JPS6275005A - Turbine steam valve warm-up device - Google Patents

Turbine steam valve warm-up device

Info

Publication number
JPS6275005A
JPS6275005A JP21448285A JP21448285A JPS6275005A JP S6275005 A JPS6275005 A JP S6275005A JP 21448285 A JP21448285 A JP 21448285A JP 21448285 A JP21448285 A JP 21448285A JP S6275005 A JPS6275005 A JP S6275005A
Authority
JP
Japan
Prior art keywords
valve
steam
closing
steam valve
warm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21448285A
Other languages
Japanese (ja)
Inventor
Kosuke Ishii
浩介 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21448285A priority Critical patent/JPS6275005A/en
Publication of JPS6275005A publication Critical patent/JPS6275005A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To shorten the starting time without exceeding the thermal stress limit by controlling both closing period and closing width of a steam inlet valve in correspondence to both warm-up steam condition and valve condition. CONSTITUTION:In warming up a governor valve 3, a governor valve seat drain valve 5 is opened, and the governor valve 3 is closed. At the same time, a steam stop valve 2 is put under the opening and closing control. In the device for controlling the valve 2, the temperature difference DELTAT between the temperature at the outer surface and that at the inner surface of the governor valve 3 in addition to a main steam temperature TS are detected, and both are input into an inferring device 11, in which a target value 'r' for the governor valve inner surface temperature change rate is calculated. In addition, by using the inferring device 12, variations (DELTAa and DELTAb) in pulse-period 'a' and pulse-width 'b' are calculated, based on deviation 'e' between the target value 'r' and actual temperature changing rate 'y' at the inner surface of the governor valve 3 in addition to the maximum valve of 'y', or 'ym', measured after each pulse is generated by a closing-pulse generator 13. Finally, the valve-closing-pulse generator 13 generates valve opening command 'z', based on both signal 'a' and 'b'.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、タービンの蒸気弁暖機に際し、弁メタル熱応
力を許容値以内に管理しつつ最短時間で弁暖機を行なう
ため、蒸気状態に応じて流入蒸気量を制御するタービン
蒸気弁暖機制御装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention aims to warm up the steam valve of a turbine in the shortest possible time while managing the valve metal thermal stress within an allowable value. The present invention relates to a turbine steam valve warm-up control device that controls the amount of inflow steam accordingly.

[発明の技術的背景とその問題点] 一般に、タービン蒸気弁暖機を行なう場合は、蒸気弁座
前ドレンは開けておき、上流の流入制御弁を開閉するこ
とにより流入蒸気量を制御し、弁メタル温度上昇率や弁
内外面温度差を管理しつつ行なっている。
[Technical background of the invention and its problems] Generally, when warming up a turbine steam valve, the drain in front of the steam valve seat is opened, and the amount of inflow steam is controlled by opening and closing the upstream inflow control valve. This is done while controlling the temperature rise rate of the valve metal and the temperature difference between the inner and outer surfaces of the valve.

第3図はそのタービン蒸気弁暖機を説明するためのター
ビン蒸気系統図で、ボイラ1で発生する蒸気を蒸気止め
弁2から加減弁3を介してタービン4に供給する際に加
減弁3の暖機を行なう場合の例である。5は加減弁シー
トドレン弁である。加減弁暖機に際しては、通常、シー
トドレン弁5は開、加減弁3は閉とし、蒸気止め弁2を
開閉することにより、加減弁内面温度変化率を制御する
ことになる。
FIG. 3 is a turbine steam system diagram for explaining the warming up of the turbine steam valve. This is an example of warming up. 5 is a control valve seat drain valve. When warming up the regulator, the seat drain valve 5 is normally opened, the regulator valve 3 is closed, and the steam stop valve 2 is opened and closed to control the rate of change in temperature inside the regulator.

ところで、これを手動で行なうことは、例えば弁が冷え
切ったところから始めた場合に長時間を要することにな
り、運転員に大きな負担がかかる。
By the way, if this is done manually, for example, if the valve is started when it is completely cold, it will take a long time and will place a heavy burden on the operator.

そこで、近年は計算機を用いてタービン蒸気弁暖機制御
を行なっている。
Therefore, in recent years, turbine steam valve warm-up control has been performed using computers.

第4図は、このときの制御の様子を示す図で、計算機は
蒸気止め弁2を予め設定した周期aおよびパルス幅すで
駆動する信号を出力する。このとき、加減弁内面温度変
化率yは一定という訳ではなく、図示のように加減弁内
面温度変化率目標値rのまわりを上下することになる。
FIG. 4 is a diagram showing the state of control at this time, in which the computer outputs a signal to drive the steam stop valve 2 at a preset period a and pulse width. At this time, the rate of change y of the inner temperature of the regulating valve is not constant, but fluctuates around the target value r of the rate of change of the inner temperature of the regulating valve as shown in the figure.

このように、従来のタービン蒸気弁暖機制御装置では、
あらかじめ定められた周期およびパルス幅によって上流
弁を開閉するので、蒸気状態や弁メタルの状態に対し、
適応性が全くない。即ち、弁内面温度差や蒸気温度等を
考慮することなく一定の周期およびパルス幅によって上
流弁を開閉するため、ある時は流入蒸気不足で暖機時間
が不必要に長くなったり、またある時は流入蒸気過多で
弁メタルに過大な熱応力が印加される問題点があった。
In this way, in the conventional turbine steam valve warm-up control device,
Since the upstream valve opens and closes according to a predetermined period and pulse width,
No adaptability at all. In other words, because the upstream valve is opened and closed at a constant cycle and pulse width without considering the valve inner temperature difference or steam temperature, there are times when there is a lack of incoming steam and the warm-up time becomes unnecessarily long, and other times when had the problem that excessive thermal stress was applied to the valve metal due to excessive steam inflow.

[発明の目的] 本発明は、常に熱応力許容制限一杯の所で暖機を行ない
、弁寿命を縮めることなく平均起動時間を短縮すること
の可能なタービン蒸気弁暖機制御装置を提供することを
目的とする。
[Object of the Invention] An object of the present invention is to provide a turbine steam valve warm-up control device that can always perform warm-up at the maximum allowable thermal stress limit and shorten the average startup time without shortening the valve life. With the goal.

[発明の概要コ このため本発明は、蒸気弁内外面温度差と、内面温度変
化率を観測することにより、その条件下でメタルに過大
な熱応力を加えることなく、かつ、短時間に暖機が完了
するよう、蒸気流入量を制御する際、あらかじめ定めた
原則にもとづき、蒸気流入パルスの幅および間隔を決定
するようにしたことを特徴としている。
[Summary of the Invention] Therefore, the present invention aims to heat up the metal in a short time without applying excessive thermal stress to the metal under those conditions by observing the temperature difference between the inside and outside surfaces of the steam valve and the rate of change in the inside temperature. When controlling the amount of steam inflow, the width and interval of the steam inflow pulses are determined based on predetermined principles so that the steam flow is completed.

[発明の実施例] 以下、第3図に示した加減弁3の暖機を行なう場合を例
にとり、本発明の実施例を図面を参照して説明する。
[Embodiments of the Invention] Hereinafter, embodiments of the present invention will be described with reference to the drawings, taking as an example the case where the control valve 3 shown in FIG. 3 is warmed up.

第1図は本発明の一実施例に係るタービン蒸気弁暖機制
御装置の要部構成図を示したもので、11゜12は推論
器、13は弁開閉パルス発生器である。
FIG. 1 shows a main part configuration diagram of a turbine steam valve warm-up control system according to an embodiment of the present invention, in which reference numerals 11 and 12 are inference devices, and 13 is a valve opening/closing pulse generator.

推論器11は、入力する加減弁内面温度変化率弁内面温
度変化率目標値rを算出する。推論器12では、rと実
際の加減弁内面温度変化率yとの偏差eおよび各パルス
後のyの極大値yII+より、パルス周期aとパルス幅
すの変化分Δa、とΔbを算出する。
The reasoner 11 calculates the input regulating valve inner surface temperature change rate target value r of the valve inner surface temperature change rate. The reasoner 12 calculates changes Δa and Δb in the pulse period a and the pulse width S from the deviation e between r and the actual rate of change of temperature inside the control valve y and the maximum value yII+ of y after each pulse.

弁開閉パルス発生器13では、aとbより弁開度指令Z
を生成する。
The valve opening/closing pulse generator 13 generates a valve opening command Z from a and b.
generate.

即ち、推論器11では、「6丁が大ならばrは小」。That is, in the reasoner 11, "If 6 guns is large, then r is small."

「八Tが小ならばrは大」と言う下記制御則R+jle
l−1。
The following control law R+jle says "If 8T is small, r is large"
l-1.

1−2を実現する。Achieve 1-2.

Ru1el−1:  rΔ丁が大」 → 「rは小」R
u1el−2:  rΔTが小」 → 「rは大」同様
に、推論器12では下記Ru1e 2−1−2−6を実
現する。
Ru1el-1: rΔd is large” → “r is small” R
u1el-2: rΔT is small" → "r is large" Similarly, the reasoner 12 realizes Ru1e 2-1-2-6 below.

Ru1e2 1  :  reが正」→「Δaは正」R
u1e 2−2  :  reがゼロ」→「Δaはゼロ
」Ru1e 2−3  :  reが負」→「Δaは負
」Ru1e 2 4  :  rymが大」→「△bは
負」Ru1e 2−5  :  ry+uが中」→「Δ
bはゼロ」推論器12の以上のアルゴリズムによる△a
、Δbの具体的な演算方法を第2図により説明する。
Ru1e2 1: “re is positive” → “Δa is positive” R
u1e 2-2: "re is zero" → "Δa is zero" Ru1e 2-3: "re is negative" → "Δa is negative" Ru1e 2-4: rym is large" → "Δb is negative" Ru1e 2-5: ry+u is medium” → “Δ
b is zero” △a by the above algorithm of the reasoner 12
, Δb will be explained in detail with reference to FIG.

これは、e+ym+Δa、Δbなどパラメータが「正」
This means that parameters such as e+ym+Δa, Δb are “positive”
.

「負」、「大」、「中」「小」、「ゼロ」などの表現が
抽象的なものであり、あいまい性があるため、各パラメ
ータの動き得る範囲に対して測度分布μij (i =
 1〜6゜j=1〜4)を与えて定義するものである。
Since expressions such as "negative", "large", "medium", "small", and "zero" are abstract and have ambiguity, the measure distribution μij (i =
1 to 6 degrees (j=1 to 4).

第2図において、μm1は01μm2はym、μm3は
Δa、μ14はΔbの各パラメータを変数として、前記
Ru1eに対応した(i=1はRu1e 2−1. i
=2はRu1e2−2、i=3はRu1e2−3、i=
4はRu1e2−4、i=5はRu1e2−5、i=6
はRu1e 2−6)測度分布である。
In FIG. 2, μm1 corresponds to Ru1e, with the parameters 01 μm2, ym, μm3, Δa, and μ14, Δb (i=1 being Ru1e 2-1.i
=2 is Ru1e2-2, i=3 is Ru1e2-3, i=
4 is Ru1e2-4, i=5 is Ru1e2-5, i=6
is the Ru1e 2-6) measure distribution.

即ち、第2図のRu1e2−1について見れば、このと
きの偏差eから測度μm1°を算出するため、偏差eは
−1〜+1に変換するものとして図示パターンの測度分
布μm1を設ける。このときのパターンは熟練運転員の
経験則等に基づき決定し更に修正を加え最適なものへと
修正して作成したものである。 ymはこのRu1eで
は無関係なので、yn+の如何にかかわらず測度μm2
°は1とする。△aはeの場合と同様なので、そのとき
の△aから測度μI3°を求めるためeと同じパターン
の測度分布μm3を設ける。△bもこのRu1eでは無
関係となり、パターンは設けない。
That is, regarding Ru1e2-1 in FIG. 2, in order to calculate the measure μm1° from the deviation e at this time, a measure distribution μm1 of the illustrated pattern is provided so that the deviation e is converted from −1 to +1. The pattern at this time was determined based on the empirical rules of experienced operators, and was further modified to create an optimal pattern. Since ym is irrelevant in this Ru1e, the measure μm2 regardless of yn+
° is 1. Since Δa is the same as in the case of e, in order to obtain the measure μI3° from Δa at that time, a measure distribution μm3 having the same pattern as e is provided. Δb is also irrelevant in this Ru1e, and no pattern is provided.

以下、同様にしてRu1.e 2−2〜Ru1e 2−
6におけるerymr△a、△bに対する測度分布も図
示の如く予め設定しておく。
Hereafter, Ru1. e2-2~Ru1e2-
The measure distribution for erymrΔa and Δb in 6 is also set in advance as shown in the figure.

さて、実際に各パラメータの値e 1 、ym Iが図
示の如く入力されると、推論器12は図示のμ1j(i
−1〜6.j=]〜4)の測度分布から入力された値に
対応する測度μij’ (i==1〜6.l=1〜4)
を決定する。また、入力されたパラメータの値から各R
u1eの結論の確からしさを求めるため、μy I N
 (i)を各測度μiJ0の論理積として次式により演
算する。
Now, when the values e 1 and ym I of each parameter are actually input as shown in the figure, the inference unit 12 calculates μ1j (i
-1 to 6. Measure μij' corresponding to the value input from the measure distribution of j= ] ~ 4) (i = = 1 ~ 6. l = 1 ~ 4)
Determine. Also, from the input parameter values, each R
In order to find the certainty of u1e's conclusion, μy I N
(i) is calculated using the following equation as a logical product of each measure μiJ0.

例えば、Ru1e2−6について見れば、/jMIN(
6)は、Δbの測度分布μ64のうち測度がμ62°(
〈μ61°)に対応する値μ64°となり、「△bは正
」であるという結論の確がらしさμ64°(△b)は、
測度分布μ64のうちμ64°以下の斜線を施した部分
となる。
For example, if we look at Ru1e2-6, /jMIN(
6), the measure of Δb is μ62° (
The value μ64° corresponds to 〈μ61°), and the probability μ64°(△b) of the conclusion that “△b is positive” is
This is the shaded portion below μ64° of the measure distribution μ64.

このようにして、上記μy+N(i)以上の値をカット
し、  μi3°(△a)、μit°(Δb)として取
り直すことにより、与えられたパラメータに対応して各
々のRu1e毎に結論の確がらしさが得られる。
In this way, by cutting the values above μy+N(i) and retaking them as μi3° (△a) and μit° (Δb), the conclusion can be confirmed for each Ru1e corresponding to the given parameters. You can get a sense of belonging.

最後に、各々のRu1eのμi3°(△”)+ p x
 4゜(△b)の測度分布の論理和として、 を演算し、この測度分布の重心として△ao。
Finally, μi3° (△”) + p x of each Ru1e
As the logical sum of the measure distribution of 4°(△b), calculate △ao as the center of gravity of this measure distribution.

△b0 を求める。Find Δb0.

例えば、Δa0 を求める場合は、Ru1e2−1〜R
u1e2−3におけるμm3°(△a)−p 3’ s
°(△a)として測度分布μ13〜μ33のうち斜線を
施こした部分を集め、第2図の右上部に示すように重る
合わすことにより得られる斜線部分がμMAX(△a)
となり、この重心を求めることにより、図示の如きΔa
0が求まる。△b0も同様である。
For example, when calculating Δa0, Ru1e2-1~R
μm3°(△a)-p3's in u1e2-3
Collect the shaded parts of the measure distribution μ13 to μ33 as °(△a), and overlap them as shown in the upper right corner of Figure 2. The shaded part obtained is μMAX(△a).
By finding this center of gravity, we can obtain Δa as shown in the figure.
Find 0. The same applies to Δb0.

以上は推論器12の動作説明であるが、推論器11も同
様に動作し、加減弁内外面温度差ΔTおよび主蒸気温度
Tsを入力して加減弁内面温度変化率目標値rを算出す
ることとなる。
The above is an explanation of the operation of the inference device 12, but the inference device 11 operates in the same way, and inputs the temperature difference ΔT between the inner and outer surfaces of the control valve and the main steam temperature Ts to calculate the target value r for the rate of change in temperature inside the control valve. becomes.

このように、推論器11.12で、蒸気止め弁2の開閉
動作1周期毎に演算を実行し、△aO1Δb0 を算出
し、第4図に示した開度指令2のパルス周期aとパルス
幅すを更新する。この結果、そのときの主蒸気温度と加
減弁内外面温度差に応じた蒸気止め弁2の開閉操作が自
動的に実施され、加減弁3の暖機を熱応力制限を越える
ことなく短時間で完了することができる。
In this way, the reasoner 11.12 executes calculations for each cycle of the opening/closing operation of the steam stop valve 2, calculates ΔaO1Δb0, and calculates the pulse period a and pulse width of the opening command 2 shown in FIG. update. As a result, the steam stop valve 2 is automatically opened and closed according to the main steam temperature and the temperature difference between the inner and outer surfaces of the regulator valve, and the regulator valve 3 can be warmed up in a short time without exceeding the thermal stress limit. can be completed.

[発明の効果] 以上のように本発明によれば、蒸気弁の暖機を行なう際
に、流入する蒸気状態と弁状態に応じて蒸気流入弁の周
期と幅を変えるようにしたので、蒸気状態および弁メタ
ル状態に適合した自動暖機運転が可能となり、熱応力制
限を越えることなく短時間で蒸気弁の暖機を完了して、
タービンの平均起動時間を短縮することができるように
なる。
[Effects of the Invention] As described above, according to the present invention, when warming up the steam valve, the period and width of the steam inflow valve are changed depending on the incoming steam state and the valve state, so that the steam Automatic warm-up operation adapted to the state and valve metal condition is now possible, completing warm-up of the steam valve in a short time without exceeding thermal stress limits.
It becomes possible to shorten the average startup time of the turbine.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例である加減弁暖気自動化装置
の暖機調整部のブロック図、第2図は第1図の推論演算
部の論理および測度分布を示すパターン図、第3図は加
減弁暖機について説明するための一般的なタービン蒸気
系統図、第4図は第3図の加減弁暖機について説明する
ための各種信号のりイムチャートである。 11.12・・・推論器、13・・・弁開閉パルス発生
器。
FIG. 1 is a block diagram of a warm-up adjustment section of an automatic regulating valve warm-up device that is an embodiment of the present invention, FIG. 2 is a pattern diagram showing the logic and measure distribution of the inference calculation section of FIG. 1, and FIG. 4 is a general turbine steam system diagram for explaining the warming up of the regulating valve, and FIG. 4 is a time chart of various signals for explaining the warming up of the regulating valve in FIG. 11.12... Reasoner, 13... Valve opening/closing pulse generator.

Claims (2)

【特許請求の範囲】[Claims] (1)蒸気弁より上流側に設けられる弁を断続的に開閉
制御することにより前記蒸気弁に蒸気を流入して暖機を
行なうタービン蒸気弁暖機制御装置において、前記蒸気
弁に流入する蒸気の状態とそのときの弁メタルの状態に
応じて前記上流側に設けられる弁の開閉周期と幅を調節
する調節器を設けたことを特徴とするタービン蒸気弁暖
機制御装置。
(1) In a turbine steam valve warm-up control device that warms up steam by flowing steam into the steam valve by intermittently controlling the opening and closing of a valve provided upstream of the steam valve, the steam flowing into the steam valve 1. A turbine steam valve warm-up control device comprising: a regulator that adjusts the opening/closing period and width of the valve provided on the upstream side according to the state of the valve metal and the state of the valve metal at that time.
(2)蒸気弁より上流側に設けられる弁を断続的に開閉
制御することにより前記蒸気弁に蒸気を流入して暖機を
行なうタービン蒸気弁暖機制御装置において、蒸気温度
と蒸気弁内外面温度差とを入力して蒸気弁内面温度変化
率目標値を予め定められた制御則に基づく測度分布を用
いて算出する第1の推論器と、前記蒸気弁内面温度変化
率目標値と入力する蒸気弁内面温度変化率との偏差と前
記蒸気弁内面温度変化率のピーク値とを入力して前記上
流側に設けられる弁の開閉周期と幅の増分指令を予め定
めた制御則に基づく測度分布を用いて算出する第2の推
論器とを設けたことを特徴とするタービン蒸気弁暖機制
御装置。
(2) In a turbine steam valve warm-up control device that warms up steam by flowing steam into the steam valve by intermittently controlling the opening and closing of a valve provided upstream of the steam valve, the steam temperature and the inner and outer surfaces of the steam valve are determined. a first reasoner that inputs the temperature difference and calculates a steam valve inner surface temperature change rate target value using a measure distribution based on a predetermined control law; and the steam valve inner surface temperature change rate target value. A measure distribution based on a control law that predetermines increment commands for the opening/closing cycle and width of the valve provided on the upstream side by inputting the deviation from the steam valve inner surface temperature change rate and the peak value of the steam valve inner surface temperature change rate. 1. A turbine steam valve warm-up control device comprising: a second inference device that performs calculations using .
JP21448285A 1985-09-30 1985-09-30 Turbine steam valve warm-up device Pending JPS6275005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21448285A JPS6275005A (en) 1985-09-30 1985-09-30 Turbine steam valve warm-up device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21448285A JPS6275005A (en) 1985-09-30 1985-09-30 Turbine steam valve warm-up device

Publications (1)

Publication Number Publication Date
JPS6275005A true JPS6275005A (en) 1987-04-06

Family

ID=16656441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21448285A Pending JPS6275005A (en) 1985-09-30 1985-09-30 Turbine steam valve warm-up device

Country Status (1)

Country Link
JP (1) JPS6275005A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0381506A (en) * 1989-08-25 1991-04-05 Toshiba Corp Steam governing valve chest warming method
WO2020217719A1 (en) * 2019-04-23 2020-10-29 三菱パワー株式会社 Steam turbine plant and operation method, combined cycle plant and operation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0381506A (en) * 1989-08-25 1991-04-05 Toshiba Corp Steam governing valve chest warming method
WO2020217719A1 (en) * 2019-04-23 2020-10-29 三菱パワー株式会社 Steam turbine plant and operation method, combined cycle plant and operation method
JP2020180555A (en) * 2019-04-23 2020-11-05 三菱日立パワーシステムズ株式会社 Steam turbine plant and method for operating the same, and combined cycle plant and method for operating the same
US11879365B2 (en) 2019-04-23 2024-01-23 Mitsubishi Heavy Industries, Ltd. Steam turbine plant and operation method, combined cycle plant and operation method

Similar Documents

Publication Publication Date Title
US5691896A (en) Field based process control system with auto-tuning
US5209398A (en) Model-based thermobalance with feedback
CN107664058A (en) Method for controlling cooling system, system and the vehicle of engine
Diop et al. Preserving stability/performance when facing an unknown time-delay
JPS6275005A (en) Turbine steam valve warm-up device
JPH11173631A (en) Air conditioner controller
US5995532A (en) Method using fuzzy logic for controlling a furnace
CN108679799A (en) A kind of energy adjustment method of SCREW COMPRESSOR
JPH0895647A (en) Program temperature controller
JP3001961B2 (en) Flow rate detection method, flow rate control method, and flow rate detection device for reheating circuit
JPS6235573B2 (en)
JPS63176605A (en) Warming controller
US5743464A (en) System for controlling work temperature by a programmed controller
JPH05203233A (en) Control device for air conditioner
JPH0297842A (en) Air conditioner
JPH04143801A (en) Controller for dam flow rate adverse adjusting gate
JPS6214073B2 (en)
JP3172608B2 (en) Automatic bath pot and hot water filling method
JPH03258400A (en) Dissolved oxygen concentration control apparatus
JPH10326101A (en) Pid control method and device therefor
JPH0412331Y2 (en)
JPS5829017A (en) Water level controlling method for dam
JPS58160762A (en) Apparatus for controlling hot water supply apparatus
JPH03160512A (en) Temperature controller for thermal equipment
JPS61123702A (en) Warming apparatus for main steam control valve