JPS6274702A - Unmanned conveying system - Google Patents
Unmanned conveying systemInfo
- Publication number
- JPS6274702A JPS6274702A JP21553485A JP21553485A JPS6274702A JP S6274702 A JPS6274702 A JP S6274702A JP 21553485 A JP21553485 A JP 21553485A JP 21553485 A JP21553485 A JP 21553485A JP S6274702 A JPS6274702 A JP S6274702A
- Authority
- JP
- Japan
- Prior art keywords
- road surface
- guided vehicle
- rail
- vehicle
- wheels
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Platform Screen Doors And Railroad Systems (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
この発明は各種工場内等における荷物搬送の自動化を図
るなどに不可欠な無人搬送システムに関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an unmanned transportation system that is essential for automating the transportation of cargo in various factories.
近年、各種工場等では自動化による人員削減を図るべく
、無人搬送システムが多く採用されて来ている。これは
無人搬送車をコンピュータ制御により定められた走行ル
ート(路面)に沿って自走させて荷物を目的の場所に搬
送するもので、同時に複数台の無人搬送車を走らせて稼
動する場合が多い。In recent years, unmanned transportation systems have been widely adopted in various factories in order to reduce the number of personnel through automation. This is a system in which an automated guided vehicle is driven by itself along a computer-controlled route (road surface) to transport cargo to a destination, and it is often operated by multiple automated guided vehicles running at the same time. .
その−例を第12図により説明すると、工場等の敷地に
建てられた一方の建屋A内の走行ルート1と、他方の建
JIB内の走行ルート2と、その両建屋A、B間に配し
て両者の走行ルート1.2を接続する走行ルート3とが
設けられ、これらの走行ルート1,2.3上を複数台の
無人搬送車4・・・が行ったり来たりして走行するよう
になっている。An example of this is explained with reference to Fig. 12. A running route 1 in one building A built on the site of a factory, etc., a running route 2 in the other building JIB, and a route between the two buildings A and B. A traveling route 3 is provided that connects the traveling routes 1.2 of the two, and a plurality of automatic guided vehicles 4... travel back and forth on these traveling routes 1, 2.3. It looks like this.
ところで、上述した無人搬送システムにおいては、各建
屋A、B内の走行ルート1.2上では無人搬送車4が複
数台同時に自由に動き回れるが、その両建mA、Bのど
ちらか一方から他方に移動する時は必ず上記走行ルート
3を通って行かなければならない。しかしその両建屋A
、B間の走行ルート3は通常では建屋等の周囲条件によ
り単線とされている場合が多く、その単線区間Cとなる
走行ルート3上では無人搬送車4がすれ違うことができ
ないので、建屋Aから建屋Bに行こうとする無人搬送車
4とその逆に帰ろうとする無人搬送車とがあった時は、
該単線区間Cに先に侵入した方を優先して走行させ、こ
れが該単線区間Cを通過し終わったら、それまで待機さ
せておいた他方のものの該単線区間Cへの侵入を行なわ
せるように制御する必要があった。By the way, in the above-mentioned unmanned guided vehicle system, a plurality of unmanned guided vehicles 4 can move freely at the same time on the travel route 1.2 in each of the buildings A and B, but from one of the two buildings mA and B to the other. When traveling to , you must always take the above driving route 3. However, both buildings A
, B is usually a single track due to the surrounding conditions of the building, etc., and the automatic guided vehicle 4 cannot pass each other on the single track section C, so the automatic guided vehicle 4 cannot pass each other on the single track section C. When there is an unmanned guided vehicle 4 trying to go to building B and the other unmanned guided vehicle trying to go back,
The vehicle that entered the single-track section C first will be given priority, and once it has passed through the single-track section C, the other vehicle that has been waiting until then will be allowed to enter the single-track section C. It needed to be controlled.
従って、こうした無人搬送システムでは、例えば一方の
建屋A内で製造した部品等の荷物を複数台の無人搬送車
4に次々と積載して他方の建屋B内に搬送させ、そこで
空になった無人搬送車4は再び建屋Aに次々と帰還させ
て再度荷物の搬送を行うと言った作業を繰返すような場
合、上述の単線区間Cの両端で何台かの無人搬送車4が
待機すべく停止して詰まった状態となる現象を招き、そ
れだけ荷物搬送のサイクルタイムが長く作業効率が悪い
と共に、単線区間Cに両方から無人搬送車4が侵入して
衝突することを防止する為の制御芸能をシステムに加え
なければならず、それだけ制御装置が複雑となると言っ
た具合に二重のデメリットがあった。Therefore, in such an unmanned conveyance system, for example, cargo such as parts manufactured in one building A is loaded one after another onto a plurality of unmanned guided vehicles 4 and transported to the other building B, where the empty unmanned If the guided vehicles 4 are to repeat the process of returning to building A one after another and transporting the cargo again, several automated guided vehicles 4 will stop at both ends of the above-mentioned single track section C to wait. This results in a jammed condition, which lengthens the cycle time of cargo transportation and reduces work efficiency.In addition, control performance is required to prevent automatic guided vehicles 4 from entering the single track section C from both sides and colliding with each other. This had a double disadvantage in that it had to be added to the system, making the control device that much more complicated.
この発明は上記事情に鑑みなされたもので、単線区間を
設けなければならない条件下であっても、無人搬送車を
該単線区間の両端で待機させることなく往復すれ違い走
行させることができて、搬送作業の効率アップと制御装
置の簡略化を図れるようにした無人搬送システムを提供
することを目的とする。This invention was made in view of the above circumstances, and even under conditions where a single-track section must be provided, it is possible to make automatic guided vehicles run back and forth and pass each other without having to wait at both ends of the single-track section. The purpose of the present invention is to provide an unmanned transportation system that improves work efficiency and simplifies the control device.
この発明の無人搬送システムは、上記目的を達成すべく
、駆動車輪により路面走行する無人搬送車の両側に前記
路面には接地しない補助車輪を設け、且つその両側補助
車輪を介して無人搬送車が走行可能となる高架レールを
単線区間等の路面上の無人搬送車の車高より高い位置に
設けると共に、その高架レールの両端側に配しそれぞれ
傾斜状態となって無人搬送車の路面から高架レール及び
高架レールから路面への乗移りを可能とすると共に跳上
がり状態となって高架レールに関係なくその下側を無人
搬送車が路面走行して通過するのを可能とする乗降用レ
ールを設けた構成で、単線区間でも無人搬送車が衝突す
ることなく上下立体的に、例えば往路は高架レール上を
走行し、復路はその下側の路面上を走行するようになっ
て、複数台の無人搬送車が待機することなくスムーズに
運行して能率的な荷物搬送を行うようになるものである
。In order to achieve the above object, the automatic guided vehicle system of the present invention is provided with auxiliary wheels that do not touch the road surface on both sides of an automatic guided vehicle that travels on a road surface using drive wheels, and in which the automatic guided vehicle travels through the auxiliary wheels on both sides. Elevated rails that can be run are installed at a position higher than the vehicle height of the automatic guided vehicle on the road surface such as a single-track section, and the elevated rails are arranged at both ends of the elevated rail so that the elevated rails are tilted from the road surface of the automatic guided vehicle. and a boarding/disembarking rail that enables transfer from the elevated rail to the road surface and that also jumps up and allows the automated guided vehicle to travel on the road surface and pass under the elevated rail regardless of the elevated rail. With this configuration, automatic guided vehicles can run vertically and vertically without colliding even on single-track sections, for example, on the outbound route, they travel on elevated rails, and on the return route, they travel on the road surface below, allowing multiple unmanned guided vehicles to travel vertically without colliding. This allows vehicles to operate smoothly and efficiently transport cargo without having to wait.
以下この発明の一実施例を第1図乃至第10図により説
明する。まず第1図及び第2図において10は無人搬送
車を示し、荷物(図示せず)を積載する車体11の下側
後部に一対の走行用駆動モータ12が設けられ、このモ
ータ12に後述する減速ギヤー等を介して回転駆動され
る左右一対の駆動車輪13が設けられている。また車体
11の下側前部中央にはターンテーブルの如き回転機構
14を介して操舵車輪15が設けられ、これが操舵用駆
動モータ16により回転機構15を介して向きを変えら
れるようになっている。なお、17は上記各モータ12
.16の電源となるバッテリーである。そして上記左右
駆動車輪13を回転駆動すると共に操舵車輪15の向き
を制御することで各種走行ルートに沿って自由に路面走
行できるようになっている。An embodiment of the present invention will be described below with reference to FIGS. 1 to 10. First, in FIGS. 1 and 2, reference numeral 10 indicates an automatic guided vehicle, and a pair of driving drive motors 12 are provided at the lower rear part of a vehicle body 11 on which luggage (not shown) is loaded. A pair of left and right drive wheels 13 are provided that are rotatably driven via a reduction gear or the like. Further, a steering wheel 15 is provided at the center of the lower front part of the vehicle body 11 via a rotation mechanism 14 such as a turntable, and the direction of this wheel can be changed via the rotation mechanism 15 by a steering drive motor 16. . In addition, 17 is each of the above-mentioned motors 12
.. This is a battery that serves as the power source for 16 units. By rotationally driving the left and right drive wheels 13 and controlling the direction of the steering wheels 15, the vehicle can freely travel on the road along various travel routes.
こうした無人搬送車10の車体11の前後部に左右一対
ずつの補助車輪18.19が設けられている。この補助
車輪18.19は7ランジ18a。A pair of left and right auxiliary wheels 18 and 19 are provided at the front and rear of the vehicle body 11 of the automatic guided vehicle 10. This auxiliary wheel 18.19 has 7 lunges 18a.
19aを有したレール走行用車輪で、前側の左右補助車
輪18は従動輪として車体11下部に取付けた軸受20
に軸支され、後側の左右補助車輪1つは駆DIとして車
体11下部の左右駆り車輪13と同軸的に軸支されて、
それぞれ車体11の両外測位置に等しく突出する状態に
設けられている。The front left and right auxiliary wheels 18 have bearings 20 attached to the lower part of the vehicle body 11 as driven wheels.
One of the left and right auxiliary wheels on the rear side is coaxially supported with the left and right drive wheels 13 at the bottom of the vehicle body 11 as a drive DI,
They are provided so as to protrude equally at both external positions of the vehicle body 11, respectively.
またこれら補助車輪18.19は上記駆動車輪13及び
操舵車輪15よりも小径で、通常の路面走行時には路面
に接地することなく浮き上った状態となっている。Furthermore, these auxiliary wheels 18 and 19 have a smaller diameter than the driving wheels 13 and the steering wheels 15, and are in a floating state without touching the road surface during normal road running.
一方、上記無人搬送車10が走行する走行路を第3図に
示す。ここに示す路面21は第12図で)ホベた単線区
間Cの走行ルート3に相当する部分であって、この両端
側に続く他の走行ルートは従来同様であるので図示省略
している。ここでその路面21は単線区間で、そのまま
では無人搬送車10がすれ違うことができないので、立
体化すべくその路面21上の上記無人搬送車10の車高
より高い位置に左右一対の高架レール22が複数本の支
脚23を介して設けられていると共に、その高架レール
22の両端側に連続してそれぞれ適度な勾配で斜降する
だ右一対ずつの傾斜レール24゜25が下端を支柱26
.27に支持させて設けられている。それら両端側の傾
斜レール24.25の下端は路面走行状態時の無人搬送
車10の補助車輪18.19の上端面より少し高い位置
で支柱26.27に支持されている。そして更にその一
方の左右傾斜レール24の下端と接続するよう基端部を
支柱26に支持させて左右一対の始端側乗降用レール2
8が設けられ、また他方の左右傾斜レール25の下端に
接続するよう基端部を支柱27に支持させて左右一対の
終端側乗降用レール29が設けられている。On the other hand, FIG. 3 shows a travel path on which the automatic guided vehicle 10 travels. The road surface 21 shown here corresponds to the running route 3 of the single-track section C shown in FIG. Here, the road surface 21 is a single track section, and the automatic guided vehicles 10 cannot pass each other as it is, so in order to make it three-dimensional, a pair of left and right elevated rails 22 are installed on the road surface 21 at a position higher than the vehicle height of the automatic guided vehicle 10. A pair of inclined rails 24 and 25 on the right side are provided via a plurality of support legs 23, and are continuous on both ends of the elevated rail 22 and descend at a moderate slope.
.. It is supported by 27. The lower ends of the inclined rails 24, 25 on both end sides are supported by supports 26, 27 at a position slightly higher than the upper end surface of the auxiliary wheels 18, 19 of the automatic guided vehicle 10 when running on a road surface. Furthermore, the pair of left and right starting end side getting on/off rails 2 are supported by the support 26 at their base ends so as to be connected to the lower end of one of the left and right inclined rails 24.
8 is provided, and a pair of left and right end side getting on/off rails 29 are provided with their base ends supported by pillars 27 so as to be connected to the lower ends of the other left and right inclined rails 25.
ここで上記始端側乗降レール28は基端部が支柱26に
回動可能に枢着されて、平時は第4図(a)に示す如く
斜めにカットした先端が路面21上に接地するように自
重により下方に回動して傾斜レール24と同勾配の傾斜
状態とされて、これに一方から路面走行して来た無人搬
送車10が前後補助車輪18.19でスムーズに乗り上
がって傾斜レール24を介して高架レール22上へ移行
できるようになっている。またその逆に第4図(b)に
示す如く他方から高架レール22の下側を無人搬送車1
0が路面走行して来ると、その左右補助車輪18により
始端側乗降用レール28が下側から押上げられて跳上が
り、該無人搬送車10の通過を支障無く可能としている
うまた上記終端側乗降用レール29は第5図(a)に示
す如く基端部が支柱27に回動可能に枢着されていると
共に、途中が該支柱27上端との間に掛止した吊上げば
ね30により略水平な跳上がり状態に常時付勢されてい
て、他方から路面走行しで来た無人搬送車10は該レー
ル29に係わりなくそのまま高架レール22の下側を路
面走行して行けるようになり、また上記と逆に一方から
高架レール22上を通って傾斜レール25上を第5図(
b)に示す如く無人搬送車10が下だって来ると、その
搬送車1oの荷重により終端側乗降用レール2つは吊上
げばね30に抗して下方に回動して該傾斜レール25と
同傾斜で先端部が路面21上に接地する状態となって、
該無人搬送車10の路面21上への翠ムースな移行を可
能とするようになっている。Here, the base end of the starting end side getting on/off rail 28 is rotatably pivoted to the support 26 so that the diagonally cut end touches the road surface 21 as shown in FIG. 4(a) during normal times. It rotates downward due to its own weight and becomes inclined at the same slope as the inclined rail 24, and the automatic guided vehicle 10 that has been traveling on the road from one side smoothly climbs onto the inclined rail with its front and rear auxiliary wheels 18 and 19. It is possible to move onto the elevated rail 22 via the rail 24. Conversely, as shown in FIG. 4(b), the automatic guided vehicle 1
When the vehicle 0 runs on the road, the starting end boarding rail 28 is pushed up from below by the left and right auxiliary wheels 18 and jumps up, allowing the automated guided vehicle 10 to pass without any hindrance. As shown in FIG. 5(a), the getting on/off rail 29 has its base end pivotally connected to the support column 27 so as to be rotatable, and the midway portion of the rail 29 is suspended by a lifting spring 30 hooked between it and the upper end of the support support 27. The automatic guided vehicle 10 which is always biased in a horizontal jumping state and which has traveled on the road from the other side can travel on the road below the elevated rail 22 regardless of the rail 29, and Contrary to the above, pass over the elevated rail 22 from one side and over the inclined rail 25 as shown in Fig. 5 (
As shown in b), when the automatic guided vehicle 10 descends, the two end-side boarding and alighting rails rotate downward against the lifting spring 30 due to the load of the guided vehicle 1o, and are inclined at the same angle as the inclined rail 25. , the tip is in contact with the road surface 21,
This allows the automatic guided vehicle 10 to smoothly move onto the road surface 21.
なお、第6図は2台の無人搬送車10.10が一方は高
架レール22上を、他方はその下側の路面21上を互い
に逆向きに走行している状態を示し、該左右高架レール
22を支持する左右の支脚23は無人搬送車10の全幅
より大きな間隔で立設され、それらの上端に左右高架レ
ール22が無人搬送車10の両側に突出する左右補助車
輪18゜18及び19.19の車輪幅と等しいレール間
幅で設けられている。In addition, FIG. 6 shows a state in which two automatic guided vehicles 10.10 are running in opposite directions, one on the elevated rail 22 and the other on the road surface 21 below, and the left and right elevated rails are running in opposite directions. The left and right support legs 23 supporting the automatic guided vehicle 10 are erected at intervals larger than the entire width of the automatic guided vehicle 10, and the left and right elevated rails 22 are attached to the upper ends of the left and right auxiliary wheels 18, 18 and 19. The width between the rails is equal to the width of the 19 wheels.
また、第7図及び第8図は上記無人搬送車10の駆動車
輪13とこれと同軸的に配する駆動甲補助車輪19との
関係構造を示すもので、まず走行用駆動モータ12の軸
に直結して駆動用小歯車31が設けられ、この小山車3
1と噛合する駆動用大歯車32をnして回転駆動される
車軸33が車体11下部に取付けた軸受ハウジング34
.35にころ軸受36.37により支承され、この車軸
33の中間部に駆動車輪13が、外端部に補助車輪19
がそれぞれ取付られている。ここでその駆動車輪13と
補助車輪19とは直径がDI >D2と大小異にされて
いることから、両者共に車軸33に直結して回転駆動す
ると、互の周速に差が生じて、路面21上を走行する場
合と高架レール22上を走行する場合とで速度が異なっ
て搬送サイクルタイムが狂うなど制御が面倒となる。こ
の為に上記駆動車輪13と補助車輪19との周速を同一
とすべく、該補助車輪19は車軸33に直結して取付け
られているが、駆動車輪13はベアリング38を介して
車軸33に回転自在に取付けられて、該車軸33に減速
歯車機構39を介して回転駆動されるようになっている
。その減速歯車機構39は、車軸33に嵌着した大歯車
40と、この大歯車40と各々噛合する状態に上記軸受
ハウジング34からそれぞれ突設したシャフト41に支
持させた一対の小歯車42と、この両生歯車42にそれ
ぞれ内接する如く噛合する状態で上記駆動車輪13の一
側面部に固定した環状歯車43とから構成され、それら
各歯車40,42.43のギヤー比を適当に設定するこ
とにより、互いに直径が異なる駆動車輪13と補助車輪
1つとの回転数を変えて両者の周速を同一にしている。7 and 8 show the relationship structure between the drive wheels 13 of the automatic guided vehicle 10 and the drive instep auxiliary wheels 19 arranged coaxially therewith. A small drive gear 31 is provided in direct connection with the small gear 31 for driving.
A bearing housing 34 is attached to the lower part of the vehicle body 11, and an axle 33 is rotatably driven by a large driving gear 32 that meshes with the bearing housing 34.
.. 35 is supported by roller bearings 36, 37, the drive wheel 13 is supported at the middle part of this axle 33, and the auxiliary wheel 19 is supported at the outer end.
are installed respectively. Here, since the drive wheel 13 and the auxiliary wheel 19 have different diameters (DI>D2), when both are directly connected to the axle 33 and driven to rotate, a difference occurs in their circumferential speeds, and the road surface The speeds are different when traveling on the elevated rail 21 and when traveling on the elevated rail 22, causing trouble in controlling the transport cycle time. For this reason, in order to make the circumferential speeds of the drive wheel 13 and the auxiliary wheel 19 the same, the auxiliary wheel 19 is attached directly to the axle 33, but the drive wheel 13 is connected to the axle 33 via a bearing 38. It is rotatably mounted and rotationally driven by the axle 33 via a reduction gear mechanism 39. The reduction gear mechanism 39 includes a large gear 40 fitted onto an axle 33, and a pair of small gears 42 supported by shafts 41 respectively protruding from the bearing housing 34 so as to mesh with the large gear 40. It is composed of an annular gear 43 fixed to one side of the drive wheel 13 in a state of meshing with the double gear 42 so as to be inscribed therein, and by appropriately setting the gear ratio of each gear 40, 42, 43. The rotation speeds of the driving wheel 13 and one auxiliary wheel, which have different diameters from each other, are changed to make the circumferential speeds of both wheels the same.
つまり、前述した走行用駆動モータ12の回転数をNと
し、駆動用小歯車31の歯数をZp、駆動大歯車32の
歯数をZgとすると、補助車輪19の回転数N2は、
である。これに対して上記減速歯車機構39の大歯車4
0は上記(1)式で求められる補助車輪19の回転数N
2と同じ回転数で回るが、その大歯車40歯数を71と
し、小歯車42の歯数を72とし、環状歯車43の歯数
を73とすると、そのギヤー比GRが、
と表わせる。ここで駆動車輪13の直径をDI、補助車
輪1つの直径をD2として、
の関係式が成立するように、上記大歯車40の歯数71
と小歯車42の歯@Z2を選定すれば、該駆動車輪13
と補助車輪19との外周面の周速が同じくなる。なおこ
の時の駆動車輪13の回転数N1と補助車輪19の回転
数N2との関係は、上記(1)式と(2式とを用いて、
となること明らかである。In other words, if the number of rotations of the above-mentioned traveling drive motor 12 is N, the number of teeth of the small drive gear 31 is Zp, and the number of teeth of the large drive gear 32 is Zg, then the number of rotations N2 of the auxiliary wheel 19 is as follows. . On the other hand, the large gear 4 of the reduction gear mechanism 39
0 is the rotation speed N of the auxiliary wheel 19 determined by the above formula (1)
2, but if the number of teeth of the large gear 40 is 71, the number of teeth of the small gear 42 is 72, and the number of teeth of the annular gear 43 is 73, the gear ratio GR can be expressed as follows. Here, assuming that the diameter of the driving wheel 13 is DI and the diameter of one auxiliary wheel is D2, the number of teeth of the large gear 40 is 71 so that the following relational expression is established.
If the tooth @Z2 of the small gear 42 is selected, the drive wheel 13
The circumferential speeds of the outer circumferential surfaces of the auxiliary wheels 19 and auxiliary wheels 19 become the same. It is clear that the relationship between the rotational speed N1 of the drive wheel 13 and the rotational speed N2 of the auxiliary wheel 19 at this time is as follows using the above equations (1) and (2).
こうして駆動車輪13と補助車輪19との周速を同じく
することで、無人搬送車10が路面21上を走行する時
も高架レール22上を走行する時も常に一定速度となり
、搬送サイクルタイムの狂いなどの修正の為の面倒な制
御が不要となる。In this way, by making the circumferential speed of the driving wheels 13 and the auxiliary wheels 19 the same, the automatic guided vehicle 10 always has a constant speed both when traveling on the road surface 21 and when traveling on the elevated rail 22, which prevents deviations in the transportation cycle time. This eliminates the need for troublesome controls for corrections such as
また、その周速を同じくするもう一つのメリットとして
、例えば図示しないが車体の路面走行用の前後車輪並び
にレール走行用の前後車輪いずれも駆動輪としたような
無人搬送車の場合、第4図(a)の如く後部駆動車輪が
路面上にあって、前部補助車輪がレール上にある時、そ
の両者の周速が異なると、遅い方の車輪は必ずブレーキ
作用を生じ、エネルギーロスを招くと共にスムーズな走
行ができなす、甚だしい場合には駆動機構等の構成機器
の一部の破損を招くことになるが、こうした問題が解消
できることになる。Another advantage of having the same circumferential speed is, for example, in the case of an automatic guided vehicle (not shown) in which both the front and rear wheels for running on road surfaces and the front and rear wheels for running on rails are drive wheels, as shown in Figure 4. When the rear drive wheels are on the road surface and the front auxiliary wheels are on the rails as in (a), if the circumferential speeds of the two wheels are different, the slower wheel will always have a braking effect, causing energy loss. However, this problem can be solved, which would make it difficult for the vehicle to run smoothly and, in extreme cases, cause damage to some of the components such as the drive mechanism.
次に、上記無人搬送車10の舵取りを行う操舵用駆動モ
ータ16の制御装置について現状のものと比較して述べ
ると、第9図(a)は現状の操舵用駆動モータ制御装置
のブロック図で、操舵指令回路50と、光誘導・電磁誘
導又はジャイロ搬送車でも必ず必要な操舵角(偏差)検
知回路51とを設け、その操舵指令回路50からの指令
信号と操舵角(偏差)検知器回路51からの検出信号と
の差分を第1偏差検出器52で得て、その操舵角偏差信
号を速度指令信号として出力し、これと操舵用駆動モー
タ16の速度検出回路53からの速度信号との差分を第
2謳差検出器54で得て、その出力信号を電流指令回路
55に送って電流指令信号を出力させ、この信号と上記
操舵用駆動モータ16の電流検出回路56からの電流検
出信号との差分を第3の偏差検出器57で得て、その偏
差電流信号を三角波発生回路58からの信号と合せて操
舵用駆動モータ16に送って、該モータ16を制御して
無人搬送車10の正常な操舵走行を行うようになってい
る。つまり操舵角(偏差)検知回路51からの操舵角偏
差信号を得て始めて正常な走行が可能なのである。Next, the control device for the steering drive motor 16 that steers the automatic guided vehicle 10 will be described in comparison with the current one. FIG. 9(a) is a block diagram of the current steering drive motor control device. , a steering command circuit 50 and a steering angle (deviation) detection circuit 51, which is always necessary for optical guidance, electromagnetic induction, or gyro guided vehicles, are provided, and a command signal from the steering command circuit 50 and a steering angle (deviation) detector circuit are provided. 51 is obtained by the first deviation detector 52, the steering angle deviation signal is outputted as a speed command signal, and the difference between this and the speed signal from the speed detection circuit 53 of the steering drive motor 16 is output. The difference is obtained by the second difference detector 54, and its output signal is sent to the current command circuit 55 to output a current command signal, and this signal and the current detection signal from the current detection circuit 56 of the steering drive motor 16 are output. A third deviation detector 57 obtains the difference between the two and the deviation current signal is sent to the steering drive motor 16 together with the signal from the triangular wave generating circuit 58, and the motor 16 is controlled to control the automatic guided vehicle 10. It is designed to perform normal steering operation. In other words, normal running is possible only after the steering angle deviation signal from the steering angle (deviation) detection circuit 51 is obtained.
その操舵角偏差信号の代表例を第1o図に示す。A typical example of the steering angle deviation signal is shown in FIG. 1o.
横軸は偏差量であり、縦軸は電圧レベルであり、この電
圧レベルが大きい程復元力が大きくなり、操舵用駆動モ
ータ16は操舵角偏差信号が無くなった時は常に直進走
行の範囲に収束しようとする力が作用するようになる。The horizontal axis is the amount of deviation, and the vertical axis is the voltage level. The higher the voltage level, the greater the restoring force, and the steering drive motor 16 always converges in the range of straight travel when the steering angle deviation signal disappears. The force that tries to do so comes into play.
しかしながら、上述した現状の操舵用駆動モータ制御装
置では、無人搬送車10が前述した如く路面21上より
高架レール22上に乗り上がる瞬間から、該搬送車10
が傾くために、上記操舵角(偏差)検知回路51による
操舵角偏差信号を適確に得ることが困難となる。従って
ここでは上記現状の制御装置に加えて第9図(b)に示
す如くレール検知回路59を設け、これがレール検出し
た時は、正常直進範囲の信号を常に与えるようにしてお
けば問題が無くなる。このレール検知回路5つは光セン
サー又は近接スイッチ等を用いてレールを検知して電気
的に第10図の正常直進範囲の信号を出力する構成とす
る。However, in the current steering drive motor control device described above, from the moment when the automatic guided vehicle 10 climbs onto the elevated rail 22 from the road surface 21 as described above, the guided vehicle 10
is tilted, making it difficult for the steering angle (deviation) detection circuit 51 to accurately obtain a steering angle deviation signal. Therefore, in addition to the above-mentioned current control device, a rail detection circuit 59 is provided as shown in FIG. 9(b), and when this circuit detects a rail, it always gives a signal in the normal straight-ahead range, and the problem will be eliminated. . The five rail detection circuits are configured to detect the rail using an optical sensor or a proximity switch, and electrically output a signal in the normal straight-travel range shown in FIG.
而して、以上述べた無人搬送システムを第12図の単線
区間Cに適用すれば、該単線区間Cでも両側から侵入し
lζ無人搬送車10同志が衝突することなく上下立体的
にすれ違い走行でき、例えば往路は高架レール22上を
走行し、復路はその下側の路面21上を走行するように
なるので、その′単線区間Cの両端で従来の如く無人搬
送車10を待機させる必要が無くなり、複数台の無人搬
送車10を停滞させることなくスムーズに運行させて、
荷物搬送のサイクルタイムの短い能率的な搬送作業が可
能となると共に、各無人搬送車10の運行制御が容易で
、制御装置の簡略化が図れるようになる。Therefore, if the above-described automatic guided vehicle system is applied to the single-track section C in Fig. 12, the 10 automatic guided vehicles can enter from both sides even in the single-track section C, and the 10 automatic guided vehicles can run vertically passing each other without colliding. For example, since the outbound route runs on the elevated rail 22 and the return route runs on the road surface 21 below it, there is no longer a need for the automatic guided vehicle 10 to wait at both ends of the 'single track section C as in the past. , to operate the plurality of automatic guided vehicles 10 smoothly without stagnation,
It becomes possible to perform efficient transport work with a short cycle time for transporting cargo, and it also becomes possible to easily control the operation of each automatic guided vehicle 10, and to simplify the control device.
また、無人搬送車10自体の改造箇所が機械的にも電気
的にも少なくて済み、また高架レールを付設しても、能
率向上のプラス面の方が遥かに大きく有意である。更に
は無人搬送車10が単線区間で立体的に走行可能となる
ので、走行ルートの改善など新しい無人搬送システムを
組むことも可能となる。Moreover, the number of mechanically and electrically modified parts of the automatic guided vehicle 10 itself is small, and even if elevated rails are attached, the positive side of efficiency improvement is far greater and more significant. Furthermore, since the automatic guided vehicle 10 can run three-dimensionally on a single track section, it is also possible to create a new automatic guided vehicle system, such as improving the traveling route.
なお、第11図はこの発明の他の実施例を示すもので、
無人搬送車の走行路を上中下3段に立体化した例である
。ここでは上記実施例同様の路面21及び高架レール2
2等からなる上下2段の走行路の更に上側に同一符号に
てそれぞれ示す如く略同等の上下2段の走行路を積重ね
たような構成で、上段の路面21′に開口部があり、そ
の中央に下段の高架レール22が同一高さで位置すると
共に、その高架レール22両端と路面21′との間をネ
傾斜レール24.25上方にて開閉可能に接続する乗降
用レール28’ 、29’ が設けられている。なおそ
の乗降用レール28’ 、29’ は他の乗降用レール
28.29と接地場所並びに便い方が異なっているがそ
れぞれ上述したと同等の動作を行う。これにて図示矢印
で示すような無人搬送車の各種走行が可能となり、特に
立体格納式自動倉庫内等への荷物搬入用作業に有効なシ
ステムが得られるようになる。更に無人搬送車自体に前
退・後退瀘能を付ければ更にシステムの向上が図れる。In addition, FIG. 11 shows another embodiment of this invention,
This is an example of a three-dimensional driving path for an automatic guided vehicle (top, middle, and bottom). Here, a road surface 21 and an elevated rail 2 similar to the above embodiment are shown.
It has a structure in which the upper and lower two stages of running track consisting of 2nd grade and the upper and lower running tracks are stacked on top of each other, as indicated by the same reference numerals, and there is an opening in the upper road surface 21'. A lower elevated rail 22 is located in the center at the same height, and boarding and alighting rails 28' and 29 openably and closably connect both ends of the elevated rail 22 and the road surface 21' above the inclined rail 24.25. ' is provided. Although the getting on/off rails 28' and 29' are different from the other getting on/off rails 28, 29 in terms of grounding locations and convenience, they each operate in the same way as described above. This makes it possible for the automatic guided vehicle to travel in various ways as indicated by arrows in the figure, and provides a system that is particularly effective for carrying cargo into a multi-level automated warehouse or the like. Furthermore, the system can be further improved if the automatic guided vehicle itself is equipped with forward and backward movement capabilities.
この発明は上述した如くなしたから、単線区間を設けな
ければならない条件下であっても、無人搬送車を該単線
区間の両端で待機させることなく往復すれ違い走行させ
ることができて、搬送作業の効率アップと制御装置の簡
略化が図れるようになる無人搬送システムが得られる。Since this invention has been made as described above, even under conditions where a single-track section must be provided, automatic guided vehicles can be made to travel back and forth passing each other without having to wait at both ends of the single-track section, thereby facilitating the transportation work. An unmanned transportation system that can improve efficiency and simplify the control device can be obtained.
第1図乃至第10図はこの発明の一実施例を示すもので
、第1図は無人搬送車の側面図、第2図は同底面図、第
3図は無人搬送車が走行する路面と高架レール等からな
る走行路の概略的構成図、第4図(a)、(b)は始端
側乗降用レールの動作を示すそれぞれ側面図、第5図(
a)、(b)は終端側乗降用レールの動作を示すそれぞ
れ側面図、第6図は路面上並びに高架レール上の無人搬
送車走行状態図、第7図は無人搬送車の駆動車輪と補助
車輪との駆動系を含めた取付構造の断面図、第8図は補
助車輪の周速と同じくする為の駆動車輪の減速歯車は構
の原理図、第9図(a)は従来の操舵用駆動モータの制
御装置のブロック回路図、第9図(b)はこの発明の操
舵用駆動モータの制@装置のブロック回路図、第10図
は操舵角(偏差)検知回路の偏差特性図、第11図はこ
の発明の他の実施例を示す立体走行路の概略的構成図、
第12図は従来一般の無人搬送車走行ルートを示す平面
図である。
10・・・無人搬送車、13・・・駆動車輪、15・・
・操舵車輪、18.19・・・補助車輪、21・・・路
面、22・・・高架レール、24.25・・・傾斜レー
ル、28゜29・・・乗降用レール、30・・・レール
跳上げ付勢手段(ばね)、39・・・駆動車輪と補助車
輪の周速を同じく減速歯車機構。
出願人代理人 弁理士 鈴江武彦
第2図
第3図
(a)
(b)
第4図Figures 1 to 10 show an embodiment of the present invention. Figure 1 is a side view of the automatic guided vehicle, Figure 2 is a bottom view of the same, and Figure 3 is a diagram showing the road surface on which the automatic guided vehicle runs. 4(a) and 4(b) are side views showing the operation of the starting end boarding and alighting rails, and FIG. 5(
a) and (b) are side views showing the operation of the end-side boarding and alighting rails, Figure 6 is a diagram of the automatic guided vehicle running on the road surface and elevated rail, and Figure 7 is the driving wheel and auxiliary of the automatic guided vehicle. A sectional view of the mounting structure including the drive system with the wheels, Figure 8 is a principle diagram of the structure of the reduction gear of the drive wheel to equalize the circumferential speed of the auxiliary wheel, and Figure 9 (a) is the conventional steering wheel. FIG. 9(b) is a block circuit diagram of a control device for a drive motor, FIG. 9(b) is a block circuit diagram of a control device for a steering drive motor of the present invention, and FIG. FIG. 11 is a schematic configuration diagram of a three-dimensional traveling path showing another embodiment of the present invention;
FIG. 12 is a plan view showing a conventional general automatic guided vehicle travel route. 10...Automated guided vehicle, 13...Drive wheel, 15...
- Steering wheel, 18.19... Auxiliary wheel, 21... Road surface, 22... Elevated rail, 24.25... Inclined rail, 28° 29... Rail for getting on and off, 30... Rail Jump biasing means (spring), 39... Gear mechanism that reduces the peripheral speed of the drive wheel and the auxiliary wheel at the same speed. Applicant's agent Patent attorney Takehiko Suzue Figure 2 Figure 3 (a) (b) Figure 4
Claims (3)
前記路面には接地しない補助車輪を設け、且つその両側
補助車輪を介して無人搬送車が走行可能となる高架レー
ルを上記路面上の無人搬送車の車高より高い位置に設け
ると共に、その高架レールの両端側に配しそれぞれ傾斜
状態となって無人搬送車の路面から高架レール及び高架
レールから路面への乗移りを可能とすると共に跳上がり
状態となって高架レールに関係なくその下側を無人搬送
車が路面走行して通過するのを可能とする乗降用レール
を設けて構成したことを特徴とする無人搬送システム。(1) Auxiliary wheels that do not touch the road surface are provided on both sides of the automatic guided vehicle that travels on the road surface using drive wheels, and elevated rails that allow the automatic guided vehicle to travel via the auxiliary wheels on both sides are installed on the unmanned road surface. It is installed at a position higher than the vehicle height of the guided vehicle, and is placed on both ends of the elevated rail so that it is slanted to enable the automated guided vehicle to transfer from the road surface to the elevated rail and from the elevated rail to the road surface. An unmanned transportation system comprising a boarding and alighting rail that is raised and allows an unmanned guided vehicle to travel on the underside of the elevated rail and pass through it regardless of the elevated rail.
る構成であることを特徴とする特許請求の範囲第1項記
載の無人搬送システム。(2) The unmanned transportation system according to claim 1, wherein the auxiliary wheels are configured to be rotated at the same circumferential speed as the driving wheels.
路面上から高架レール上に乗上げ可能に常時傾斜状態と
され且つ路面上を逆行する無人搬送車により跳上げられ
て該無人搬送車の通過を可能とし、高架レールの終端側
の乗降用レールは路面上を逆行する無人搬送車の通過を
可能とすべく常時跳上がり状態に付勢され且つ高架レー
ル上を走行して来た無人搬送車の荷重により傾斜状態と
なつて該無人搬送車の路面上への移行を可能とする構成
であることを特徴とする特許請求の範囲第1項記載の無
人搬送システム。(3) The boarding/disembarking rail at the starting end of the elevated rail is always inclined so that the automatic guided vehicle can ride onto the elevated rail from the road surface, and the automated guided vehicle is jumped up by the automatic guided vehicle traveling backwards on the road surface. The boarding and alighting rails at the end of the elevated rail are constantly biased in a raised state to allow the passage of unmanned guided vehicles traveling in the opposite direction on the road surface. 2. The automatic transport system according to claim 1, wherein the automatic transport system is configured to be tilted due to the load of the transport vehicle, thereby enabling the automatic transport vehicle to move onto a road surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21553485A JPS6274702A (en) | 1985-09-28 | 1985-09-28 | Unmanned conveying system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21553485A JPS6274702A (en) | 1985-09-28 | 1985-09-28 | Unmanned conveying system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6274702A true JPS6274702A (en) | 1987-04-06 |
Family
ID=16674018
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21553485A Pending JPS6274702A (en) | 1985-09-28 | 1985-09-28 | Unmanned conveying system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6274702A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104554289A (en) * | 2014-12-02 | 2015-04-29 | 广西大学 | Puddle jumper track for opposite driving meeting on single track |
KR101538459B1 (en) * | 2014-03-18 | 2015-07-22 | 주식회사 더스페이스코리아 | A leisure vehicle installation drivable both earth and sky |
CN107867298A (en) * | 2016-09-28 | 2018-04-03 | 广西大学 | A kind of track for a train |
-
1985
- 1985-09-28 JP JP21553485A patent/JPS6274702A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101538459B1 (en) * | 2014-03-18 | 2015-07-22 | 주식회사 더스페이스코리아 | A leisure vehicle installation drivable both earth and sky |
CN104554289A (en) * | 2014-12-02 | 2015-04-29 | 广西大学 | Puddle jumper track for opposite driving meeting on single track |
CN107867298A (en) * | 2016-09-28 | 2018-04-03 | 广西大学 | A kind of track for a train |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105946548B (en) | Homing guidance formula handling device | |
US6857374B2 (en) | Guideway and vehicle for transportation system | |
CN205768620U (en) | Homing guidance formula Handling device | |
CN205972607U (en) | Letter sorting transport AGV car | |
JP5978422B2 (en) | Crawler travel device | |
JP6105840B2 (en) | Carriage transfer system | |
JP3436070B2 (en) | Transfer equipment | |
RU2062729C1 (en) | Device for changing direction of transportation truck at place | |
JPS6274702A (en) | Unmanned conveying system | |
US6505695B2 (en) | Electric vehicle | |
CN108820061A (en) | A kind of wheel-track combined walking robot | |
CN205706348U (en) | A kind of multidirectional viewing car for movie theatre | |
KR200398558Y1 (en) | the movable rail turning system to salt farm | |
JPS5867574A (en) | Travel body | |
JP3932730B2 (en) | Transport system and control method of transport system | |
KR100301094B1 (en) | Multi-level parking facility | |
JPS6181863A (en) | Unmanned cart with freight shifter | |
CN220393223U (en) | Omnidirectional stacking type AGV robot | |
CN113734683B (en) | Automatic submerged in-situ reversing guide vehicle | |
JP2022059320A (en) | Unmanned carrier | |
JPH0139381B2 (en) | ||
JPS6296170A (en) | Diverging device for track for monorail type cart | |
JPS616063A (en) | Conveyor utilizing electric travelling truck | |
JPH0464905B2 (en) | ||
JPH1011138A (en) | Unmanned carrier |