JPS6273182A - Regeneration processing system of synthetic aperture radar image - Google Patents

Regeneration processing system of synthetic aperture radar image

Info

Publication number
JPS6273182A
JPS6273182A JP60212369A JP21236985A JPS6273182A JP S6273182 A JPS6273182 A JP S6273182A JP 60212369 A JP60212369 A JP 60212369A JP 21236985 A JP21236985 A JP 21236985A JP S6273182 A JPS6273182 A JP S6273182A
Authority
JP
Japan
Prior art keywords
center frequency
processing part
range
doppler center
sar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60212369A
Other languages
Japanese (ja)
Inventor
Akira Maeda
章 前田
Akira Tsuboi
坪井 晃
Fuminobu Furumura
文伸 古村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60212369A priority Critical patent/JPS6273182A/en
Publication of JPS6273182A publication Critical patent/JPS6273182A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To obtain a synthetic aperture radar regenerated image having high image quality, by calculating the power spectrum of the receiving data after the correction processing of a range curvature in a frequency region and estimating Doppler center frequency from the shape of said power spectrum. CONSTITUTION:The data collected by a synthetic aperture radar SAR is compressed in a range direction by a range compression processing part 101 and the initial value of a regeneration parameter is calculated by a regeneration parameter calculation processing part 102 to be stored in a regeneration parameter file 103. Next, the data is altered to a frequency region by an azimuth direction FFT processing part 104 and corrected by a range curvature correction processing part 105 and the estimation of Doppler center frequency is estimated by a Doppler center frequency estimation processing part 106 to correct the content of the regeneration parameter file 103. An azimuth point image pattern is formed using said parameter by an azimuth point image pattern forming processing part 107 and processed by processing parts 108-111 to obtain the final SAR regenerated image.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は人工衛星あるいは航空機等に搭載される合成開
口レーダ(Synthetic ApertureRa
dar、以下rSARJ という)による撮像データか
ら人間が理解できる画像を再生するためのディジタル処
理方式に係り、特に島画質の画像を高速に再生するのに
好適な画像の再生処理方式に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a synthetic aperture radar (Synthetic Aperture Radar) mounted on an artificial satellite or an aircraft.
The present invention relates to a digital processing method for reproducing a human-understandable image from imaging data obtained by dar (hereinafter referred to as rSARJ), and particularly to an image reproducing processing method suitable for rapidly reproducing images of island quality.

〔発明の背景〕[Background of the invention]

人工衛星あるいは航空機等を用いたりモートセンシング
の分野では、地表を撮像するためのセンサとして、雲を
透過するマイクロ波帯で高解像の画像が得られるSAR
が注目されている。
In the field of moat sensing, using artificial satellites or aircraft, SAR is used as a sensor to image the ground surface, and can obtain high-resolution images in the microwave band that penetrates clouds.
is attracting attention.

第1図にSARの全体システムを示した。レーダ・セン
サ1.アンテナ2を有するSARは、人工衛星等に搭載
されて飛行経路3上を矢印4方向に移動しつつ地表の撮
像を行う。SARからの撮像データは地」二局5で受信
され、データ・プロセッサ6により処理されて映像フィ
ルム7の作成。
Figure 1 shows the entire SAR system. Radar sensor 1. A SAR having an antenna 2 is mounted on an artificial satellite or the like and images the ground surface while moving in the direction of an arrow 4 on a flight path 3. Imaging data from the SAR is received by a ground station 5 and processed by a data processor 6 to create a video film 7.

データ記憶用磁気テーブル8の作成等が行われる。A data storage magnetic table 8 is created, etc.

なお、9は分解セルを、10はSARで採取されるデー
タの地表上のレンジ方向を、11は同アジマス方向を、
12はアンテナ・ビームをそして13は刈り幅をそれぞ
れ示している。
In addition, 9 indicates the decomposition cell, 10 indicates the range direction on the ground surface of the data collected by SAR, and 11 indicates the azimuth direction.
12 indicates the antenna beam, and 13 indicates the cutting width.

以下、SARで採取されたデータの処理の概要を述べる
。なお、詳細については、環境のリモートセンシング第
13回国際シンポジウム予稿。
An overview of the processing of data collected by SAR will be described below. For details, please refer to the Proceedings of the 13th International Symposium on Remote Sensing of the Environment.

p337−360.1977年4月(P roceed
ingsof   1 3th   Internat
ional  Symposium  onRemot
e  Sensingof  Environmert
、p337−360゜April、 1977)におけ
るベネノト及びカミング(Bennette and 
Cunning)による″ディジタル合成量ロレーダイ
メージ作成、エアボーン及びサテライト リザルト” 
(” Digiatl S A RI mageFor
mation、 Airborne and 5ate
lliteResults”)と題する文献において述
へられている。
p337-360. April 1977 (Proceeded
ingsof 1 3th International
ional Symposium onRemot
e Sensing of Environmart
, p. 337-360° April, 1977).
``Digital composite amount Rorader image creation, airborne and satellite results'' by Cunning)
(” Digiatl S A RI mageFor
ation, Airborne and 5ate
lliteResults”).

s A Rの受イ3画像中においては、原画像上の1点
が点像パターンh (t、r)の広がりをもって分布し
ており、このままでは利用できない。ここでrは前記レ
ンジ方向を、tは前記アジマス方向を示している。前記
受信画像中で広がっている情報は、まずレンジ方向に圧
縮され、次にアジマス方向に圧縮される。この様子を第
2図に示す。第2図のAは地表にマイクロ波反射点が2
点だけ存在したときの受信画像を模式的に示したもので
あるが、2方向に圧縮処理を行えば、Bのようにもとの
地表パターンを得ることができる。前記レンジ圧縮処理
は画像データ1ラインごとの点像パターンデータとのコ
リレーション処理によって行う。
In the third image of s A R, one point on the original image is distributed with the spread of a point image pattern h (t, r), and cannot be used as is. Here, r indicates the range direction, and t indicates the azimuth direction. The information spread in the received image is first compressed in the range direction and then in the azimuth direction. This situation is shown in FIG. A in Figure 2 shows two microwave reflection points on the ground surface.
This is a schematic diagram of a received image when only points exist, but if compression processing is performed in two directions, the original ground pattern as shown in B can be obtained. The range compression processing is performed by correlation processing with point image pattern data for each line of image data.

但し、コリレーション処理をそのまま実行すると。However, if you run the correlation process as is.

莫大な処理時間がかかるため、高速フーリエ変換(以下
、rFFTJという)、複素乗算、高速逆フーリエ変換
(以下、rIFFTJという。)を用いて高速化が図ら
れる。FFTを用いてコリレーション処理を行なうには
、まず点像パターンを計算機によるディジタル処理で生
成し、点像パタト ーンと画像データ1ラインの両方のFWTを計算する。
Since the processing takes a huge amount of time, speeding up is attempted by using fast Fourier transform (hereinafter referred to as rFFTJ), complex multiplication, and fast inverse Fourier transform (hereinafter referred to as rIFFTJ). To perform correlation processing using FFT, first, a point image pattern is generated by digital processing using a computer, and the FWT of both the point image pattern tone and one line of image data is calculated.

2個のデータのコリレーションはF F Tを計算した
後の周波数領域では単なる乗算になることから、上記2
個のデータのFFT計算結果の積をとり、それをIFF
Tすることにより、1ライン分のコリレーション結果が
得られる。
Correlation of two pieces of data is a simple multiplication in the frequency domain after calculating FFT, so the above 2
Take the product of the FFT calculation results of the data and apply it to the IFF
By performing T, correlation results for one line can be obtained.

アジマス圧縮も上記レンジ圧縮と同様にFFTを用いて
高速にコリレーション結果を得る。
Similar to the above range compression, azimuth compression also uses FFT to obtain correlation results at high speed.

しかしながら、以上の様にFFTを用いた高速化を行な
ってもなおSAR画像再生処理に必要な演算量は膨大で
あり、実用的な時間内で処理するためには超高速の演算
装置が必要となることが知られでいる。
However, even if the speed is increased using FFT as described above, the amount of calculation required for SAR image reproduction processing is still enormous, and an ultra-high-speed calculation device is required to perform the processing within a practical time. It is known that

一方、高画質のSAR画像を得るためには、上記点像パ
ターンを精度よく推定する事が必要となる。特にアジマ
ス方向の点像パターンはSARセンサの移動速度や地表
との距踵に依存するためシーン毎に異なったものとなる
。他の手段により求めたSARセンサの位置・速度のデ
ータからアジマス方向点像パターンを算出できるが、こ
れらのデータには誤差が含まれており、通常は撮像デー
タそのものから点像パターンを推定する自動焦点法によ
りzr画質のSAR画像を得る事が多い。
On the other hand, in order to obtain a high-quality SAR image, it is necessary to accurately estimate the point image pattern. In particular, the point image pattern in the azimuth direction depends on the moving speed of the SAR sensor and the distance between the SAR sensor and the ground surface, so it differs from scene to scene. It is possible to calculate the point image pattern in the azimuth direction from data on the position and velocity of the SAR sensor obtained by other means, but these data contain errors, and usually automatic estimation of the point image pattern from the imaging data itself is not possible. SAR images of ZR image quality are often obtained by the focusing method.

アジマス方向点像パターンh(t)は ] h (t )= A (t )exp(−k t2+β
t)   (1)と表わされる。ここでtはアジマス方
向座標、k、βは再生パラメータと呼ばれる量で、kを
ドツプラ周波数変化率、βをドツプラ中心周波数と呼ぶ
。A(し)はアンテナパターンと呼ばれ、SARセンサ
から発せられるマイクロ波のアジマス方向の強度分布に
関係する。比、βはそれぞれ全く異なる方式により推定
されるが、特にドツプラ中心周波数βの推定に関し、1
982年の米国電気学会国際リモートヤングシンポジウ
ム(IEEEl 982  I nternation
al Geoscience andRemote S
ensing Symposium WP−7,p7.
1A+7.5)におけるり−(F、Li)その他による
1′衛星搭jFy、S A Rにおけるドツプラパラメ
ータ推定技法と海dε速度測定への応用”  (”Do
pplerP arameter  E stimat
、i、on  T echniques  forSp
aceborne S A Rwith Applic
ations t。
The azimuth direction point image pattern h(t) is h(t)=A(t)exp(-k t2+β
t) (1). Here, t is the coordinate in the azimuth direction, k and β are quantities called reproduction parameters, k is the Doppler frequency change rate, and β is the Doppler center frequency. A is called an antenna pattern and is related to the intensity distribution in the azimuth direction of microwaves emitted from the SAR sensor. Although the ratio and β are estimated using completely different methods, especially regarding the estimation of the Doppler center frequency β,
IEEE 982 International Remote Young Symposium
al Geoscience andRemote S
enSing Symposium WP-7, p7.
1A+7.5) Doppler parameter estimation technique and its application to sea dε velocity measurement in 1′ satellite jFy, S A R by Li-(F, Li) et al.
pplerP parameter E stimat
,i,on Techniques forSp
aceborne S A Rwith Applic
ations t.

○cean Current Measurement
” )と題する文献において述へられている。その方法
は、まず粗く推定された再生パラメータを用いて一度画
像を再生した後、その画像データを再びアジマス方向に
フーリエ変換してパワースペクトルを求め、その形状か
らドツプラ中心周波数を推定するものである。本文献に
よれば、単にレンジ圧縮後のデータをアジマス方向にフ
ーリエ変換し、そのパワースペクトルからドツプラ中心
周波数を求める方法よりも、精度よく中心周波数の推定
ができるとしている。
○cean Current Measurement
This method is described in a document titled ``).The method first reproduces an image using roughly estimated reproduction parameters, then Fourier transforms the image data again in the azimuth direction to obtain the power spectrum. This method estimates the Doppler center frequency from its shape.According to this document, the center frequency can be estimated more accurately than the method of simply Fourier transforming the data after range compression in the azimuth direction and calculating the Doppler center frequency from the power spectrum. It is said that it is possible to estimate the

しかしながら、上記文献の方法によれば、アジマス方向
の点像パターン生成、そのFFT、受信データとの乗算
、その結果のIFFTという処理を行なった後、さらに
FFTを行なってパワースペクトルを求める事が必要で
あり、ドツプラ中心周波数の推定にSAR再生処理全体
の約10%以上にも達する多大の演算量と処理時間を要
するという欠点があった。
However, according to the method in the above document, it is necessary to generate a point image pattern in the azimuth direction, perform FFT of the point spread pattern, multiply it with received data, and IFFT the result, and then perform FFT to obtain the power spectrum. However, there is a drawback that estimation of the Doppler center frequency requires a large amount of calculation and processing time, which accounts for about 10% or more of the entire SAR reproduction process.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記従来技術の欠点を改淳し、ドツプ
ラ中心周波数を精度よく、しかも高速に推定し、高画質
のSAR画像の再生を可能とするSAR画像の再生処理
方式を提供することにある。
It is an object of the present invention to provide a SAR image reproduction processing method that overcomes the drawbacks of the above-mentioned conventional techniques, estimates Doppler center frequency accurately and at high speed, and enables reproduction of high-quality SAR images. It is in.

〔発明の概要〕[Summary of the invention]

リー(F、LL)らの文献では、レンジ圧縮後の受信デ
ータのアジマス方向パワースペクトルからは精度よくド
ツプラ中心周波数が推定できない理由を、いわゆる″ま
わり込み″による影響、すなわち部分的にのみマイクロ
波照射を受けた地表各点による反射影響によるものとし
ている。しかしながら、真の原因はSARセンサと地表
の各点との距離がSARセンサの移動によって変化する
ことに起因するレンジカーバチャ歪である事と以下に示
す。
In the literature by Lee (F, LL) et al., the reason why the Doppler center frequency cannot be accurately estimated from the azimuth direction power spectrum of the received data after range compression is explained by the effect of so-called "wrapping", that is, only partially microwaves. This is assumed to be due to the reflection effects from each point on the ground surface that received the irradiation. However, the true cause is range curvature distortion caused by the distance between the SAR sensor and each point on the ground changing due to movement of the SAR sensor, as will be shown below.

レンジ圧縮後の受信データをf(t、r)(r :レン
ジ方向座標、t:アジマス方向座標)とすると、そのア
ジマス方向フーリエ変換F (w + r)はF(ω、
r)=ブt(f(t、 r))= fdr oG (ω
、r O)A((J) hr(r−r O−aω2)e
xp[−ja (1+21と書ける。ここでブ、はtに
関するフーリエ変換。
If the received data after range compression is f(t, r) (r: range direction coordinate, t: azimuth direction coordinate), its azimuth direction Fourier transform F (w + r) is F(ω,
r) = but (f(t, r)) = fdr oG (ω
, r O) A((J) hr(r-r O-aω2)e
It can be written as xp[-ja (1+21), where B and is the Fourier transform with respect to t.

ωはアジマス方向周波数、A(ω)はアジマス方向マイ
クロ波強度分布(アンテナパターン)、’hrはレンジ
圧縮後のレンジ方向の点象パターン、aはレンジカーバ
チャ歪を表わす定数、αは再生パラメータで決まる量で
ある。A(ω)はωがドツプラ中心周波数に等しい時、
最も大きな値をとる。
ω is the frequency in the azimuth direction, A(ω) is the microwave intensity distribution in the azimuth direction (antenna pattern), 'hr is the spot pattern in the range direction after range compression, a is a constant representing range curvature distortion, and α is the reproduction parameter This is the amount determined by A(ω) is when ω is equal to the Doppler center frequency,
Take the largest value.

hr(r)はr百〇にピークをもつ関数で(2)は、地
表の1点の情報がr=r(1+aω2なる2次曲線上に
分布する事を示す、G(ωtro)は地表のマイクロ波
反射率をg(tlro)とした時、そのアジマス方向フ
ーリエ変換である。すなわちG(ω、r、))=ブt(
g(t、r o))   (3)である。
hr(r) is a function with a peak at r100, and (2) shows that the information of one point on the earth's surface is distributed on a quadratic curve of r=r(1+aω2), and G(ωtro) is the function of the earth's surface. When the microwave reflectance is g(tlro), it is the Fourier transform in the azimuth direction. That is, G(ω, r,))=but(
g(t, r o)) (3).

地表のマイクロ波反射率g(Lpro)の位相は全くラ
ンダムに変化すると仮定してよいから、Eを確率平均演
算子として E(g(t、ro)g (t’ +r’O’ ))=δ
(t−to)δ(II” Oar o’ )σ2(t、
ro)    (4)となる。ここでδはデルタ関数、
本は複素共役、σ2(しr。)は(tlro)に対応す
る地表点の平均マイクロ波射照強度である。したがって
E<acω+ r O)G (<111 r o’ )
)=fdtdt’ E(g(t、rO)g (t’ 、
rO’ ))exp(−jωt+jωt’ )=fdt
dt’δ(g(t、t’ )δ(r(1−ro’ )f
f2(t、rO)6Xp(−j(alt+jωt’ )
ここで 6  (rO)=fdtcr ”(t、ra)
  (6)さらに E(IF(ω、rl )=fdrodro’ E(G”
(c+>、r(+’ ))IA(0月2hr(r−rO
−aω2)hr”(r−r□’  −a(i+2)=f
dro a2(ro]A(ω121hr(r−ro −
aω2)    (7)hr(r)はrγ0でピークを
もつことからE(l F(ω、 r)F )〜σ2(r
+aω2]A(ω)F      (8)となる。ドツ
プラ中心周波数はIA(ω)12のピーり位置を求める
事により推定されるが、式(8)により、レンジ圧縮後
の受信データのアジマス方向パワースペクトルには平均
マイクロ波反射強度σ2(r+aω2)を通じてω−依
存性があるため、精度よくドツプラ中心周波数を推定す
ることができない。
Since it can be assumed that the phase of the microwave reflectance g(Lpro) on the earth's surface changes completely randomly, E(g(t, ro)g (t' + r'O' ))= δ
(t-to)δ(II” Oar o')σ2(t,
ro) (4). Here δ is the delta function,
is the complex conjugate, and σ2 (shir.) is the average microwave irradiation intensity at the ground point corresponding to (tlro). Therefore, E<acω+ r O)G (<111 r o')
)=fdtdt'E(g(t,rO)g(t',
rO'))exp(-jωt+jωt')=fdt
dt'δ(g(t,t')δ(r(1-ro')f
f2(t, rO)6Xp(-j(alt+jωt')
Here 6 (rO)=fdtcr”(t, ra)
(6) Furthermore, E(IF(ω,rl)=fdrodro' E(G”
(c+>, r(+')) IA (October 2hr (r-rO
-aω2)hr"(r-r□' -a(i+2)=f
dro a2(ro)A(ω121hr(r-ro-
aω2) (7) Since hr(r) has a peak at rγ0, E(l F(ω, r)F ) ~ σ2(r
+aω2]A(ω)F (8). The Doppler center frequency is estimated by finding the peak position of IA(ω)12, but according to equation (8), the azimuth direction power spectrum of the received data after range compression has the average microwave reflection intensity σ2(r+aω2). Since there is ω-dependence throughout the range, the Doppler center frequency cannot be estimated with high accuracy.

以上の原理により、ドツプラ中心周波数の推定は、一度
アジマス圧縮により画像を再生し、さらにそのフーリエ
変換を求めるまでもなく1式(8)においてσ2(r+
aω2)のω−依存性を除けばよいことがわかる。周波
数領域におけるレンジカーバチャ補正処理は、まさにr
’ =r+aω2なる座標変換を行なう事に対応してい
る事から、レンジカーバチャ補正処理後のデータに対し
てドツプラ中心周波数の推定を行なう事により、高い推
定精度が得られる。これが本発明の骨子である。
Based on the above principle, estimation of the Doppler center frequency can be performed using σ2(r+
It can be seen that it is sufficient to remove the ω-dependence of aω2). Range curvature correction processing in the frequency domain is exactly r
Since it corresponds to the coordinate transformation of '=r+aω2, high estimation accuracy can be obtained by estimating the Doppler center frequency on the data after the range curvature correction process. This is the gist of the present invention.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第3図および第4図により説明
する。まずSAR受信データはレンジ圧縮処理101に
よりレンジ方向に圧縮される。次いで再生パラメータ計
算処理102により再生パラメータの初期値が計算され
、再生パラメタファイル103に記憶される。次いでレ
ンジ圧縮済受信データはアジマス方向FFT処理104
により周波数領域に変更された後、レンジカーバチャ補
正処理105によりレンジカーバチャ歪が補正される。
Embodiments of the present invention will be described below with reference to FIGS. 3 and 4. First, SAR received data is compressed in the range direction by range compression processing 101. Next, initial values of the playback parameters are calculated by the playback parameter calculation process 102 and stored in the playback parameter file 103. Next, the range-compressed received data is subjected to azimuth direction FFT processing 104.
After changing to the frequency domain, range curvature distortion is corrected by range curvature correction processing 105.

次いでレンジカーバチャ補正済の受信データに対してド
ツプラ中心周波数推定処理106を行ない、再生パラメ
タファイル103の内容を修正する。その後修正された
再生パラメタを用いてアジマス点像パターン生成処理1
07.同FFT処理】08.レンジカーバチャ補正済受
信データとその複素乗算処理109.IFFT処理11
0マルチルック加算・量子化処理111により最終的な
SAR再生画像が得られる。
Next, Doppler center frequency estimation processing 106 is performed on the range curvature corrected received data, and the contents of the reproduction parameter file 103 are corrected. Azimuth point image pattern generation processing 1 using the modified reproduction parameters
07. Same FFT processing] 08. Range curvature corrected received data and its complex multiplication processing 109. IFFT processing 11
A final SAR reconstructed image is obtained by 0 multi-look addition/quantization processing 111.

第4図にドツプラ中心周波数推定処理106の原理を示
す。横軸120はアジマス方向周波数、たて軸121は
パワースペクトル強度、曲線122はレンジカーバチャ
補正済受信データのパワー変化である。通常ノイズの効
果を減らすため、数ライン分のパワーの平均をとる。ド
ツプラ中心周波数の初期値123は第3図の再生パラメ
タ計算処理102で算出された値であり、この値123
を曲線122と横軸120で囲まれる左右の部分の面積
が等しくなる値124に修正しこれをドツプラ中心周波
数の推定値とする。ここでは左右の面積を等しくする値
として推定したが、も゛ ちろん曲線122のピークを
直接求める方法でも本発明の効果は変わらない。
FIG. 4 shows the principle of the Doppler center frequency estimation process 106. The horizontal axis 120 is the frequency in the azimuth direction, the vertical axis 121 is the power spectrum intensity, and the curve 122 is the power change of the range curvature-corrected received data. Usually, the power of several lines is averaged to reduce the effects of noise. The initial value 123 of the Doppler center frequency is the value calculated in the reproduction parameter calculation process 102 in FIG.
is corrected to a value 124 where the areas of the left and right portions surrounded by the curve 122 and the horizontal axis 120 are equal, and this is used as the estimated value of the Doppler center frequency. Here, the estimation is made using a value that makes the left and right areas equal, but the effect of the present invention is of course still the same even if the peak of the curve 122 is directly determined.

〔発明の効果〕〔Effect of the invention〕

以上述べた様に、本発明によれば、レンジカーバチャ補
正後の受信データのパワースペクトルの形状を用いてド
ツプラ中心周波数の推定を行なうため、地表のマイクロ
波反射強度分布の影響を除去した上で推定ができるので
、高速かつ高精度にドツプラ中心周波数が推定でき、高
画質のSAR再生画像が得られるという効果がある。
As described above, according to the present invention, in order to estimate the Doppler center frequency using the shape of the power spectrum of the received data after range curvature correction, the influence of the microwave reflection intensity distribution on the ground surface is removed. Since the Doppler center frequency can be estimated at high speed and with high precision, it is possible to obtain a high-quality SAR reconstructed image.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はSARの全体システムを示す図、第2図は原画
像と受信画像および圧縮画像の一例を示す図、第3図は
発明方式による処理手順の一内実1づ、、’j、”l+
施例のフローチャート、第4図は第3図中でドツプラ中
心周波数推定処理の原理を示す図である。 代理人 弁理士 小 川 勝 男  ・へ□ ’42色 第3図
Fig. 1 is a diagram showing the entire SAR system, Fig. 2 is a diagram showing an example of an original image, a received image, and a compressed image, and Fig. 3 is a diagram showing an example of the processing procedure according to the invention method. l+
FIG. 4, a flowchart of the embodiment, is a diagram showing the principle of Doppler center frequency estimation processing in FIG. 3. Agent: Patent Attorney Katsuo Ogawa □ '42 Color Figure 3

Claims (1)

【特許請求の範囲】[Claims] 受信データのアジマス方向パワースペクトルからドップ
ラ中心周波数を推定する手段をもつ合成開口レーダ画像
の再生処理方式において、周波数領域におけるレンジカ
ーバチャ補正処理後の受信データのパワースペクトルを
求め、該パワースペクトルの形状からドップラ中心周波
数を推定することを特徴とする合成開口レーダ画像の再
生処理方式。
In a synthetic aperture radar image reproduction processing method that includes means for estimating the Doppler center frequency from the azimuth direction power spectrum of received data, the power spectrum of the received data after range curvature correction processing in the frequency domain is determined, and the shape of the power spectrum is calculated. A synthetic aperture radar image reproduction processing method characterized by estimating a Doppler center frequency from.
JP60212369A 1985-09-27 1985-09-27 Regeneration processing system of synthetic aperture radar image Pending JPS6273182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60212369A JPS6273182A (en) 1985-09-27 1985-09-27 Regeneration processing system of synthetic aperture radar image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60212369A JPS6273182A (en) 1985-09-27 1985-09-27 Regeneration processing system of synthetic aperture radar image

Publications (1)

Publication Number Publication Date
JPS6273182A true JPS6273182A (en) 1987-04-03

Family

ID=16621418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60212369A Pending JPS6273182A (en) 1985-09-27 1985-09-27 Regeneration processing system of synthetic aperture radar image

Country Status (1)

Country Link
JP (1) JPS6273182A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7551119B1 (en) * 2008-01-08 2009-06-23 Sandia Corporation Flight path-driven mitigation of wavefront curvature effects in SAR images

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58191979A (en) * 1982-05-04 1983-11-09 Hitachi Ltd Picture processing system of synthetic aperture radar

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58191979A (en) * 1982-05-04 1983-11-09 Hitachi Ltd Picture processing system of synthetic aperture radar

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7551119B1 (en) * 2008-01-08 2009-06-23 Sandia Corporation Flight path-driven mitigation of wavefront curvature effects in SAR images

Similar Documents

Publication Publication Date Title
US4616227A (en) Method of reconstructing synthetic aperture radar image
JPH0646405B2 (en) Synthetic aperture radar image reproduction processing method
CN111142105A (en) ISAR imaging method for complex moving target
Soumekh Signal subspace fusion of uncalibrated sensors with application in SAR and diagnostic medicine
KR101839041B1 (en) FMCW-SAR system using correction continuous motion effect and method for reconstructing SAR image using FMCW-SAR system
Qiu et al. An Omega-K algorithm with phase error compensation for bistatic SAR of a translational invariant case
JP6261839B1 (en) Synthetic aperture radar signal processor
Zeng et al. Two‐dimensional autofocus technique for high‐resolution spotlight synthetic aperture radar
Khwaja et al. Efficient stripmap SAR raw data generation taking into account sensor trajectory deviations
CN107229050B (en) Radar imaging optimization method based on polar coordinate format
Warner et al. Two-dimensional phase gradient autofocus
CN109946682B (en) GF3 data baseline estimation method based on ICESat/GLAS
JPS6273182A (en) Regeneration processing system of synthetic aperture radar image
CN113640798B (en) Multi-angle reconstruction method, device and storage medium for radar target
CN114002666B (en) Method and equipment for extracting satellite-borne ATI-SAR ocean current flow velocity under any antenna configuration
JPS6280767A (en) Reproducing processing system for synthetic aperture radar image
CN115453530A (en) Bistatic SAR (synthetic aperture radar) filtering back-projection two-dimensional self-focusing method based on parameterized model
JP2511939B2 (en) Reconstruction method of synthetic aperture radar image
JPS61187079A (en) Reproducing processing system of synthetic aperture radar picture image
JPH07120405B2 (en) Image reproduction processing method for synthetic aperture radar
KR101839042B1 (en) Apparatus and method for correcting continuous motion effect of FMCW-SAR system
Guo et al. A Decoupled Chirp Scaling Algorithm for High-Squint SAR Data Imaging
Zhan et al. Two Dimensional Sparse-Regularization-Based InSAR Imaging with Back-Projection Embedding
Dong et al. A Modified Polar Format Algorithm for Highly Squinted Missile-Borne SAR
EP4187281A1 (en) Method and system for creating interferometric coherence data products for objects