JPS6274441A - Method for separating isotope in gas utilizing sheet plasma - Google Patents
Method for separating isotope in gas utilizing sheet plasmaInfo
- Publication number
- JPS6274441A JPS6274441A JP21225985A JP21225985A JPS6274441A JP S6274441 A JPS6274441 A JP S6274441A JP 21225985 A JP21225985 A JP 21225985A JP 21225985 A JP21225985 A JP 21225985A JP S6274441 A JPS6274441 A JP S6274441A
- Authority
- JP
- Japan
- Prior art keywords
- plasma
- isotope
- separated
- sheet
- sheet plasma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明に、ソートプラズマを利用してブ体の同位体を分
離する方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of separating isotopes of isotope using sorting plasma.
通常、気体の同位体分離は、イオン化しての磁場偏向お
工び四極子レンズによる集束性を利用して行なったり、
また大量に処理し、しかも分M能が要求される場合には
255Uのa縮の工うIc温度にLる拡散率の違1y
sf利用した熱拡散法や質量の差?利用した遠心分離法
が用りられ、T3の場合にFi蒸気圧の違いにLる深冷
分離法が用いられてhる。Normally, isotopic separation of gases is performed using ionization, magnetic field deflection, and focusing using a quadrupole lens.
In addition, when processing a large amount and requiring high resolution, the difference in diffusivity due to the Ic temperature of 255U a compression is 1y.
Thermal diffusion method using SF or difference in mass? In the case of T3, a cryogenic separation method is used depending on the difference in Fi vapor pressure.
ま几、同位体分離法としてはプラズマ分離法も知られて
おり、プラズマ分離法にはイオン・サイクロトクン共鳴
分析計の原理全利用したイオン・サイクロトロン共鳴と
、高い回転速度の回転プラズマを利用したプラズマ回転
またはプラズマ遠心分離とがある。The plasma separation method is also known as an isotope separation method, and the plasma separation method uses ion cyclotron resonance, which utilizes all the principles of an ion cyclotron resonance analyzer, and a rotating plasma with a high rotation speed. There is plasma rotation or plasma centrifugation.
イオン・サイクロトロン共鳴による同位体分離において
は、一様な磁束密度の磁場の中に置かれたイオンは磁場
に垂直な面内で角振動数で円運動し、ffl場に垂直な
方向にサイクロトロン笥波数に一致し九周波敬の交流電
場をかけると、イオンは交流電場にLり加速されて、そ
の回転半径が犬きくなる。そこで例えば265U+だけ
が共鳴する交流1!場をかけると 255U+を258
U+から分離することができる。In isotope separation by ion cyclotron resonance, ions placed in a magnetic field with uniform magnetic flux density move circularly at an angular frequency in a plane perpendicular to the magnetic field, and move in a cyclotron box in a direction perpendicular to the ffl field. When an alternating current electric field with a nine-frequency wave matching the wave number is applied, the ions are accelerated by the alternating electric field and their radius of rotation becomes narrower. So, for example, AC 1 where only 265U+ resonates! If you apply the field, 255U+ becomes 258
Can be separated from U+.
ところで、イオン化しての磁場偏向お工び四極子レンズ
VCXる集束性全利用した分離法は、大電処理ができず
、熱拡散法や遠心分離法あるいは深冷分離法は、分に「
能が小さく、何回も同一処理をj=”J4り返えさなは
ればならず、コストや時間が非常にかかる。By the way, the separation method that makes full use of the focusing ability of the quadrupole lens VCX, which uses ionization and deflection of the magnetic field, cannot be processed with large currents, and the thermal diffusion method, centrifugation method, or cryogenic separation method cannot be used in minutes.
The performance is small, and the same process has to be repeated many times, which is very costly and time consuming.
まtイオン・サイクロトロン共鳴にLる回位体分閉「法
では、1台1泣体全分離するために非常に一様でしかも
極大共鳴半径工9大きな大きさの磁場が必要であり、ま
た他の非共鳴イオンとの衝突を避けなければならないた
め低密度のプラズマが必要とされる。従って、大醒力が
要求されるにもかかわらず、処理幼名が悪い。In the ion cyclotron resonance method, in order to completely separate each body, a very uniform and large magnetic field with a maximum resonance radius is required. A low-density plasma is required because collisions with other non-resonant ions must be avoided.Thus, the process is of poor quality, despite the requirement of high energizing power.
そこで、本発明の目的は、上記のような従来の同位体分
離法の欠点を解決するためシート状のプラズマ全利用し
てイオン・サイクロトロン振動の共、1(bに工り気体
の同位体分離を行なう工うにしたシートプラズマを利用
した気体の同位体分離法を提供することにある。Therefore, the purpose of the present invention is to solve the above-mentioned drawbacks of the conventional isotope separation method by fully utilizing sheet-like plasma to perform isotope separation of gases using both ion and cyclotron vibrations. An object of the present invention is to provide a method for isotope separation of gases using sheet plasma.
〔問題点全解決する几めの手段〕
上記の目的全達成するために、本発明による気体の同位
体分離法は、シートプラズマに分離したいイオンのサイ
クロトロン周波数に等しい暮向波音印加し、これに工り
共鳴してサイクロトロン半径の大きくなった同位体を分
離装置に衝突させて電荷を除去した後同位体ケ中性粒子
として吸引分離することを特徴としている。[Elaborate means to solve all problems] In order to achieve all of the above objectives, the gas isotope separation method according to the present invention applies direct wave sound equal to the cyclotron frequency of the ions to be separated to the sheet plasma, and The isotope, which has a large cyclotron radius due to mechanical resonance, collides with a separation device to remove the electric charge, and then the isotope is separated by suction as neutral particles.
本発明による気体の同位体分離法におりでは、プラズマ
源により分離すべき同位体を含んだシートプラズマが形
収され、一様で平行な磁場内に導かれる。このシートプ
ラズマを狭んで配置された平行1に極にシートプラズマ
中から分Fi’lf したいイオンのサイクロトロン周
波数に等しい高周波が印加される。これにLり分離した
いイオンだけがそのサイクロトロン周波数に共鳴して円
運動の軌道半径を増大してゆき、シートプラズマのプラ
ズマ領域の境界から出ていく、そしてシートプラズマの
プラズマ領域の境界の外側に離れて設けた分離装置に鳶
突して中性化される。この同位体粒子はポンプに工す吸
い取られる。この場合シートプラズマはプラズマ領域の
境界がけつきりしているため、高い分離能で容易に分離
することができる。In the gas isotope separation method according to the present invention, a sheet plasma containing the isotopes to be separated is collected by a plasma source and guided into a uniform parallel magnetic field. A high frequency equal to the cyclotron frequency of the ions desired to be separated from the sheet plasma is applied to the parallel poles of the sheet plasma. Only the ions to be separated resonate with the cyclotron frequency and increase the orbital radius of circular motion, leaving the boundary of the plasma region of the sheet plasma, and then moving outside the boundary of the plasma region of the sheet plasma. It is neutralized by being sent to a separate separation device. These isotope particles are sucked out by a pump. In this case, since the sheet plasma has a sharp boundary between the plasma regions, it can be easily separated with high resolution.
以下、添附図面を参照して本発明の実施例について我、
明する。Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
I will clarify.
第1図には本発明の一実施例を概略的に示し7、lは例
えばT P−D型改良のプラズマ源で分離すべき同位体
を含んだシートプラズマ2を発生する53はプラズマ源
lから発生きれたシートプラズマl全挾んで配置され几
平行平板電極で高周波電源弘に接続すれ、シートプラズ
マ2に含まれている分離すべき同位体のサイクロトロン
周波数に等しい高周Vを印加する工うにされている。平
行平板冠t3の後方には分離すべき同位体を選定する分
離装置を成すリミタ−jが配置されており、このリミタ
−jは電気的には接地され、衝突した同位体の゛心待を
除去するように作用する。また、リミタータはポンプ(
図示してな論)に連通され、リミタ−!で中性になった
同位体粒子は上記ポンプによって吸引さnる。また全体
には図示してない磁場発生装置乙によりシートプラズマ
中の方向に沿って一様で平行な磁場がかけらnている。FIG. 1 schematically shows an embodiment of the present invention 7, l is an improved plasma source of the TPD type, for example, and generates a sheet plasma 2 containing isotopes to be separated; 53 is a plasma source l; The sheet plasma generated from the sheet plasma 2 is placed across the entire plate and connected to a high frequency power source using parallel plate electrodes, and a high frequency V equal to the cyclotron frequency of the isotope to be separated contained in the sheet plasma 2 is applied. has been done. A limiter j, which serves as a separation device for selecting isotopes to be separated, is placed behind the parallel plate crown t3. It acts to remove. Also, the limitator is a pump (
The limiter! The isotope particles that have become neutral are sucked out by the pump. Further, a uniform parallel magnetic field is applied to the whole along the direction of the sheet plasma by a magnetic field generator (not shown).
今、高周波電源弘により平行平板電極3に対して分離す
べき同位体のサイクロトロン周波数に等しい高周波全印
加すると、シートプラズマλ中の分離すべき同位体のイ
オンは印加さf′した高周波に共鳴して符号7で示すよ
うに円運動の軌道半径全増大してゆき、ジ−ドプラツマ
λのプラズマ領域の境界から出て、その外側に離nて設
けたIJ ミタータに衝突して中性化さnる。残りのイ
オンはシートプラズマλのプラズマ領域内で円運動しな
がら出て行く。こうして印加さnた高周波に共鳴する同
位体のイオンだけがリミタ−5に衝突してポンプによっ
て吸引さn、高い分離能で効率よく分離さ九得る。Now, when a high frequency wave equal to the cyclotron frequency of the isotope to be separated is applied to the parallel plate electrode 3 using a high frequency power source, the ions of the isotope to be separated in the sheet plasma λ resonate with the applied high frequency f′. As shown by reference numeral 7, the total radius of the orbit of the circular motion increases, and it exits from the boundary of the plasma region of the Zied Platsma λ, collides with the IJ Mitata located at a distance outside of it, and is neutralized. Ru. The remaining ions exit while moving circularly within the plasma region of the sheet plasma λ. In this way, only isotope ions that resonate with the applied high frequency collide with the limiter 5, are sucked in by the pump, and are efficiently separated with high resolution.
第2図には本発明の方法を実施している変形実施例を示
し、この場合には分離用の手段としてクライオ・ノぞネ
ルrが用いられている。このクライ第1パネル♂はシー
トプラズマλのプラズマ領域の境界の外側に配置zされ
、第1図のリミタ−jと同様に接地電位に接続されてい
る。FIG. 2 shows a variant embodiment implementing the method of the invention, in which a cryo-nozzle is used as the separation means. This cry first panel ♂ is placed outside the boundary of the plasma region of the sheet plasma λ, and is connected to the ground potential in the same way as the limiter j in FIG.
当然、第1図および第2図の装置は真空雰囲気内に置刀
為れ、また分離用の手段として第7図に示すリミタ−j
や第2図に示すクライオ・ノミネルrのflにモレキュ
ラー−ゾーブズの様な吸着剤を用いても工い。なお、第
1図および第2図に示す構成は単に本発明の方法全実施
する際の原理的構成?示すにすぎず、各部分の具体的構
成については埋々に設計することができる。Naturally, the apparatuses shown in FIGS. 1 and 2 are placed in a vacuum atmosphere, and the limiter shown in FIG. 7 is used as a means for separation.
Alternatively, an adsorbent such as Molecular Zorbs can be used in the cryo-nominel fl shown in FIG. It should be noted that the configurations shown in FIGS. 1 and 2 are simply the basic configurations for carrying out the entire method of the present invention. This is merely an illustration, and the specific configuration of each part can be designed in many ways.
以上説明してきたように、本発明に工れば、プラズマ領
域の境界がはっきりしているシートプラズマ?利用し、
プラズマ源にニジ発生され友分離すべき同位体を含んだ
シートプラズマに対して分離し友いイオンのサイクロト
ロン周波数に等しい高周波を印加し、これに工す分離し
たいイオンだけ全そのサイクロトロン周波数に共鳴して
円運動の軌道半径全増大させて、シートプラズマのプラ
ズマ領域の境界から出し、これを接地電位にあるIJ
ミターに衝突させて、同位体粒子を中性粒子として、ポ
ンプにLり吸い取る工うにしているので、気体の同位体
を高い分離能で効厖よ〈容易に分離することができる。As explained above, if the present invention is applied, sheet plasma with clear plasma region boundaries can be obtained. use,
A high frequency equal to the cyclotron frequency of the friendly ions to be separated is applied to the sheet plasma generated by the plasma source and containing the isotopes to be separated, and this is modified so that only the ions to be separated resonate with the cyclotron frequency. The orbital radius of the circular motion is increased completely, and the sheet plasma is ejected from the boundary of the plasma region.
Since the isotope particles are collided with a miter and converted into neutral particles, which are sucked up by the pump, gaseous isotopes can be easily separated with high separation efficiency.
その結果1本発明の方法に工れば、短時間に大量の気体
の同位体を低コストで分離することが可能となる。As a result, by applying the method of the present invention, it becomes possible to separate a large amount of gaseous isotopes in a short period of time and at low cost.
第1図は本発明の気体の同位体分離法ケ実施するための
装置の原理的構成を示す概路線図、第2図は実施装置の
変形例を示す概路線図である。
図中、l:イオン源、λ:ゾートプラズマ、3:平行平
板電極、弘:高周波電源%j:分雅分桁装置:真空容器
、7:イオン軌道、g:クライオ・ノミネル。FIG. 1 is a schematic diagram showing the basic configuration of an apparatus for carrying out the gas isotope separation method of the present invention, and FIG. 2 is a schematic diagram showing a modification of the apparatus. In the figure, l: ion source, λ: zotoplasma, 3: parallel plate electrode, Hiroshi: high frequency power source %j: Bunga divider device: vacuum vessel, 7: ion orbit, g: cryo-nominel.
Claims (1)
波数に等しい高周波を印加し、これにより共鳴してサイ
クロトロン半径の大きくなつた同位体を分離装置に衝突
させて電荷を除去した後同位体を中性粒子として吸引分
離することを特徴とするシートプラズマを利用した気体
の同位体分離法。A high frequency equal to the cyclotron frequency of the ion to be separated is applied to the sheet plasma, and the isotope, which resonates and has a large cyclotron radius, collides with a separation device to remove the charge, and then the isotope is sucked and separated as neutral particles. A gas isotope separation method using sheet plasma.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21225985A JPS6274441A (en) | 1985-09-27 | 1985-09-27 | Method for separating isotope in gas utilizing sheet plasma |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21225985A JPS6274441A (en) | 1985-09-27 | 1985-09-27 | Method for separating isotope in gas utilizing sheet plasma |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6274441A true JPS6274441A (en) | 1987-04-06 |
JPH0583291B2 JPH0583291B2 (en) | 1993-11-25 |
Family
ID=16619610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21225985A Granted JPS6274441A (en) | 1985-09-27 | 1985-09-27 | Method for separating isotope in gas utilizing sheet plasma |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6274441A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007258191A (en) * | 2002-04-02 | 2007-10-04 | Archimedes Operating Llc | Band gap plasma mass filter |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5313756A (en) * | 1976-07-21 | 1978-02-07 | Hitachi Ltd | Detector for detecting decelerating position of crane |
-
1985
- 1985-09-27 JP JP21225985A patent/JPS6274441A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5313756A (en) * | 1976-07-21 | 1978-02-07 | Hitachi Ltd | Detector for detecting decelerating position of crane |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007258191A (en) * | 2002-04-02 | 2007-10-04 | Archimedes Operating Llc | Band gap plasma mass filter |
Also Published As
Publication number | Publication date |
---|---|
JPH0583291B2 (en) | 1993-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1754244B1 (en) | Linear ion trap apparatus and method utilizing an asymmetrical trapping field | |
US7439498B2 (en) | Method and apparatus for separation of isobaric interferences | |
US6322706B1 (en) | Radial plasma mass filter | |
JPH07326321A (en) | Ion trap type mass spectrometry system and method | |
JP2007207689A (en) | Reactor and mass spectroscope | |
US6787044B1 (en) | High frequency wave heated plasma mass filter | |
Wollnik | Mass separators | |
WO1997020620A1 (en) | Improvements in method and apparatus for isotope enhancement in a plasma apparatus | |
Limbach et al. | An electrostatic ion guide for efficient transmission of low energy externally formed ions into a Fourier transform ion cyclotron resonance mass spectrometer | |
US3939354A (en) | Method and apparatus for separation of ions from a plasma | |
US4206383A (en) | Miniature cyclotron resonance ion source using small permanent magnet | |
US4093856A (en) | Method of and apparatus for the electrostatic excitation of ions | |
US5805972A (en) | Method and apparatus for separating isotopes | |
JPS6274441A (en) | Method for separating isotope in gas utilizing sheet plasma | |
US4107524A (en) | High atomic weight isotope separator | |
US4704197A (en) | Isotope separation using tuned laser and electron beam | |
US4658135A (en) | Method and apparatus for sensitive atom counting with high isotopic selectivity | |
US2667582A (en) | Mass separator | |
US2806955A (en) | Mass spectrometer | |
US3711706A (en) | Two-stage, single magnet mass spectrometer | |
US2629055A (en) | Mass spectrometry | |
IL43511A (en) | Method and apparatus for the separation of isotopes | |
JPH0982274A (en) | Quadrupole mass spectrometry device | |
Anicich et al. | Miniature cyclotron resonance ion source using small permanent magnet | |
CA1123784A (en) | Isotopic separation |