are shown in these embodiments, the present invention is limited to such embodiments.
However, it is clear that b can also be applied to, for example, a hexagonal lattice fuel assembly.

[発明の効果] 以上述べたように本発明の燃料集合体では、炉心特性や
燃料経済性を悪化させることなく、十分な炉淳止余裕を
確保ザることができる。
[Effects of the Invention] As described above, in the fuel assembly of the present invention, a sufficient reactor shutdown margin can be ensured without deteriorating core characteristics or fuel economy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の燃料集合体を示す上面図、
第2図は高温運転時と冷態的の無限増倍率を示1−グラ
フ、g83図ないし第5図はそれぞれ本発明の他の実h
m例の燃料集合体を示す上面図である。 1・・・・・・・・・チャンネルボックス2・・・・・
・・・・燃料棒
FIG. 1 is a top view showing a fuel assembly according to an embodiment of the present invention;
Figure 2 shows the infinite multiplication factor during high-temperature operation and in the cold state.
It is a top view which shows the fuel assembly of m example. 1...Channel box 2...
・・・Fuel rod

Claims (1)

【特許請求の範囲】[Claims] (1)円柱状の燃料ペレットが封入された燃料棒が、正
方もしくは六方格子状に規則正しく束ねられて構成され
る燃料集合体において、前記燃料棒を隣接した燃料棒の
中心間の距離を一定にして少数本束ねて小単位を構成し
、この小単位を複数個組合せ、かつ各々別な前記小単位
に属する隣接した前記燃料棒の中心間の距離が前記小単
位内の隣接した前記燃料棒の中心間の距離より大とされ
ていることを特徴とする燃料集合体。
(1) In a fuel assembly in which fuel rods filled with cylindrical fuel pellets are regularly bundled in a square or hexagonal lattice, the distance between the centers of adjacent fuel rods is fixed. A small number of fuel rods are bundled together to form a small unit, and a plurality of these small units are combined, and the distance between the centers of the adjacent fuel rods belonging to each different small unit is such that the distance between the centers of the adjacent fuel rods in the small unit is A fuel assembly characterized in that the distance between the centers is greater than the distance between the centers.
JP60217000A 1985-09-30 1985-09-30 Fuel aggregate Pending JPS6275378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60217000A JPS6275378A (en) 1985-09-30 1985-09-30 Fuel aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60217000A JPS6275378A (en) 1985-09-30 1985-09-30 Fuel aggregate

Publications (1)

Publication Number Publication Date
JPS6275378A true JPS6275378A (en) 1987-04-07

Family

ID=16697244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60217000A Pending JPS6275378A (en) 1985-09-30 1985-09-30 Fuel aggregate

Country Status (1)

Country Link
JP (1) JPS6275378A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6431089A (en) * 1987-07-27 1989-02-01 Nippon Atomic Ind Group Co Fuel assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6431089A (en) * 1987-07-27 1989-02-01 Nippon Atomic Ind Group Co Fuel assembly

Similar Documents

Publication Publication Date Title
JPH058797B2 (en)
JP4040888B2 (en) Fuel assembly
JPS6275378A (en) Fuel aggregate
JPH04357493A (en) Structure of fuel assembly
JPS60201284A (en) Fuel aggregate
JPS5928691A (en) Fuel assembly
JP2839516B2 (en) Boiling water reactor fuel assembly
JPS60205281A (en) Fuel aggregate for boiling-water type reactor
JPH10197673A (en) Fuel assembly
JPH0552475B2 (en)
JPS63127190A (en) Nuclear reactor fuel aggregate
JPS5826292A (en) Fuel assembly
JPS6361990A (en) Fuel aggregate
JP2507408B2 (en) Fuel assembly
JPH05323072A (en) Fuel assembly for pressurized water reactor
JP2809626B2 (en) Fuel assembly
JP2635694B2 (en) Fuel assembly
JPS63231293A (en) Core for nuclear reactor
JP2656279B2 (en) Fuel assembly for boiling water reactor
JP3314382B2 (en) Fuel assembly
JPH09166678A (en) Mox fuel assembly
JPS6244683A (en) Fuel aggregate for boiling water type reactor
JP2000111679A (en) Mox fuel assembly
JPH0342436B2 (en)
JPS62182694A (en) Fuel aggregate for boiling water type reactor