JPS6275253A - Oxygen concentration detecting device - Google Patents
Oxygen concentration detecting deviceInfo
- Publication number
- JPS6275253A JPS6275253A JP60214493A JP21449385A JPS6275253A JP S6275253 A JPS6275253 A JP S6275253A JP 60214493 A JP60214493 A JP 60214493A JP 21449385 A JP21449385 A JP 21449385A JP S6275253 A JPS6275253 A JP S6275253A
- Authority
- JP
- Japan
- Prior art keywords
- oxygen
- pump
- circuit
- current
- oxygen concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measuring Oxygen Concentration In Cells (AREA)
Abstract
Description
【発明の詳細な説明】
LIL匹丑■ユ1
本発明は内燃エンジンのfJl気ガス濃度センサーに関
するらのである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fJl gas concentration sensor for an internal combustion engine.
」χ且l
酸本′gi度に応じた出力を発生ずる酸素温度センリー
の原即図を第2図に示し説明する。The original diagram of the oxygen temperature sensor, which generates an output according to the degree of oxygen concentration, is shown in FIG. 2 and will be explained.
両面に電極を設りた2枚の板状の酸素イAン伝導性囚体
電W?質焼結体をある間隔(スリブ]〜3)をおいて平
行に位置さI、一方をMA汲み出し用ポンプ素子1とし
、他方を酸A111度比測定用電池素子2ど市る。Two plate-shaped oxygen ion conductive prisoner electrodes with electrodes on both sides. The quality sintered bodies are placed parallel to each other with a certain interval (slabs) ˜3), one side is used as a pump element 1 for pumping MA, and the other side is used as a battery element 2 for measuring acid A111 degree ratio.
ポンプ素子1の両電極に自流電源4から自流(ポンプ電
流)を【り変戚抗5を介して供給すると(外側の電極を
士、内側の電極を−)、−電極0M系ガスがイオン化さ
れ、該MAイオンが外側の十電(i側に移動し、同→−
電極で11工び酸系ガスとじて放出される。When a free current (pump current) is supplied from the free current power supply 4 to both electrodes of the pump element 1 via the variable resistor 5 (the outer electrode is connected to the inner electrode and the inner electrode is -), the -electrode 0M gas is ionized. , the MA ion moves to the outer tenden (i side), and the same → −
At the electrode, 11-acid-based gas is released.
したがってポンプ素子1はスリン1〜3内の酸素を外部
雰囲気中に汲み出すポンプの動きをしている。Therefore, the pump element 1 acts as a pump to pump the oxygen in the surins 1 to 3 into the external atmosphere.
このポンプ素子1によりスリット3内の酸素ガスが減少
し、雰囲気中の酸素ガス分圧とスリット内の酸素ガス分
圧とに差が生じ、Il1県!IJI比測定用電池木子2
の両電極間に起電力が発生ずる。This pump element 1 reduces the oxygen gas in the slit 3, causing a difference between the partial pressure of oxygen gas in the atmosphere and the partial pressure of oxygen gas in the slit. Battery tree for IJI ratio measurement 2
An electromotive force is generated between the two electrodes.
この起電力がある一定値に保たれるように(スなわも雰
囲気中とスリット内のPIi素分圧比が一定に保たれる
ように)、ポンプ電流を供給すると、このポンプ電流は
雰囲気中の酸素分圧に比例する。When a pump current is supplied so that this electromotive force is kept at a certain value (so that the PIi element partial pressure ratio in the atmosphere and in the slit is kept constant), this pump current Proportional to oxygen partial pressure.
よってこのポンプ電流を81測することで雰囲気中の酸
素分圧が判明し、排気ガス中においては空燃比を測定す
ることができる。Therefore, by measuring this pump current, the oxygen partial pressure in the atmosphere can be determined, and the air-fuel ratio in the exhaust gas can be measured.
空燃比A/Fとポンプ電流IPとの関係をグラフで表ず
と第3図のようである。The relationship between the air-fuel ratio A/F and the pump current IP is shown in a graph as shown in FIG.
理論空燃比14.7より空燃比が大ぎくなるにしたがい
比例してポンプ電流1rは増加している。As the air-fuel ratio becomes larger than the stoichiometric air-fuel ratio of 14.7, the pump current 1r increases proportionally.
一般に内燃エンジンの燃費改善及び排気ガス浄化のため
、理論空燃比よりも高い空燃比(例えば18程度)で運
転されるJ:うにしてJjす、そのためにポンプ電流1
rの検出がなされ、空燃比制御に供されている。In general, internal combustion engines are operated at an air-fuel ratio higher than the stoichiometric air-fuel ratio (for example, about 18) in order to improve fuel efficiency and purify exhaust gas.
r is detected and used for air-fuel ratio control.
しかる(第3図に示す空燃比A/1:対ポンプ電流1r
の特性はポンプ素子1の活性状態によって責なり、この
活性状態は温度にJ:ってlll1lF11で示J如く
変化するので結局第2図の特性曲線は温度に依存するこ
とになる。However, (air-fuel ratio A/1: pump current 1r shown in Figure 3)
The characteristics are determined by the activation state of the pump element 1, and since this activation state changes with temperature as shown by J: 1111F11, the characteristic curve shown in FIG. 2 ultimately depends on temperature.
したがって温度を一定以上として素子をある活性状態に
保つ必要がある。Therefore, it is necessary to keep the element in a certain active state by keeping the temperature above a certain level.
そこで前記センナ−に加熱素子を付設した例(特開昭5
8−1!131!15円公+11)がある。Therefore, an example in which a heating element was attached to the sensor (Unexamined Japanese Patent Publication No. 5
There is 8-1! 131! 15 yen public + 11).
これは第4図に示ツJ:うな長方形のアルミナ、スピネ
ルなどの絶縁竹無+a質板状休10からなり、内部に矩
形の孔11がIIらぬかれでいる。This is shown in FIG. 4. It is made of a rectangular insulating bamboo plate 10 made of alumina, spinel, etc., and has a rectangular hole 11 inside.
この孔11の周囲の板状体10の表面には発熱抵抗体1
2が波形に敷設され電流を通じることにより板状体10
全体を発熱さUる。A heating resistor 1 is placed on the surface of the plate-like body 10 around this hole 11.
2 are laid in a waveform and a current is passed through the plate-shaped body 10.
Heats up the whole thing.
この板状体10を11a記ポンプ木子1に電極が孔11
に合うようにして添設し、ある適当な電流を供給し加熱
して、素子を活竹状fフとする。This plate-like body 10 is attached to the pump wood 1 in 11a, and the electrode is inserted into the hole 11.
A suitable current is supplied to heat the element to make it into a living bamboo-like shape.
ここに発熱抵抗体12には耐熱金属としてP【。Here, the heating resistor 12 is made of P[ as a heat-resistant metal.
△U等のベーストが使用され、プリント印刷により板状
体10上に敷設される。A base sheet such as ΔU is used and laid on the plate-like body 10 by printing.
(1しm−と1−る。 −
以上のように発熱抵抗体12に甲に電流を供給している
だ【」であると、外乱により素子温度が変化し、安定し
たポンプ電流が得られず、正確な空燃比が求められない
問題がある。(1 and 1) - As described above, if current is being supplied to the heating resistor 12, the element temperature will change due to disturbance, and a stable pump current will not be obtained. First, there is the problem that an accurate air-fuel ratio cannot be obtained.
例えば中速が素子温度に影響する(第5図参照)。For example, medium speed affects the element temperature (see Figure 5).
一般にクルーズ走tj115にはエンジン内でほぼ゛完
全燃焼がなされ、燃焼ガスの温度にJ:り中速に応じた
素子温度を示1が、クルーズから減速する場合に【ま未
燃焼ガスの排気系内の燃焼等ににり木r渇瓜が上をアシ
、第5図に破線で示すようにクルーズ走行時(実線)よ
りも高い木子渇度特竹となっている。Generally, when cruising at tj115, almost complete combustion has occurred in the engine, and the temperature of the combustion gas is J:, which indicates an element temperature corresponding to the medium speed. As a result of internal combustion, the dryness of the wood has increased, and as shown by the broken line in Figure 5, the dryness level is higher than during cruise driving (solid line).
その他刊気ガス?A Ml、加熱素子容[nおよびその
供給電圧等によって素子温度は変化する。Other publications? The element temperature changes depending on A Ml, the heating element capacity [n, its supply voltage, etc.
一方この素子温度は素子の寿命にも影響づる。On the other hand, this element temperature also affects the life of the element.
いま索″f温痕(’C)に対する素子の耐久時間(Il
r)の変化を示すと第6図のようであり、素子温度が8
00℃程度まではその耐久1ki間に差が売られないが
、900℃を越えると茗しく耐久115間が短かくなり
寿命が低下する。The durability time (Il) of the element against the thermal trace ('C)
Figure 6 shows the change in r) when the element temperature is 8.
Up to about 00°C, there is no difference in durability between 1ki, but when it exceeds 900°C, the durability becomes short and the lifespan decreases.
また素子′f;A麻が低すぎると、素子の活性化が不十
分となり、出力が安定しない。Furthermore, if the element 'f; A is too low, the activation of the element will be insufficient and the output will not be stable.
すなわら供給電1−E V Sを40mV一定にして素
子一度(℃)に対するポンプ電流1r (m△)の変
化を示1ノと、第7図のJ、うであり、600℃以十ぐ
あると、ポンプ電流IPの温度変化が大さい。In other words, the change in pump current 1r (m△) with respect to the element temperature (°C) with the supply voltage 1-E V S constant at 40 mV is shown as 1 and J in Figure 7, and above 600°C. If the temperature is too high, the temperature change in the pump current IP will be large.
以上のように素子温度を変化さける要因は一種々あると
とムに、素子温度が適当な温度に安定して保たれないと
、ズiQが低下したり、出力が不安定となる。As mentioned above, there are various factors that prevent the element temperature from changing, and if the element temperature is not stably maintained at an appropriate temperature, the value iQ will decrease and the output will become unstable.
木化案はかかる貞に鑑みなされたムのでその目的とする
処は、酸^ポンプ素子の抵抗値を求め、これを一定にす
るように制御りることで、素子温度を適当な(「1に保
つことができる酸メζ濶度検出装置を供する点にある。The lignification plan was designed with this in mind, and its purpose was to determine the resistance value of the acid pump element, and by controlling it to keep it constant, the temperature of the element could be adjusted to an appropriate level (1). The object of the present invention is to provide a device for detecting acid temperature that can be maintained at a constant temperature.
Ij、を °−るための よ゛、び−[本発明の構成
を第1図に示し説明する。The structure of the present invention will be explained with reference to FIG. 1.
内燃エンジンの排気ガス通路に突設されて被測定気体中
に配設される一対のPli素イオン伝導竹固体ffi解
質材を有し、その各表裏1mに電極が各々形成されかつ
前記固体電解質材が所定の間隙部を介して対向づるよう
に平行に配lされ、前記固体電解資材の一方が酸素ポン
プ素子Bとして、他方が酸?4濃度比測定用電池累子C
として各々作用するM木濃度検出手段へと、前記酸素ポ
ンプ素子Bの電極間に電流を供給するポンプ電流供給手
段I)と、供給される電流値に応じで発熱し前記固体電
解資材を加熱する加熱素子Eと、同加熱素子Eに電流を
供給する加熱電流供給手段FとからなるPaA濃度セン
勺−において、Gは抵抗検出手段であり、1)0記酸素
ポンプ素子Bを流れる電流と同酸素ポンプ素子Bの電極
間に印加される電圧とから同Fl!l′Ikポンプ素子
Bの抵抗値を求めるものである。It has a pair of Pli element ion conductive bamboo solid FFI dissolving materials which are protruded into the exhaust gas passage of an internal combustion engine and disposed in the gas to be measured, electrodes are formed on each of the front and back sides of 1 m, and the solid electrolyte material is They are arranged in parallel so as to face each other with a predetermined gap in between, one of the solid electrolytic materials serving as the oxygen pump element B and the other as the oxygen pump element B. 4 Battery C for concentration ratio measurement
pump current supply means I) for supplying current between the electrodes of the oxygen pump element B to the M wood concentration detection means each acting as In the PaA concentration sensor consisting of a heating element E and a heating current supply means F that supplies current to the heating element E, G is a resistance detection means; From the voltage applied between the electrodes of oxygen pump element B, the same Fl! l'Ik The resistance value of pump element B is determined.
1」は同抵抗値に基づいて前記加熱素子Eを制御Jる制
御手段であり、+”+Fi記酎系酸系プ累子Bの抵抗値
が一定になるように制御する乙のである。1" is a control means for controlling the heating element E based on the resistance value, and is a control means for controlling the heating element E so that the resistance value of the liquefied acid type element B is kept constant.
M索ポンプ木子I3の抵抗値は同素fの湿度にほぼ反比
例するので、臥抗検出丁段Gによって酸素ポンプ素子B
に流れる電流1 a3よび印加される電圧VとからV/
Iの演のを行って求められた抵抗値を一定に保つように
することで、素子温度を一定に保つことができる。Since the resistance value of M cable pump tree I3 is almost inversely proportional to the humidity of allotropy f, oxygen pump element B
From the current 1a3 flowing in and the applied voltage V, V/
The element temperature can be kept constant by keeping the resistance value determined by performing operation I constant.
制御手段1−1は、抵抗検出手段Gにより求められた抵
抗値を一定に保つよう加熱電流供給手段Fに指示して加
熱素子Eに供給される電流を制御することができる。The control means 1-1 can control the current supplied to the heating element E by instructing the heating current supply means F to keep the resistance value determined by the resistance detection means G constant.
このようにして加熱素子Fの発熱量を加減して、素子温
度を適当な値に維持することで固体電解資材の活性状態
を安定化させ、出力を安定させるとともに正確なものと
し、また長寿命化を図ることができる。In this way, by adjusting the calorific value of the heating element F and maintaining the element temperature at an appropriate value, the active state of the solid electrolytic material is stabilized, the output is stabilized and accurate, and the service life is extended. It is possible to aim for
笈JILM
以−ト第8図以降に示した本発明に係る一実施例につい
て説明リ−る。EMBODIMENT OF THE INVENTION An embodiment of the present invention shown in FIG. 8 and subsequent figures will now be explained.
第8図は本実施例に係る酸素潤度センサーの概略説明図
である。FIG. 8 is a schematic explanatory diagram of the oxygen moisture sensor according to this embodiment.
第2図において前記したと同様にポンプ素子1と酸素濃
度比測定用電池素子2がある幅をもつスリット3を介し
て対面している。In FIG. 2, the pump element 1 and the oxygen concentration ratio measuring battery element 2 face each other via the slit 3 having a certain width, as described above.
ポンプ素子1の電極にはポンプ電流供給回路20が接続
されており、酸素濃度比測定用電池素子2にはセンサー
電圧検出回路21が接続されていて、スリット3内の酸
素分圧と雰囲気中の酸素分圧の比をセンナ−電圧検出回
路21で検出し、この検出値を一定に保つようポンプ電
流供給回路20によってポンプ市流を流すことによって
このポンプ電流をもってM素淵度を検出する。A pump current supply circuit 20 is connected to the electrode of the pump element 1, and a sensor voltage detection circuit 21 is connected to the oxygen concentration ratio measurement battery element 2, which detects the oxygen partial pressure in the slit 3 and the atmospheric pressure. The oxygen partial pressure ratio is detected by the sensor voltage detection circuit 21, and the pump current is supplied by the pump current supply circuit 20 so as to keep this detected value constant, and the M depth is detected using this pump current.
ポンプ素子1の外面には加熱り子22が添設されている
。A heating element 22 is attached to the outer surface of the pump element 1.
加熱素子22も前記同様長方形の絶縁t/I無機71板
状休10からなり、ポンプ素子1の電極に対応する部分
は矩形の孔11が穿たれている。The heating element 22 is also made of a rectangular insulating T/I inorganic 71 plate-shaped plate 10 as described above, and a rectangular hole 11 is bored in the portion corresponding to the electrode of the pump element 1.
ぞしてその孔11の周囲をP(線24がプリント印刷さ
れて、その端部電極に加熱電流供給回路23が接続され
ている。A line 24 is printed around the hole 11, and a heating current supply circuit 23 is connected to the end electrode.
そしエボンブ電流供給回路20からポンプ素子1に流れ
る電流と印加される電圧をコンピュータ25が入力し、
イの演算結束に基づいて制御回路26に指示を与え、a
、II ta11回路26はその指示にしたがって加熱
電流供給回路23を制御して加熱素子22のpt線24
に流れる電流を加減する。Then, the computer 25 inputs the current flowing to the pump element 1 from the e-bomb current supply circuit 20 and the voltage to be applied.
Give an instruction to the control circuit 26 based on the calculation unity of a.
, II ta11 circuit 26 controls the heating current supply circuit 23 according to the instruction, and the pt line 24 of the heating element 22
Adjust the current flowing to the
以上の回路の概略説明図を第9図に示す。A schematic explanatory diagram of the above circuit is shown in FIG.
ポンプ素子1の両電極には可変I(抗5を介して/i流
雷S4が接続されている。A /i current S4 is connected to both electrodes of the pump element 1 via a variable resistor 5.
そして該雷神間には電圧シ127が設置〕られ、またこ
の加熱電流供給回路には1・u流6128が設()られ
で13 V)、両針311127.28(7)+il
3191/l V 、 I +、t ] コンピュー
タ2に入力される。A voltage switch 127 is installed between the thunderbolts, and a 1.u current 6128 is installed in this heating current supply circuit (13 V), and both needles 311127.28 (7) + il
3191/l V , I + , t ] is input to the computer 2.
コンピュータ25はV/lの演鈴をt−r −3−(1
氏抗1直R80出し、同抵抗+fJ Rに1.tづいて
制御伝;Jをi〜ランジスタ290ゲー1一端子に出力
りる。The computer 25 outputs the bell of V/l as tr -3-(1
The resistance is 1 direct R80, and the same resistance + fJ R is 1. The control signal t is then outputted to the terminal i to transistor 290 gate 1.
トランジスタ291よ、加熱水f−22のl)を線24
d3よび電源30と直列に1g続きれ又いてスイッチン
グ制御をtsう。Transistor 291, connect the heated water f-22 l) to line 24
1g is connected in series with d3 and power supply 30 to perform switching control.
コンピュータ25から出力される制御信号は第10図に
示す如くデl−ティパルス信号でデユーティ比を変える
ことでトランジスタ29のON、 OFF IIA間を
加減し、Pt線24に流れる平均電流値を変え、発熱i
fiをコントロールする。As shown in FIG. 10, the control signal output from the computer 25 is a duty pulse signal that changes the duty ratio to adjust the ON/OFF state of the transistor 29, thereby changing the average current value flowing through the Pt wire 24. fever i
control fi.
本実施例においては、水子温度として650℃から70
0℃の聞の温度が最適であり、この温度に対応した抵抗
値Rratがコンピュータ25内に設定されており、〕
コンピュータ2は、測定電圧値V、電流値Iから口出さ
れた抵抗値Rを設定抵抗値RrOrと比較してその差に
応じて設定抵抗値R2゜「になるようにデユーティ比を
決定する。In this example, the water temperature ranges from 650°C to 70°C.
A temperature between 0°C is optimal, and a resistance value Rrat corresponding to this temperature is set in the computer 25.]
The computer 2 compares the resistance value R derived from the measured voltage value V and current value I with the set resistance value RrOr, and determines the duty ratio so that the set resistance value R2° is reached according to the difference.
1/、にわら低温時にはコンピュータ25が演口した結
果の抵抗値Rは設定抵抗値Rratより大きく、その差
に応じてデユーディ比を大きくし、1〜ランジスタ29
のON時間を長く覆る。1/, when the temperature is low, the resistance value R as a result of the input by the computer 25 is larger than the set resistance value Rrat, and the duty ratio is increased according to the difference.
Extends the ON time of
するとPl!324を流れる平均電流は多くなり加熱素
子22の発熱量は増し、酸素ポンプ素子1の素子温度を
上界さVる。Then Pl! The average current flowing through the oxygen pump element 324 increases and the amount of heat generated by the heating element 22 increases, raising the element temperature of the oxygen pump element 1.
所定温度より水子温度が高いときはコンピュータ25か
らの制御信号の−j゛ニーティ比を小さくし、トランジ
スタ2つのON時間を短くして加熱素子22の発熱量を
減少させる。When the water temperature is higher than a predetermined temperature, the −j′neity ratio of the control signal from the computer 25 is reduced, the ON time of the two transistors is shortened, and the amount of heat generated by the heating element 22 is reduced.
εのようにして素子湿度を所定温度に(よぼ一定に保つ
ことができる。The element humidity can be kept at a predetermined temperature (approximately constant) by setting ε.
水子温度が、650℃から100℃の間の所定温度で安
定状態にあれば、木r自体の寿命も長く保つことができ
(第6図参照)、また素子を安定した活性状態とするこ
とで出力(ポンプ電流1r)のバラツキをなくシ(第7
図参照)、空燃比制御20の精度を高くH持することが
できる。If the water temperature is stable at a predetermined temperature between 650°C and 100°C, the life of the wood itself can be maintained for a long time (see Figure 6), and the element can be kept in a stable active state. to eliminate variations in the output (pump current 1r) (7th
(see figure), the accuracy of the air-fuel ratio control 20 can be maintained at a high level.
l用五み」
本発明はlI!2木ポンプ素子に流れる電流a3J−び
印加される電圧から抵抗+tfiを口出し、同抵抗値が
所定の抵抗値になるように制御することで素子温度を所
定湿度に保ら外乱による湿度変化を回避して、素子を常
に安定した活性状態として正確な出力値を得ることがで
きる。The present invention is lI! The resistance +tfi is calculated from the current a3J- flowing through the pump element and the applied voltage, and by controlling the resistance value to a predetermined resistance value, the element temperature is maintained at a predetermined humidity and humidity changes due to disturbances are avoided. As a result, accurate output values can be obtained by keeping the element in a stable active state at all times.
したがって正確な出力(nをbとに1!llI度の高い
空燃比制御が可能である。Therefore, accurate output (air-fuel ratio control as high as 1!llI degree with n and b) is possible.
また素子の温度を適当な値に保つことにJ:す、素子の
長寿命化を図ることができる。Furthermore, by keeping the temperature of the element at an appropriate value, it is possible to extend the life of the element.
さらに本発明は酸素ポンプ素子自体を温度ヒン篭ナーと
して用いるので特別に温度検出用のけンリーを別個に設
ける必要がない。Furthermore, since the present invention uses the oxygen pump element itself as a temperature sensor, there is no need to separately provide a temperature sensor.
第1図は本発明のクレーム対応図、第2図は酸素濃度セ
ンサーの原狸図、第3図は空燃比Δ/Fとポンプ電流1
rとの関係を示ず図、第4図は加熱素子の斜視図、第5
図は中速と素子温度の関係を示1図、第6図は水子温度
と耐久時開の関係を示す図、第7図は水子温度とポンプ
電流の関係を示1図、第8図は本発明に係る実施例の酸
素濃1αセンサーの説明図、第9図は本実施例に係る回
路の概略説明図、第10図は]ンビュータから出力され
るυ1111信号を示す図である。
1・・・ポンプ素子、2・・・lli!2素漣度比測定
用雷池素了、3・・・スリット・、4・・・直流電源、
5・・・可変抵抗、10・・・絶縁性無t11質板状体
、11・・・孔、12・・・発熱抵抗体、
20・・・ポンプ電流供給回路、21・・・加熱電流検
出回路、22・・・加熱素子、23・・・加熱電流供給
回路、24・・・PE線、25・・・]]ンビコータ2
G・・・制御回路、27・・・電几計、28・・・電流
計、29・・・トランジスタ、30・・・電源。Figure 1 is a diagram corresponding to the claims of the present invention, Figure 2 is an original raccoon diagram of the oxygen concentration sensor, and Figure 3 is the air-fuel ratio Δ/F and pump current 1.
Fig. 4 is a perspective view of the heating element, Fig. 5 is a perspective view of the heating element;
Figure 1 shows the relationship between medium speed and element temperature, Figure 6 shows the relationship between water element temperature and durability opening, and Figure 7 shows the relationship between water element temperature and pump current. 9 is an explanatory diagram of an oxygen concentration 1α sensor according to an embodiment of the present invention, FIG. 9 is a schematic explanatory diagram of a circuit according to this embodiment, and FIG. 10 is a diagram showing a υ1111 signal output from a monitor. 1...Pump element, 2...lli! 2: Raichi Soryo for measuring ratio of power, 3: Slit, 4: DC power supply,
5... Variable resistor, 10... Insulating non-T11 plate-like body, 11... Hole, 12... Heat generating resistor, 20... Pump current supply circuit, 21... Heating current detection Circuit, 22... Heating element, 23... Heating current supply circuit, 24... PE wire, 25... ]] Nbicoater 2
G... Control circuit, 27... Electric meter, 28... Ammeter, 29... Transistor, 30... Power supply.
Claims (1)
に配設される一対の酸素イオン伝導性固体電解質材を有
し、その各表裏面に電極が各々形成されかつ前記固体電
解質材が所定の間隙部を介して対向するように平行に配
置され、前記固体電解質材の一方が酸素ポンプ素子とし
て、他方が酸素濃度比測定用電池素子として各々作用す
る酸素濃度検出手段と、前記酸素ポンプ素子の電極間に
電流を供給するポンプ電流供給手段と、供給される電流
値に応じて発熱し前記固体電解質材を加熱する加熱素子
と、同加熱素子に電流を供給する加熱電流供給手段とか
らなる酸素濃度センサーにおいて、前記酸素ポンプ素子
を流れる電流と同酸素ポンプ素子の電極間に印加される
電圧とから同酸素ポンプ素子の抵抗値を求める抵抗検出
手段と、同抵抗値に基づいて前記加熱素子を制御する制
御手段とを備え、同制御手段は前記酸素ポンプ素子の抵
抗値が一定になるように制御することを特徴とする酸素
濃度検出装置。A pair of oxygen ion conductive solid electrolyte materials are provided that protrude into an exhaust gas passage of an internal combustion engine and are disposed in a gas to be measured, and electrodes are formed on each of the front and back surfaces of the solid electrolyte materials, and the solid electrolyte materials are arranged in a predetermined manner. oxygen concentration detection means arranged in parallel so as to face each other with a gap in between, one of the solid electrolyte materials acting as an oxygen pump element and the other acting as a battery element for measuring oxygen concentration ratio; and the oxygen pump element. A heating element that generates heat according to the supplied current value to heat the solid electrolyte material, and a heating current supply means that supplies current to the heating element. In the oxygen concentration sensor, a resistance detection means for determining a resistance value of the oxygen pump element from a current flowing through the oxygen pump element and a voltage applied between electrodes of the oxygen pump element; An oxygen concentration detecting device comprising: a control means for controlling the oxygen concentration, the control means controlling the resistance value of the oxygen pump element so as to be constant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60214493A JPH0799365B2 (en) | 1985-09-30 | 1985-09-30 | Oxygen concentration detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60214493A JPH0799365B2 (en) | 1985-09-30 | 1985-09-30 | Oxygen concentration detector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6275253A true JPS6275253A (en) | 1987-04-07 |
JPH0799365B2 JPH0799365B2 (en) | 1995-10-25 |
Family
ID=16656620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60214493A Expired - Lifetime JPH0799365B2 (en) | 1985-09-30 | 1985-09-30 | Oxygen concentration detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0799365B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010096257A (en) * | 2008-10-16 | 2010-04-30 | Tsubakimoto Chain Co | Toothed belt pulley |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3839171B2 (en) * | 1998-09-22 | 2006-11-01 | 本田技研工業株式会社 | Heater energization control device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57192852A (en) * | 1981-05-25 | 1982-11-27 | Toyota Central Res & Dev Lab Inc | Limiting current type oxygen concentration detector controlled in temperature |
JPS58153155A (en) * | 1982-03-09 | 1983-09-12 | Ngk Spark Plug Co Ltd | Oxygen sensor |
JPS5967455A (en) * | 1982-10-08 | 1984-04-17 | Hitachi Ltd | Air/fuel ratio sensor |
JPS60165542A (en) * | 1984-02-08 | 1985-08-28 | Mitsubishi Electric Corp | Air fuel ratio sensor of engine |
JPS60165541A (en) * | 1984-02-08 | 1985-08-28 | Mitsubishi Electric Corp | Air fuel ratio sensor of engine |
-
1985
- 1985-09-30 JP JP60214493A patent/JPH0799365B2/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57192852A (en) * | 1981-05-25 | 1982-11-27 | Toyota Central Res & Dev Lab Inc | Limiting current type oxygen concentration detector controlled in temperature |
JPS58153155A (en) * | 1982-03-09 | 1983-09-12 | Ngk Spark Plug Co Ltd | Oxygen sensor |
JPS5967455A (en) * | 1982-10-08 | 1984-04-17 | Hitachi Ltd | Air/fuel ratio sensor |
JPS60165542A (en) * | 1984-02-08 | 1985-08-28 | Mitsubishi Electric Corp | Air fuel ratio sensor of engine |
JPS60165541A (en) * | 1984-02-08 | 1985-08-28 | Mitsubishi Electric Corp | Air fuel ratio sensor of engine |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010096257A (en) * | 2008-10-16 | 2010-04-30 | Tsubakimoto Chain Co | Toothed belt pulley |
Also Published As
Publication number | Publication date |
---|---|
JPH0799365B2 (en) | 1995-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR910006224B1 (en) | Air fuel ratio detector | |
US7578914B2 (en) | Gas concentration measuring apparatus designed to compensate for output error | |
JPS59163556A (en) | Oxygen concentration detecting apparatus | |
US4769124A (en) | Oxygen concentration detection device having a pair of oxygen pump units with a simplified construction | |
US20040089545A1 (en) | High-resolution gas concentration measuring apparatus | |
US20070007134A1 (en) | Gas concentration measuring apparatus designed to establish quick determination of degree of activation of gas sensor | |
US9769877B2 (en) | Heater control apparatus for gas sensor | |
JPH11344466A (en) | Heater control device of gas concentration sensor | |
JP2509905B2 (en) | Air-fuel ratio sensor | |
JP6989336B2 (en) | Sensor control device and sensor unit | |
JPS6275253A (en) | Oxygen concentration detecting device | |
JP4563601B2 (en) | Composite laminated sensor element | |
JPS62129751A (en) | Regulation of oxygen concentration detector | |
JP2010008121A (en) | Sensor output processor and sensor output processing system | |
JPS60188840A (en) | Oxygen concentration detector | |
JP2002257772A (en) | Abnormality detecting method for air-fuel ratio sensor and protecting method for sensor control circuit | |
JPS61194345A (en) | Method for detecting concentration of gas | |
JPH07119740B2 (en) | Temperature controller for oxygen concentration sensor | |
JPH05240829A (en) | Air-fuel ratio sensor | |
JP3854040B2 (en) | Air-fuel ratio detection device for internal combustion engine | |
JPH05256817A (en) | Air-fuel ratio detecting device | |
JP3734685B2 (en) | Sensor element temperature detection device for air-fuel ratio sensor | |
JPH05149920A (en) | Oxygen detecting sensor | |
JPS60211355A (en) | Oxygen sensor and oxygen concentration measuring device | |
JPH061258B2 (en) | Air-fuel ratio detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |