JPS58191979A - Picture processing system of synthetic aperture radar - Google Patents

Picture processing system of synthetic aperture radar

Info

Publication number
JPS58191979A
JPS58191979A JP57075645A JP7564582A JPS58191979A JP S58191979 A JPS58191979 A JP S58191979A JP 57075645 A JP57075645 A JP 57075645A JP 7564582 A JP7564582 A JP 7564582A JP S58191979 A JPS58191979 A JP S58191979A
Authority
JP
Japan
Prior art keywords
data
line
range
processing
parallel processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57075645A
Other languages
Japanese (ja)
Other versions
JPH0532712B2 (en
Inventor
Koichi Honma
弘一 本間
Yoichi Seto
洋一 瀬戸
Nobutake Yamagata
山縣 振武
Koichi Ihara
廣一 井原
Fuminobu Furumura
文伸 古村
Yutaka Kubo
裕 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57075645A priority Critical patent/JPS58191979A/en
Publication of JPS58191979A publication Critical patent/JPS58191979A/en
Publication of JPH0532712B2 publication Critical patent/JPH0532712B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9004SAR image acquisition techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To form a system where a high-speed processing is possible, by providing a data buffer for range curvature compensation processing in an azimuth direction compressing means. CONSTITUTION:Input data of an azimuth compression processing device 4 is transposed range compression data of a two-dimensional picture memory 3 and is read out line by line and is distributed to each parallel processing device, and picture data is converted to one-line data in a frequency space by an FET device 4A and is stored in a shared memory 9 in the order of line number. A range curvature compensation resampling device 4B on each parallel processing device resamples data in the shared memory 9 in accordance with a curve of the secondary degree given from a CPU; but since the position is not specified concerning line number, it is necessary to access all outputs of the FET device 4A of each parallel processing device. The product between the output of the range curvature compensation resampling device 4B and a reference function is operated in a complex multiplying device 4C, and this output is converted to a real picture by an IFFT device 4D.

Description

【発明の詳細な説明】 発明の対象 本発明は人工衛星あるいけ航空機等に搭載される合成開
口レーダ(5ynthetic 1pertur@Ra
dar 。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention The present invention relates to a synthetic aperture radar mounted on an artificial satellite or an aircraft.
dar.

以下「8ARjという)による撮像データから、人間が
理解で愈る画像を再生するためのデジタル処理システム
に関し、特にSARのデータを高速処理するのに好適な
処理システムに関するものである。
The present invention relates to a digital processing system for reproducing images that can be understood by humans from imaging data obtained by ``8ARj'' (hereinafter referred to as "8ARj"), and particularly to a processing system suitable for high-speed processing of SAR data.

従来tj術 人工衛星あるいは航空機等を用いたリモートセンシング
の会費では、地表を撮像するためのセンナとして、霊を
透過するマイクリ波帯で高解像度のwit像が得られる
8ARが注目されている。
Conventionally, in the field of remote sensing using artificial satellites or aircraft, 8AR is attracting attention as a sensor for imaging the earth's surface, as it can obtain high-resolution wit images in the microwave band that transmits through spirits.

第1図に81Rの全体システムを示した。レーダ・セン
fR,アンテナA11を有するBARけ、人工衛星等に
搭載されて飛行経路を上を矢印A方向に移動しつつ地表
の撮像を行う。SARからの撮像データは地上局L1で
受信され、データ・プロセッサ馬により処理されて映像
フィルムIPの作成、データ記憶用磁気テープMTの作
成等が行われる。
Figure 1 shows the entire system of 81R. A BAR equipped with a radar sensor fR and an antenna A11 is mounted on an artificial satellite or the like and images the ground surface while moving along a flight path in the direction of arrow A. Imaging data from the SAR is received by the ground station L1 and processed by a data processor to create an image film IP, a magnetic tape MT for data storage, etc.

なお、C#′!分解セルを、R,は8ARで採取される
データの地表上のレンジ方向を、Azは閾アジマス方向
を、ABはアンテナ・ビームをそしてo、ri刈り幅を
それぞれ示している。
Furthermore, C#'! In the decomposition cell, R indicates the range direction on the ground surface of the data collected by 8AR, Az indicates the threshold azimuth direction, AB indicates the antenna beam, and o and ri indicate the cutting width, respectively.

以下、8ARで採取されたデータの処理の概要を述べる
。 なお、詳細については、例えば、J。
Below, we will outline the processing of data collected by 8AR. For details, see, for example, J.

R,13@n!l@tt  @t  kl、ADigi
tlLj  proceaaor  forthe  
Proauotion  of  5easat  5
ynthetic ApertureRadar )w
ag・ry 1979 + Italyを#照されたい
R,13@n! l@tt @t kl, ADigi
tlLj proceaaor forthe
Proaution of 5easat 5
ynthetic ApertureRadar )w
Please take a look at ag・ry 1979 + Italy.

81Hの受信画像中においては、原画像上の1点が点像
パターンh(x、y)の広がりをもって分布しており、
このままでは人間が理解できない。
In the received image of 81H, one point on the original image is distributed with the spread of a point spread pattern h (x, y),
Humans cannot understand this.

ここで、Xは前記レンジ方向を、yは前記アジマス方向
を示している。前記受信画像中で広がっている情報は、
まずレンジ方向に圧縮され、次にアジマス方向に圧縮さ
れる。前記圧縮処理は画像データ1ラインごとの点像パ
ターンデータとのコリレージ四ン処理によって行う。 
但し、コリレージ目ン処理をそのまま実行すると、膨大
な処理時間がかかるため、高速7−リエ変換(以下1’
−FFT」という)、複素乗算、高速逆7−リエ変換(
以下「IFFTJという)を用いて高速化が図られる。
Here, X indicates the range direction, and y indicates the azimuth direction. The information spread in the received image is
First, it is compressed in the range direction, and then in the azimuth direction. The compression processing is performed by correlay processing with point image pattern data for each line of image data.
However, if the correlative eye processing is executed as it is, it will take a huge amount of processing time, so the fast 7-lier transform (hereinafter referred to as 1'
- FFT), complex multiplication, fast inverse 7-lier transform (
Speed-up is achieved using IFFTJ (hereinafter referred to as IFFTJ).

以上がSARのデータ処理の基本であるが、画質向上の
ためには、この他にレンジカーバチヤシ正等の処理が不
可欠である。 レンジカーバチヤシ)が変化することに
より、処理W像中に現われるぶれパターンを除去するも
のであり、アジマス方向圧縮処理途中の周tlI数空間
上で、8ARを搭載している人工衛星や航空機の軌道、
姿勢で決まる2次曲線上のデータを求め、新しい配列デ
ータとするものである。 従って、レンジカーバチャ補
正処ll!lFiライン単位の処理では不可能であり、
1ラインの輔正データを作成するためには、前記2次曲
線をすべて含む周波数空間データが必要である。 しか
しながら、従来のSARの両像処理システムにおいては
、一連の画像化処理を充分に高速に行うため、処理アル
ゴリズムに対応して多くの専用プロー七ツサを並列に、
かつ、パイプライン的に並べ、2次元データの転置処理
専用のメモリを間においたシステム4I!威を採ってい
た。
The above is the basics of SAR data processing, but in order to improve image quality, other processing such as range car correction is essential. This is to remove the blur pattern that appears in the processed W image by changing the range car beam), and to remove the blur pattern that appears in the processed W image. orbit,
Data on a quadratic curve determined by the posture is obtained and used as new array data. Therefore, the range curvature correction process ll! This is not possible with IFi line-by-line processing.
In order to create one line of correction data, frequency space data including all of the quadratic curves is required. However, in conventional SAR double image processing systems, in order to perform a series of image processing at a sufficiently high speed, many dedicated processors are used in parallel according to the processing algorithm.
Moreover, the system 4I is arranged in a pipeline and has a memory dedicated to transposing two-dimensional data in between! He was possessing authority.

第2図はその一例を示すものである。  第2図におい
て材、1は受信8ムRデータを記録している磁気テープ
、2け前記データをレンジ方向にライン単位に圧縮処理
するシステム、3はレンジ方向圧縮済2次元データを縦
横転置するための2次元画像メモリ、番は転置データを
アジマス方向にライン単位に圧縮処理するシステム、5
Fi圧縮[1データを記憶する磁気テープ、そして6F
iこれらを制御するCPUである。 ここで、前記アジ
マス方向圧縮処理システム4は、ライン単位の処理のた
めにvIWl、のプロセッサを並列に配した構成となっ
ており、前述のレンジカーバチヤ補正処理を行う場合、
前記全システム制御用0PU6の主記憶装置7をレンジ
カーバチヤ捕正用のデータバッファとして使うことにな
り、バスネックのため処理d!度の低下をta <とい
う問題があった。
FIG. 2 shows an example. In Fig. 2, 1 is a magnetic tape on which the received 8mmR data is recorded, 2 is a system for compressing the data line by line in the range direction, and 3 is for vertically and horizontally transposing the compressed 2-dimensional data in the range direction. A two-dimensional image memory for, number 5 is a system that compresses transposed data line by line in the azimuth direction.
Fi compression [magnetic tape that stores 1 data, and 6F
i is a CPU that controls these. Here, the azimuth direction compression processing system 4 has a configuration in which vIWl processors are arranged in parallel for line-by-line processing, and when performing the above-mentioned range curvature correction processing,
The main storage device 7 of the OPU 6 for controlling the entire system will be used as a data buffer for range car control, and due to a bus neck, processing d! There was a problem that the degree of decrease was ta<.

発明の目的 本発明は上記事情に―みてなされたもので、その目的と
するところは、従来の8ARの画像処理システムにおけ
る上述の如き問題を解消し、高速な処理が可能な8AR
の画像処理システムを提供することにある。
Purpose of the Invention The present invention has been made in view of the above circumstances, and its purpose is to solve the above-mentioned problems in the conventional 8AR image processing system and to develop an 8AR image processing system capable of high-speed processing.
The purpose of this invention is to provide an image processing system.

本発明の要虐は、受信8ARデータをレンジ方向に圧縮
する手段、レンジ方向圧縮済2次元データを縦横転置す
る手段、転置データをアジマス方向に圧縮する手段を有
する8ARの画像処理システムにおいて、前記アジマス
方向圧縮手段内に、SムR処11アルゴリズムにおける
レンジカーパチャ補正処理用のデータバッファを設ける
ことによって達成される。
The gist of the present invention is to provide an 8AR image processing system having means for compressing received 8AR data in the range direction, means for vertically and horizontally transposing the range direction compressed two-dimensional data, and means for compressing the transposed data in the azimuth direction. This is achieved by providing a data buffer for range curpture correction processing in the SM R processing 11 algorithm in the azimuth direction compression means.

発明の実施例 第3図は本発明の一実施例を示すもので、第2図に示し
た81Rのi!Ii像処理システムにおけるアジマス方
向圧縮手段Φ内に、レンジカーバチャ補正MW用データ
バッファとしての並列処理装置間の共有メモリを設けた
ものである。 第3図において、4はアジマス圧給短理
1置、4ムはFFT!’j#、4Bはレンジカーパチャ
捕正用すサンプル装曹、4Cは複素乗算装置、4DはI
 IFFT装電、aVi分配装置そして9は共々メモリ
である0上述の如く構成された本実施例装置の動作につ
いて以下説明する。
Embodiment of the Invention FIG. 3 shows an embodiment of the present invention, in which the i! of 81R shown in FIG. A shared memory between parallel processing devices as a data buffer for range curvature correction MW is provided in the azimuth direction compression means Φ in the Ii image processing system. In Figure 3, 4 is the azimuth pressure supply short term 1 position, and 4 is FFT! 'j#, 4B is a sample filter for range carpture capture, 4C is a complex multiplier, 4D is an I
The operation of the device of this embodiment constructed as described above, including the IFFT power supply, the aVi distribution device, and 9, all of which are memories, will be described below.

アジマス圧縮処理装置4の入力データは2次元画像メモ
リ3中の転電済レンジ圧縮データであり、lラインずつ
続出されて分配器f18により、1ラインずつ各並列処
理装置に分1される。該1ラインの画像データはFFT
装置11M4Aにより周波数空間上の1ラインデータに
変換され、共有メモリ9上にライン番号順に格納される
。 各並列処理装置上のレンジカーバチャ補正用リサン
プルM!4BFi、C!PU6から与えられた2次曲線
に従い共有メモリ9 l:のデータをリサンプル(内挿
拾い出し)する。このデータのりサンプル位Itはライ
ン番号に関し特定していないため、各並列処理装置上の
IFFT装ff 4 Aの出力をすべてアクセスする必
要がある。 レンジカーバチャ補正用すサンプル装f!
t4Bの出力は従来と同様に麹素す算装警40で参照関
数との積をとられた後、IPFT装置4Dで実PAe化
される。
The input data to the azimuth compression processing device 4 is the transferred range compressed data in the two-dimensional image memory 3, which is successively outputted one line at a time, and is divided one line at a time to each parallel processing device by the distributor f18. The image data of this one line is FFT
The data is converted into one line data in frequency space by the device 11M4A, and stored in the shared memory 9 in line number order. Resample M for range curvature correction on each parallel processing device! 4BFi, C! The data in the shared memory 9l: is resampled (interpolated) according to the quadratic curve given from the PU6. Since this data sample position It is not specified with respect to the line number, it is necessary to access all outputs of the IFFT device ff 4 A on each parallel processing device. Sample setup for range curvature correction f!
The output of t4B is multiplied with a reference function by the calculation unit 40 in the same way as in the past, and then converted into a real PAe by the IPFT unit 4D.

第4図は本発明の他の実施例を示すもので、上記実施例
に示した共有メモリ9と同一の機能を、各並列処理装置
内に設けた固有メモリ10と共通データバス11とによ
り実現するものである◇本実施例装置においては、他の
並列処理装置からのFFT済データは前記共通データバ
ス11を通して送られる。なお、各並列処理装置が画像
データの周波数空間で一部のデータのみを使用する場合
には、共有メモリを設ける方式より各並列処理装置に固
有メモリを設ける方式の方が有利である(第6図#照)
0 第6図は本発明の更に他の実施例を示すものであり、図
において、12Fi分配器、13はシフトレジスタ、1
4−#−i係数器、15!−j加算器そして16は間引
きルック加算器である。 本実施例装置においては、2
次元メモリ3から順次続出されるレンジ方向圧縮済デー
タを、並列処理の並列数に等しい段数から成るシフトレ
ジスタ13に入力し、各シフトレジスタの内容に所定の
係数をかけて加??′n15によりその総和を採9、こ
れを分配器12により各並列処理装置に1データずつ分
配するように構成されている。従って各並列処理装置は
同一のアジマス方向ラインデータを次々処理することに
なり、各並列処理装置の固有メモリ10には、異なるラ
インの対応する位置のデータが蓄積される◎ 本実施例
装置においては、同一ライン上の異なる位置に対応する
間引きデータを入力していることになり、その出力のw
4伊データを加算処理するようにしている一部引きルッ
ク加算を行っている−ので、S/N比を向上できるとい
う効果がある。また、本実施例装置は、各並列処理装置
間でのデータのやりとりがないため、構成および演算制
御が単純になるという効果もある。但し、1ラインデー
タを間引いて処理するため、アジマス方向信号帯域がサ
ンプル周波数を越えてしまうので、1データずつの分配
に先立ち、第7図に示す如く帯域減少処理を施す必要が
ある。
FIG. 4 shows another embodiment of the present invention, in which the same function as the shared memory 9 shown in the above embodiment is realized by a unique memory 10 and a common data bus 11 provided in each parallel processing device. In the device of this embodiment, FFT-completed data from other parallel processing devices is sent through the common data bus 11. Note that when each parallel processing device uses only part of the data in the frequency space of image data, it is more advantageous to provide each parallel processing device with its own memory than to provide a shared memory (see Section 6). Figure #see)
0 FIG. 6 shows still another embodiment of the present invention, and in the figure, a 12Fi distributor, 13 a shift register, 1
4-#-i coefficient unit, 15! -j adder and 16 is a decimated look adder. In the device of this embodiment, 2
The range-direction compressed data sequentially output from the dimensional memory 3 is input to a shift register 13 having a number of stages equal to the number of parallel processes, and the contents of each shift register are multiplied by a predetermined coefficient. ? 'n15 takes the sum 9, and the distributor 12 distributes it to each parallel processing device one data at a time. Therefore, each parallel processing device processes the same azimuth direction line data one after another, and data at corresponding positions of different lines is accumulated in the specific memory 10 of each parallel processing device. , this means that thinning data corresponding to different positions on the same line is input, and the output w
Since the partial look addition is performed in which the 4-day data is added, there is an effect that the S/N ratio can be improved. Furthermore, since the device of this embodiment does not exchange data between the respective parallel processing devices, it also has the effect of simplifying the configuration and calculation control. However, since one line data is thinned out and processed, the azimuth direction signal band exceeds the sampling frequency, so it is necessary to perform band reduction processing as shown in FIG. 7 before distributing each data item.

発明の効果 以上述べた如く、本発明によれItfs受イに8Al’
Lデータをレンジ方向に圧縮する手段、レンジ方向圧縮
済み2次元データを縦横転前する手段、転置データをア
ジマス方向に圧縮する手段を有する8AR17)画像処
理システムにおいて、前記アジ!ス方向圧縮手段内に、
8A’R処理アルゴリズムにおけるレンジカーバチャ袖
正処理用のデータバッファを設けたので、処理を迅速化
するとともに演算制御を単純化できるという効果を奏す
る。
Effects of the Invention As described above, the present invention provides 8Al' for Itfs reception.
8AR17) An image processing system comprising means for compressing L data in the range direction, means for vertically and horizontally transposing the two-dimensional data already compressed in the range direction, and means for compressing the transposed data in the azimuth direction. in the direction compression means,
Since a data buffer is provided for range curvature correction processing in the 8A'R processing algorithm, it is possible to speed up processing and simplify arithmetic control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図FiSARの全体システムを示す図、第2図は従
来の8ARのW像処理システムの構成を示す図、第31
5!5〜第6図は本発明の実鰺例を示す図、第7図は帯
域減少処理を示すドて1である。 2:レンジ圧縮処理装fit、12次元メモリ、4:ア
ジマス圧縮処理装部、6 :OPU、8 :分配装置、
9:共有メモ’J、10F固有メモリ、11:共通デー
タバス、12:分配孔:、13ニジ7トレジスタ、14
;係数器、15:加算器、16;間引きルック加14器
。 特許出願人 株式会社 日立製作所 代  理  人  弁理士 磯  村  雅  俊−第
 1 図 八 第3図 第4図 413  牛C41)    ’、    、牛 第、5図 第6図 第7図 第1頁の続き 0発 明 者 古村文伸 川崎市多摩区王禅寺1099番地株 式会社日立製作所システム開発 研究所内 ■発 明 者 久保裕 日立重大みか町五丁目2番1号 株式会社日立製作所犬みか工場
Figure 1 shows the overall FiSAR system, Figure 2 shows the configuration of the conventional 8AR W image processing system, and Figure 31 shows the configuration of the conventional 8AR W image processing system.
5!5 to 6 are diagrams showing examples of actual mackerel according to the present invention, and FIG. 7 is a diagram showing a band reduction process. 2: Range compression processing unit fit, 12-dimensional memory, 4: Azimuth compression processing unit, 6: OPU, 8: Distribution device,
9: Shared memo 'J, 10F unique memory, 11: Common data bus, 12: Distribution hole:, 13 Niji 7 register, 14
; Coefficient unit, 15: Adder, 16; Decimation look adder 14. Patent Applicant Hitachi, Ltd. Representative Patent Attorney Masatoshi Isomura - No. 1 Figure 8 Figure 3 Figure 4 413 Ushi C41) ', , Ushi No. 5 Figure 6 Figure 7 Figure 7 Continued from page 1 0 Inventor: Fuminobu Furumura, Hitachi, Ltd. System Development Laboratory, 1099 Ozenji, Tama-ku, Kawasaki City; Inventor: Yutaka Kubo; 5-2-1 Hitachi University, Mika-cho; Inumika Factory, Hitachi, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 合成開口レーダによる撮像データを並列処理し、レンジ
方向の圧縮処理を行う手段と、該手段によりレンジ方向
に圧縮されたデータを縦横転置する手段と、該手段によ
り転置されたデータを並列処理し、アジマス方向の圧縮
処理を行う手段とを有する合成開口レーダの画像処理シ
ステムにおいて、前記アジマス方向の圧縮処理を行う手
段内に、部分画像データバッファを設けたことを特徴と
する合成開口レーダの画像処理システム。
means for parallel processing imaging data by synthetic aperture radar and compression processing in the range direction; means for vertically and horizontally transposing the data compressed in the range direction by the means; and parallel processing of the data transposed by the means; An image processing system for a synthetic aperture radar comprising means for performing compression processing in the azimuth direction, wherein a partial image data buffer is provided in the means for performing compression processing in the azimuth direction. system.
JP57075645A 1982-05-04 1982-05-04 Picture processing system of synthetic aperture radar Granted JPS58191979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57075645A JPS58191979A (en) 1982-05-04 1982-05-04 Picture processing system of synthetic aperture radar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57075645A JPS58191979A (en) 1982-05-04 1982-05-04 Picture processing system of synthetic aperture radar

Publications (2)

Publication Number Publication Date
JPS58191979A true JPS58191979A (en) 1983-11-09
JPH0532712B2 JPH0532712B2 (en) 1993-05-17

Family

ID=13582189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57075645A Granted JPS58191979A (en) 1982-05-04 1982-05-04 Picture processing system of synthetic aperture radar

Country Status (1)

Country Link
JP (1) JPS58191979A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273182A (en) * 1985-09-27 1987-04-03 Hitachi Ltd Regeneration processing system of synthetic aperture radar image
US4879559A (en) * 1987-08-17 1989-11-07 The General Electric Company P.L.C. Azimuth processor for SAR system having plurality of interconnected processing modules
JPH02243987A (en) * 1989-03-17 1990-09-28 Hitachi Ltd Decentralized synthetic aperture radar signal processing system
US5375480A (en) * 1992-04-28 1994-12-27 Fanuc, Ltd. Cable laying arrangement for the robot arm unit of an industrial robot
JP2003090880A (en) * 2001-09-19 2003-03-28 Mitsubishi Electric Corp Synthetic aperture radar device and image regeneration method in synthetic aperture radar device
US6912252B2 (en) 2000-05-08 2005-06-28 Mitsubishi Heavy Industries, Ltd. Distributed communicating system, distributed communication data, distributed transmitting means and distributed receiving means

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56108977A (en) * 1980-02-01 1981-08-28 Mitsubishi Electric Corp Signal processing system of synthetic aperture radar

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56108977A (en) * 1980-02-01 1981-08-28 Mitsubishi Electric Corp Signal processing system of synthetic aperture radar

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273182A (en) * 1985-09-27 1987-04-03 Hitachi Ltd Regeneration processing system of synthetic aperture radar image
US4879559A (en) * 1987-08-17 1989-11-07 The General Electric Company P.L.C. Azimuth processor for SAR system having plurality of interconnected processing modules
JPH02243987A (en) * 1989-03-17 1990-09-28 Hitachi Ltd Decentralized synthetic aperture radar signal processing system
US5375480A (en) * 1992-04-28 1994-12-27 Fanuc, Ltd. Cable laying arrangement for the robot arm unit of an industrial robot
US6912252B2 (en) 2000-05-08 2005-06-28 Mitsubishi Heavy Industries, Ltd. Distributed communicating system, distributed communication data, distributed transmitting means and distributed receiving means
JP2003090880A (en) * 2001-09-19 2003-03-28 Mitsubishi Electric Corp Synthetic aperture radar device and image regeneration method in synthetic aperture radar device

Also Published As

Publication number Publication date
JPH0532712B2 (en) 1993-05-17

Similar Documents

Publication Publication Date Title
CA1222809A (en) Method of reconstructing synthetic aperture radar image
US4454597A (en) Conformal array compensating beamformer
CA2146335A1 (en) Architecture and apparatus for image generation
GB2181929A (en) Generation of video signals representing a movable 3-d object
US5051734A (en) Special effects using polar image coordinates
EP1054348A2 (en) Volume rendering integrated circuit
Watlington et al. Hardware architecture for rapid generation of electro-holographic fringe patterns
JPH0646405B2 (en) Synthetic aperture radar image reproduction processing method
JPS58191979A (en) Picture processing system of synthetic aperture radar
US5329283A (en) Synthetic aperture radar digital signal processor
GB2260669A (en) Method for transforming color signals and apparatusfor the method
JP3480510B2 (en) Color signal conversion method
CN113075660A (en) Method and device for inverting sea surface wind wave parameters based on SAR (synthetic aperture radar)
GB2218873A (en) Digital filter processor
US20180188686A1 (en) Method and apparatus for hologram resolution transformation
KR102558544B1 (en) Range-doppler algorithm based sar imaging apparatus and method thereof
US4967200A (en) Processor for radar system
Wu et al. Seasat synthetic-aperture radar data reduction using parallel programmable array processors
CN109884630B (en) GPU-based circular track video SAR real-time imaging method
JPS6280767A (en) Reproducing processing system for synthetic aperture radar image
JPH11231050A (en) Synthetic aperture radar signal processing system
US5506693A (en) Addressing mechanism for interfacing spatially defined imagery data with sequential memory
JPH01321574A (en) Memory device
Juskiw et al. Interactive rendering of volumetric data sets
CN116224264A (en) Millimeter wave radar RMA imaging acceleration method based on FPGA