JPS6274047A - Method for refining stainless steel - Google Patents

Method for refining stainless steel

Info

Publication number
JPS6274047A
JPS6274047A JP60211084A JP21108485A JPS6274047A JP S6274047 A JPS6274047 A JP S6274047A JP 60211084 A JP60211084 A JP 60211084A JP 21108485 A JP21108485 A JP 21108485A JP S6274047 A JPS6274047 A JP S6274047A
Authority
JP
Japan
Prior art keywords
stainless steel
furnace
oxygen
pig iron
molten pig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60211084A
Other languages
Japanese (ja)
Inventor
Yoshihiko Kawai
河井 良彦
Yoshiteru Kikuchi
良輝 菊地
Osamu Terada
修 寺田
Kenji Takahashi
謙治 高橋
Tsutomu Usui
碓井 務
Takayoshi Anzai
安斎 孝儀
Hajime Mori
肇 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP60211084A priority Critical patent/JPS6274047A/en
Publication of JPS6274047A publication Critical patent/JPS6274047A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/005Manufacture of stainless steel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To manufacture an extremely low-N dead soft stainless steel by feeding oxygen to a furnace contg. molten pig iron, scraps chrome ore, a carbonaceous material and a flux to obtain molten pig iron contg. Cr, removing produced slag, evacuating the furnace and introducing oxygen into the furnace to decarburize and denitrify the molten pig iron. CONSTITUTION:Molten pig iron, scraps, chrome ore, a carbonaceous material and a flux are charged into a reaction furnace 1 and oxygen is fed from a lance 2 to obtain molten pig iron contg. Cr. After produced slag 6 is removed, a cover 8 is placed over the furnace 1, the furnace 1 is evacuated and oxygen is fed by about 1-4Nm<3>/min.ton under about 760Torr pressure. At the same time, gas is blown from a bottom tuyere by 0.5-1Nm<3>/min.ton to carry out degassing. Thus, an extremely low-N dead soft stainless steel is obtd.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、低C1低Nのステンレス鋼を安価に製造する
ための新規な製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a novel manufacturing method for manufacturing low C1, low N stainless steel at low cost.

〔従来の技術〕[Conventional technology]

低C1低Nの高純度ステンレスの需要が高まるにっれて
現在、製鉄工業において1更用されている高純度ステン
レス鋼の製造法には、各種のものが提案されている。
As the demand for high-purity stainless steel with low C1 and low N increases, various methods for manufacturing high-purity stainless steel are currently being proposed in the steel industry.

具体的には例えば、真空転炉法(VODC+、真空酸素
脱炭炉法(VOD)アルゴン酸素希釈脱炭法(AOD)
などがある。
Specifically, for example, vacuum converter method (VODC+), vacuum oxygen decarburization method (VOD), argon oxygen dilution decarburization method (AOD)
and so on.

これらめ方法のいずれもが、それぞれ特徴を有するもの
であり、そこに付随しているM諌方法にも、当然のこと
ながら、それぞれにおいて特徴をもたせた各種の形態の
ものがある。
All of these methods have their own characteristics, and it goes without saying that the accompanying M-methods also come in various forms, each with its own characteristics.

例えば、転炉を真空状態に保持したVODClVODの
うち、前者は、真空度をl OTo r r程度にして
酸素の流量をI N m’ 7分・l・ノ、底からの吹
き込みアルゴンの旦を0.01〜0.05Nm゛/分・
)・ンで操業しているし、後者では真空度、酸素の送量
は同じて底からの吹き込みアルゴンの旦を0,01Nr
n’/分・トン以ドとして運転している。
For example, among the VODClVODs in which the converter is kept in a vacuum state, the former uses a vacuum level of about 1 OTorr r, an oxygen flow rate of I N m' 7 min.l. 0.01~0.05Nm/min・
)・In the latter case, the vacuum level and oxygen supply rate are the same, but the argon blowing from the bottom is 0.01 Nr.
It is operated at n'/min/ton.

また、AODは、1気圧下、底からの吹き込み酸素、ア
ルゴンの流量を2 N m’ 7分・トシ以上の条件で
操業している。
In addition, the AOD is operated under conditions of 1 atm and a flow rate of oxygen and argon blown from the bottom at 2 N m' 7 minutes or more.

一方、これら脱C1脱Nゴロセスに供給するステンレス
粗溶湯の製造には、既存の電気炉によるフェロクロム製
造や電気を用いないで炭材と酸素によるエネルギーを利
用したナショプル・ゴLjジエクトで研究されているフ
ェロクロム製造のように、クロム源を凝固させて合金鉄
とし、電気炉(EF) 、転炉(LD)−AOD、VO
Dなどの方式においてクロム源と17でこれを再使用ず
ろ方法が一般的である3゜ その外、別の例では、EFで鉱石を還元して製造したフ
ェロクロム溶湯をそのまま別の炉のステントス製造プロ
セスに導いて使用するものもある。
On the other hand, the manufacturing of crude molten stainless steel to be supplied to these de-C1 de-N goro processes involves the production of ferrochrome using existing electric furnaces, and research conducted at the Nashopur Go Ljjiect, which utilizes energy from carbonaceous material and oxygen without using electricity. As in the production of ferrochrome, the chromium source is solidified to produce iron alloys, and is then produced in electric furnaces (EF), converters (LD) - AOD, VO.
In methods such as D, it is common to reuse the chromium source in 17.3 In addition, in another example, the molten ferrochrome produced by reducing ore in EF is directly used in another furnace to produce stents. Some are used to guide the process.

ざらに溶銑にクロム鉱石、炭材、フラックスお上び酸素
を送ってクロム溶湯をつくり、排滓を行った後、酸素の
存在下で脱Cを行い成分調整してクロム含有危約12%
のステンレスを得ている例もある。
Chromium ore, carbonaceous material, flux, and oxygen are sent to the hot metal to create molten chromium metal. After the slag is removed, carbon is removed in the presence of oxygen and the composition is adjusted to produce a chromium content of approximately 12%.
In some cases, stainless steel has been obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、これらの技術にあっては、次のような問題点
を潜在的に有し、あるいは顕在させているものであて)
ノー。
However, these technologies have potential or actual problems such as the following:
No.

すなわち、VODC,VOl、)の方法の場合では、底
吹きガスi&速、酸素供給展が不足していることから、
高炭域からの脱炭精練に長時間を要ずろと共に、反応界
面における窒素分圧(PN2)の低減効果が不十分であ
るにめ、低N:2.′9−ノLス鋼製造が困難であつt
二。
In other words, in the case of the method VODC, VOl,), since the bottom blowing gas i & speed and oxygen supply expansion are insufficient,
Low N:2. '9-L steel manufacturing is difficult.
two.

一方のAODの方法では、底吹きガス流速、酸素供給糺
+、1十分であるが、真空排気装置を有していないため
、ガスの希釈だけではその効果に限度があり、結局この
場合も反応界面における窒素分圧(PN2)の低減効果
が不十分であり、低Nステンレス鋼製造が困難であつt
:4、 ステンしス租溶渇の製造については、迅速、低エネ/L
ギー消費、昌歩留りによる低コスト化が望まれているが
、クロム源となろフ工ロクl:1ム溶湯を一旦凝固させ
て合金鉄とし、ステンレス溶製時に再び溶解する方法で
は、エネルギー消費上降りである。
On the other hand, in the AOD method, the flow rate of the bottom-blown gas and the oxygen supply rate are 100%, but since it does not have a vacuum evacuation device, there is a limit to its effectiveness just by diluting the gas, and in the end, even in this case, the reaction The effect of reducing nitrogen partial pressure (PN2) at the interface is insufficient, making it difficult to manufacture low-N stainless steel.
:4. The production of stainless steel melting and drying is quick and low energy/L.
However, the method of solidifying molten metal of 1 μm as a chromium source to make a ferroalloy, and then melting it again when stainless steel is produced, has high energy consumption. It's raining.

また、フェロクロム製造プロセスそのものについても、
電気を用いる場合、コスト低ドを図ることは困難である
Also, regarding the ferrochrome manufacturing process itself,
When electricity is used, it is difficult to reduce costs.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明1よ、このような状況の中にあって、低C1低N
ステ、レス鋼を安価に製造ずろについて種々検討を加え
た結果、溶銑、スクラップ、クロム鉱石、炭材、フラッ
クスおよび酸素により含クロム溶銑を作り、除滓後、同
一の炉で真空条件下で酸素を導入し脱C1脱Nをおこな
いス5−ノし、スを直接製造することからなるステンレ
ス鋼の精錬方法に到達したのである。
Invention 1, in this situation, low C1 low N
As a result of various studies on how to produce stainless steel and stainless steel at low cost, we created chromium-containing hot metal using hot metal, scrap, chromium ore, carbonaceous material, flux, and oxygen. They introduced a stainless steel refining method that involves direct production of sulfur by removing C1 and removing N.

〔作 用〕[For production]

一般的な考察によれば、溶局内の窒素分圧1よ、次のよ
うな式により表フことができる、。
According to general considerations, if the partial pressure of nitrogen in the solution is 1, it can be expressed by the following formula:

式中のP92は窒素分圧、Prは系内の全ガス圧、QN
2は窒素ガス流盪、Q coはCOガス流量、Q A?
はアルゴノガス24 M、を示す。
In the formula, P92 is nitrogen partial pressure, Pr is total gas pressure in the system, QN
2 is nitrogen gas flow, Q co is CO gas flow rate, Q A?
indicates Argonogas 24M.

この式によれば、窒素分圧をさげるには、系内の全ガス
圧を低下させるか、COガス流呈お、よびアノ1.ゴノ
ガス流量の両者またはいずれか一方のメ:を多くすれば
、よ、いことが判る。
According to this formula, in order to lower the nitrogen partial pressure, the total gas pressure in the system must be lowered, or the CO gas flow and the nitrogen partial pressure can be lowered. It turns out that if you increase both or either of the gono gas flow rates, it will be better.

そして、系内の全ガス圧を低下させるには真空排気を行
−A、ばよし)こと、QATを大きくずろには底吹きガ
ス鼠を増大させれば4、いこと、’tjjJシ< Qc
θを大きくすることも自“効である。−とがわかるが、
そのために:ま反応の場に対する酸A;供給量を増大さ
せればよいことも判る。
Then, to lower the total gas pressure in the system, perform vacuum evacuation (-A, OK), and to increase the QAT, increase the bottom blowing gas.
Increasing θ is also self-effective.
For this purpose, it is understood that it is sufficient to increase the amount of acid A supplied to the reaction site.

このことから、溶湯を処理するために反応容器の概略を
、第1図に示した溶湯製造の場から、第2図のように脱
C1説Nを・行うt二めに炉の上部に真空に7G飢持ず
ろことのできる#J iEで密閉JAW造とした蓋状部
分やかぶせるものを使用するものである。
From this, in order to process the molten metal, the outline of the reaction vessel is changed from the molten metal production site shown in Figure 1 to the de-C1 theory N as shown in Figure 2. Second, the upper part of the furnace is vacuumed. #JiE, which can hold up to 7G, uses a lid-like part or something that can be covered with a sealed JAW construction.

図中、lは反応容器、2は:>シス、3 iまYつ料、
4はフラJジ、5は底吹きアノ!ゴ7.6はスラツプ、
7は溶銑、8は蓋、9は真空;ライシてあろ、、本発明
に従って実際に操業を行うときには、およそ10〜76
0 T o r rの圧力で羽口からの底吹きガス圧を
0.5〜I N m 7分・)−ン程度とし、酸素の供
給をおよそ1〜4 N m’ 7分・トンとすることに
より、C<15ppm、N<2’Oppmの極低C1極
低Nのステンレス鋼とすることができるのである。
In the figure, l is a reaction vessel, 2 is:>cis, 3 is a material,
4 is a hula Jji, 5 is a bottom blower! Go 7.6 is slap,
7 is hot metal, 8 is a lid, 9 is a vacuum.
At a pressure of 0 T or r, the bottom blowing gas pressure from the tuyere is set to about 0.5 to 1 N m 7 min.)-ton, and the oxygen supply is about 1 to 4 N m' 7 min. As a result, it is possible to obtain a stainless steel with extremely low C1 and extremely low N, with C<15ppm and N<2'Oppm.

〔実施例〕〔Example〕

第1図に示したことき反応容器に、次表のA欄に示した
成分まで予備処理プロセスで低P化した溶銑約33tを
装入した。
Approximately 33 tons of hot metal whose P content had been reduced through a pretreatment process to the components shown in column A of the following table was charged into the reaction vessel shown in FIG.

ランスより酸素を約20000 N rn’ / hで
供給すると共に、クロム鉱石33t1、コークス25t
1石灰、珪砂を主成分とするフラックス約10tを上部
投入し、上部ランスからのインジェクションおよび底部
羽口からのインジェクションを用い、それぞれによる添
加比率1:  1:  1で約30分添加した。
Oxygen is supplied from a lance at a rate of approximately 20,000 Nrn'/h, and 33 tons of chromium ore and 25 tons of coke are supplied.
Approximately 10 tons of flux containing 1 lime and silica sand as main components was charged at the top, and added for about 30 minutes using injection from the upper lance and injection from the bottom tuyere at an addition ratio of 1:1:1.

なお、底吹きArガスは、17Nrn’/分であり、終
了時のメタル温度は1645℃であった。
Note that the bottom-blown Ar gas was 17 Nrn'/min, and the metal temperature at the end was 1645°C.

添加終了後、25分経過後の成分は表中のB欄の通りと
なった。
After 25 minutes had passed after the completion of the addition, the components were as shown in column B in the table.

約21を生成したC a O−3i 02  A l 
203−Mg0を生成文とするスラグを真空吸引装置で
除去した後、第2図で示したように炉の上部に密閉可能
な蓋を取付け、送酸を開始した。
C a O-3i 02 A l which produced approx.
After removing the slag containing 203-Mg0 using a vacuum suction device, a sealable lid was attached to the top of the furnace as shown in FIG. 2, and oxygen supply was started.

上部ランスからの送酸lit 11500 N m’ 
/ h テ13分間殆理後、送酸凰を順次120ONm
’/hまで現象すると共に、真空度を10To r r
まて低下させ、約12分処理した。
Oxygen supply from upper lance lit 11500 N m'
/h After heating for 13 minutes, turn on the oxygen at 120Nm.
'/h, and the degree of vacuum was increased to 10Torr.
The temperature was then lowered and treated for about 12 minutes.

なお、この間底吹きArガスは、15〜25Nm” 7
分とした。
During this time, the bottom-blown Ar gas was 15 to 25 Nm" 7
It was a minute.

その後、還元、成分調整を行い、炉腹部出鋼口から鍋に
ンール出鋼し、連続鋳造工程に導いた。
Thereafter, reduction and composition adjustment were performed, and the steel was tapped into a ladle from the taphole in the furnace belly, and then led to the continuous casting process.

なお、脱C1脱N後(還元、成分調整前)と連続鋳造製
品中の成分をそれぞれ表のC欄、D欄に表示した。
The components after C1 removal and N removal (before reduction and component adjustment) and in the continuous casting product are shown in columns C and D of the table, respectively.

メタル成分(重量%) 〔発明の効果〕 本発明を実施することにより、従来法では複雑でかんた
んには製造することのできなかった低C1低Nのステン
レスを容易に得ることができるようになった。
Metal component (wt%) [Effects of the invention] By implementing the present invention, it has become possible to easily obtain low C1 and low N stainless steel, which was complicated and could not be easily produced using conventional methods. Ta.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、ステンレス溶湯製造を説明するための概略図
、第2図は溶湯製造後の同一炉に真空脱炭処理を行うた
めの真空設備を装着した炉の概略図である。 1は反応容器、2はランス、3は原料、4はフランジ、
5は底吹きアルゴン、6はスラップ、7は溶銑、8は蓋
、9は真空ライン。
FIG. 1 is a schematic diagram for explaining the production of molten stainless steel, and FIG. 2 is a schematic diagram of a furnace equipped with vacuum equipment for performing vacuum decarburization treatment on the same furnace after producing the molten metal. 1 is a reaction vessel, 2 is a lance, 3 is a raw material, 4 is a flange,
5 is bottom blowing argon, 6 is slap, 7 is hot metal, 8 is lid, 9 is vacuum line.

Claims (2)

【特許請求の範囲】[Claims] (1)溶銑、スクラップ、クロム鉱石、炭材、フラック
スおよび酸素により含クロム溶銑を作り、除滓後、同一
の炉で真空条件下で酸素を導入し脱C、脱Nをおこない
ステンレスを直接製造することからなるステンレス鋼の
精錬方法。
(1) Make chromium-containing hot metal from hot metal, scrap, chromium ore, carbonaceous material, flux, and oxygen, and after removing slag, introduce oxygen under vacuum conditions in the same furnace to remove C and N to directly manufacture stainless steel. A stainless steel refining method consisting of:
(2)10から760Torr以下までの真空条件下、
酸素供給量を1〜4Nm^3/分・トンとして製造する
ことからなる特許請求の範囲第1項に記載のステンレス
鋼の精錬方法。
(2) Under vacuum conditions from 10 to 760 Torr or less,
The method for refining stainless steel according to claim 1, which comprises producing the stainless steel at an oxygen supply rate of 1 to 4 Nm^3/min/ton.
JP60211084A 1985-09-26 1985-09-26 Method for refining stainless steel Pending JPS6274047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60211084A JPS6274047A (en) 1985-09-26 1985-09-26 Method for refining stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60211084A JPS6274047A (en) 1985-09-26 1985-09-26 Method for refining stainless steel

Publications (1)

Publication Number Publication Date
JPS6274047A true JPS6274047A (en) 1987-04-04

Family

ID=16600148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60211084A Pending JPS6274047A (en) 1985-09-26 1985-09-26 Method for refining stainless steel

Country Status (1)

Country Link
JP (1) JPS6274047A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713169U (en) * 1993-08-02 1995-03-07 和利 小島 Balance for fishing tackle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322051A (en) * 1976-08-09 1978-03-01 Taiyo Kogyo Co Ltd Cultivation of straighttshaped cucumber and welllregulating and packaging case therefor
JPS5381419A (en) * 1976-12-28 1978-07-18 Nippon Steel Corp Refining method for ultra low carbon low nitrogen stainless steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322051A (en) * 1976-08-09 1978-03-01 Taiyo Kogyo Co Ltd Cultivation of straighttshaped cucumber and welllregulating and packaging case therefor
JPS5381419A (en) * 1976-12-28 1978-07-18 Nippon Steel Corp Refining method for ultra low carbon low nitrogen stainless steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713169U (en) * 1993-08-02 1995-03-07 和利 小島 Balance for fishing tackle

Similar Documents

Publication Publication Date Title
CN102134628B (en) Smelting method of low-carbon aluminium killed steel with low silicon content
US3336132A (en) Stainless steel manufacturing process and equipment
RU2360008C2 (en) Method of chrome removing from metallurgical slags containing chrome
CN113249635B (en) Production method of ultra-pure and ultra-homogeneous high-carbon chromium electroslag bearing steel
CN114350879A (en) Smelting method of low-carbon ultralow-sulfur pure iron
CN107619899B (en) A kind of production method and Steel material of low remaining chromium content molten steel
CN109182640B (en) Method for reducing carbon oxygen deposit at smelting end point of converter
CN108486454B (en) Smelting method of ultra-low phosphorus steel
JP2947063B2 (en) Stainless steel manufacturing method
JPS6274047A (en) Method for refining stainless steel
JP3002593B2 (en) Melting method of ultra low carbon steel
JP3158912B2 (en) Stainless steel refining method
JP3063537B2 (en) Stainless steel manufacturing method
US4436553A (en) Process to produce low hydrogen steel
JPS5834527B2 (en) Teirinyousennoseizohouhou
US4065297A (en) Process for dephosphorizing molten pig iron
JPS59215414A (en) Treatment of product containing chromium oxide generated during production of stainless steel
JPH0967608A (en) Production of stainless steel
JPS6152208B2 (en)
TW544468B (en) Novel 3-stage process for making stainless steel
JPH01252715A (en) Method for operating iron bath type smelting reduction furnace
JPS62243711A (en) Refining method for chromium-containing molten steel
CN115612910A (en) Nitrogen-controlled stainless steel smelting and ingot casting method for ultra-supercritical steam turbine rotor
CN101358268A (en) Method for producing raw material pure iron by mother liquid carburization and VOD refine
JPS62116752A (en) Manufacture of low-or medium-carbon ferroalloy