JPS6273055A - Absorption type heat pump - Google Patents

Absorption type heat pump

Info

Publication number
JPS6273055A
JPS6273055A JP21031985A JP21031985A JPS6273055A JP S6273055 A JPS6273055 A JP S6273055A JP 21031985 A JP21031985 A JP 21031985A JP 21031985 A JP21031985 A JP 21031985A JP S6273055 A JPS6273055 A JP S6273055A
Authority
JP
Japan
Prior art keywords
absorption liquid
liquid
absorber
evaporator
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21031985A
Other languages
Japanese (ja)
Inventor
半田 邦久
靖男 井崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP21031985A priority Critical patent/JPS6273055A/en
Publication of JPS6273055A publication Critical patent/JPS6273055A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は吸収式ヒートポンプに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an absorption heat pump.

〔従来の技術〕[Conventional technology]

吸収液を利用したT3fr謂吸収式ヒートポンプが知ら
れている。このヒートポンプは第3図に示すように、蒸
発器(至)、吸収器αQ1発生器αη及び凝縮器oF9
から構成され、蒸発器(至)内には伝熱管(19,)に
より熱源水(海水、河川水、温排水)が流通し、この伝
熱管(19a)の表面に散布された冷媒液(水)が蒸発
することにより、蒸発潜熱として熱源水から熱を汲み上
げる。吸収器αQでは濃吸収液(臭化リチウム)が滴下
され、蒸発器(至)で蒸発した蒸気を吸収する。吸収器
qQ内には熱を放出するための流体(温水等)を流通さ
せる伝熱管(19b)が導かれて3つ、濃吸収液が蒸気
を吸収する際発生する吸収熱(凝縮N!、)を伝熱管(
19b)内の流体に放出する。蒸気の吸収により濃吸収
液は稀吸収液となり、この吸収能力を回復させるため発
生器0ηに送られる。発生器αηでは蒸気などの駆動熱
源−によって加熱し、吸収液内の冷媒液を蒸発させ濃吸
収液とする。凝縮器0e円には伝熱管(ハ)が設けられ
、吸収器αQの伝熱管(19b)からの流体がこの伝熱
管(ハ)を通過するようになっており、凝縮器C18か
ら追い出された冷媒蒸気は、この凝縮:!、;(lE+
で前記伝熱!(ハ)を流れる流体によって冷却されて凝
縮し、元の冷媒液にもどる。流体はこの際の蒸気の凝縮
熱を吸収し、さらに昇温する。そして、凝縮により生成
した冷媒液と発生器α力で濃縮された吸収液は、上述し
たようにそれぞれ吸収器αQ及び蒸発器(ト)に供給さ
れる。
A so-called T3fr absorption heat pump that utilizes an absorption liquid is known. As shown in Fig. 3, this heat pump consists of an evaporator (to), an absorber αQ1 generator αη, and a condenser oF9.
Heat source water (sea water, river water, heated wastewater) flows through the evaporator (19) through heat transfer tubes (19), and refrigerant liquid (water) is distributed on the surface of the heat transfer tubes (19a). ) evaporates, drawing up heat from the heat source water as latent heat of vaporization. In the absorber αQ, a concentrated absorption liquid (lithium bromide) is dropped, and the evaporated vapor is absorbed in the evaporator. Inside the absorber qQ, three heat transfer tubes (19b) are guided through which a fluid (hot water, etc.) for discharging heat is introduced, and the absorbed heat (condensation N!, ) to the heat transfer tube (
19b) into the fluid within. The absorption of vapor turns the concentrated absorption liquid into a lean absorption liquid, which is sent to the generator 0η to restore its absorption capacity. In the generator αη, the absorbent liquid is heated by a driving heat source such as steam, and the refrigerant liquid in the absorbent liquid is evaporated into a concentrated absorbent liquid. A heat transfer tube (C) is provided in the condenser 0e circle, and the fluid from the heat transfer tube (19b) of the absorber αQ passes through this heat transfer tube (C), and is expelled from the condenser C18. Refrigerant vapor condenses in this:! ,;(lE+
In said heat transfer! It is cooled and condensed by the fluid flowing through (c), returning to the original refrigerant liquid. The fluid absorbs the heat of condensation of the steam and further increases in temperature. Then, the refrigerant liquid generated by condensation and the absorption liquid concentrated by the generator α force are supplied to the absorber αQ and the evaporator (G), respectively, as described above.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

吸収式ヒートポンプでは、冷媒蒸気吸収後の稀吸収液を
濃縮し、且つこれ(こより分離された濃吸収液と冷媒液
とをそれぞれ循環使用する必要があるが、上記従来の方
式では、このために発生器αη及び凝縮器(至)という
専用の機器と加熱濃縮用の高温熱源を必要とし、このた
め構造が複雑化するとともに、加熱濃縮用熱源のための
付帯設備が必要となり、また運転コストも高く、さらに
燃料等を使用するため安全面での問題も生じ易かった。
In absorption heat pumps, it is necessary to concentrate the dilute absorption liquid after absorbing refrigerant vapor and to recycle the separated concentrated absorption liquid and refrigerant liquid. It requires dedicated equipment such as a generator αη and a condenser (to) and a high-temperature heat source for heating and concentrating, which complicates the structure and requires additional equipment for the heat source for heating and concentrating, as well as increasing operating costs. It was expensive, and because it used fuel, etc., it was likely to cause safety problems.

本発明はこのような従来の問題に鑑みなされたもので、
構成が簡単でしかも熱源を用いることなく作成収液の濃
縮分雅を行うことができる構造のヒートポンプを提供せ
んとするものである。
The present invention was made in view of such conventional problems,
It is an object of the present invention to provide a heat pump having a simple structure and capable of concentrating and dividing a produced liquid without using a heat source.

〔問題を解決するための手段〕[Means to solve the problem]

このため不発明は、伝熱管内を流通する熱源流体により
冷媒液を蒸発させる蒸発器と、該蒸発器で発生した蒸気
を吸収液で吸収し、その吸収熱を伝熱管内を流通する流
体に放出する吸収器と、吸収器から供給される稀吸収液
を偵縮して濃吸収液と冷媒液とに分離し、濃吸収液を吸
収器に、吸収器から供給される稀吸収液を濃縮器とから
なり。
Therefore, the invention is based on an evaporator that evaporates refrigerant liquid using a heat source fluid flowing inside a heat transfer tube, and an absorbing liquid absorbs the vapor generated in the evaporator, and the absorbed heat is transferred to the fluid flowing inside the heat transfer tube. The absorber discharges and the diluted absorption liquid supplied from the absorber is condensed and separated into concentrated absorption liquid and refrigerant liquid, and the concentrated absorption liquid is sent to the absorber and the diluted absorption liquid supplied from the absorber is concentrated. It consists of a vessel.

該吸収液濃縮器は稀吸収液を濃吸収液と冷媒液とに分離
し得る半透膜またはイオン交換膜を備えたことをその基
本的特徴とする。
The basic feature of the absorbent liquid concentrator is that it is equipped with a semipermeable membrane or an ion exchange membrane capable of separating a dilute absorbent liquid into a concentrated absorbent liquid and a refrigerant liquid.

このような構成によれば、吸収器で蒸気を吸収した吸収
液(稀吸収液)は吸収液濃縮器に供給され、その半透膜
またはイオン交換膜により稀吸収液が濃吸収液と冷媒液
とに分離され、それぞれが吸収器及び蒸発器に送られる
According to this configuration, the absorption liquid (dilute absorption liquid) that has absorbed vapor in the absorber is supplied to the absorption liquid concentrator, and the dilute absorption liquid is divided into the concentrated absorption liquid and the refrigerant liquid by the semipermeable membrane or ion exchange membrane. and are sent to an absorber and an evaporator, respectively.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示すもので。 FIG. 1 shows an embodiment of the present invention.

ヒートポンプは蒸発器(1)、吸収器(2)及び吸収液
濃縮器(3)から構成されている。
The heat pump is composed of an evaporator (1), an absorber (2), and an absorption liquid concentrator (3).

蒸発器(1)内には伝熱器(4a)が設けられ、配管(
5a)を介して熱源水を供給できるようになっている。
A heat transfer device (4a) is provided in the evaporator (1), and a pipe (
Heat source water can be supplied via 5a).

吸収器(2)同lこは別の伝熱管(4b)が設けられ、
熱源水から吸収した熱を放出すべき流体(温水等)が配
管(5b)を介して流通するようになっている。吸収器
(2)と蒸発器(1)は同じ容器(A)内に設けられて
いる。
The absorber (2) is provided with another heat exchanger tube (4b),
A fluid (such as hot water) that should release the heat absorbed from the heat source water flows through the pipe (5b). The absorber (2) and the evaporator (1) are provided in the same container (A).

吸収液濃縮器(3)と吸収器(2)とは配管(6)で接
続されている。吸収液濃縮器(3)内には半透膜または
イオン交換膜が設けられ、吸収液濃縮器(3)から供給
される稀吸収液を濃吸収液と冷媒液とに分離できるよう
になっている。吸収液濃縮器(3)からは吸収液供給管
(7)及び冷媒供給管(8)がそれぞれ吸収器(2〕及
び蒸発器(1)に導かれ、伝熱管(4b) (4a)に
吸収液、冷媒液をそれぞれ滴下若しくは散布できるよう
になっている。
The absorption liquid concentrator (3) and the absorber (2) are connected by a pipe (6). A semi-permeable membrane or an ion exchange membrane is provided in the absorption liquid concentrator (3), and the dilute absorption liquid supplied from the absorption liquid concentrator (3) can be separated into a concentrated absorption liquid and a refrigerant liquid. There is. From the absorption liquid concentrator (3), an absorption liquid supply pipe (7) and a refrigerant supply pipe (8) are led to an absorber (2) and an evaporator (1), respectively, and are absorbed into heat transfer tubes (4b) (4a). It is possible to drop or spray liquid and refrigerant liquid respectively.

第2図(a)ないしくc)は、それぞれ吸収液濃縮器(
3)の実施例を示すもので、これらのうち(a)、(b
)は半透膜を、また(c)はイオン交換膜を利用した例
である。
Figures 2 (a) to c) respectively show the absorption liquid concentrator (
3), among which (a) and (b)
) is an example using a semipermeable membrane, and (c) is an example using an ion exchange membrane.

まず、第2図(a)の吸収液濃縮器(3)は、これを構
成する容器が半透膜(9)で2つのセル(tOa)(1
ob)に仕切ら、n、一方のセ/l/ (1ob)に吸
収器(2)からの配管(6)が接続されるとともに、該
セル(1ob)及び他方のセル(10a)から吸収器及
び蒸発器に配管(7)及び(8)が導かれている。前記
半透膜(9)は、溶媒を通すが溶質は通さない性質を有
するもので、従来公知の材質のものを用いることができ
る。
First, the absorbent concentrator (3) shown in FIG. 2(a) has a semipermeable membrane (9) and two cells (tOa) (1
The pipe (6) from the absorber (2) is connected to one cell (1ob), and the absorber and the other cell (10a) are connected to one cell (1ob). Pipes (7) and (8) are led to the evaporator. The semipermeable membrane (9) has the property of allowing the solvent to pass through but not the solute, and may be made of a conventionally known material.

このような構造では、セル(10b)内の稀吸収液に所
定の圧力をかけることにより、液中の冷媒液のみが半透
膜(9)を通じてセル(10a)側に浸透し、この結果
セル(tab)内の吸収液が濃縮される。そして、この
濃縮された吸収液が配管(7)を通じて吸収器(2)に
、またセル(XOa)側の冷媒液が配管(8)を通じて
蒸発器(1)にそれぞれ供給される。
In such a structure, by applying a predetermined pressure to the dilute absorption liquid in the cell (10b), only the refrigerant liquid in the liquid permeates into the cell (10a) through the semipermeable membrane (9), and as a result, the cell The absorption liquid in (tab) is concentrated. Then, this concentrated absorption liquid is supplied to the absorber (2) through the pipe (7), and the refrigerant liquid on the cell (XOa) side is supplied to the evaporator (1) through the pipe (8).

第2図(b)は、同じく半透膜を使用したものであるが
、稀吸収液に圧力をかける上記(a)とは異り、重力を
利用して吸収液を濃縮するようにしたものである。吸収
液濃縮器(3)を構成する容器は半透膜前により上下の
セル(10a)(10b’)に仕切られ、一方のセル(
lob)に吸収器(2)からの配管(6)が接続される
とともに、核セル(10b)及び他方のセル(tOa)
から吸収器及び蒸発器に配管(7)及び(8)が導かれ
ている。
Figure 2 (b) also uses a semipermeable membrane, but unlike (a) above, which applies pressure to the dilute absorption liquid, it uses gravity to concentrate the absorption liquid. It is. The container constituting the absorbent concentrator (3) is partitioned into upper and lower cells (10a) (10b') by the front of the semipermeable membrane, and one cell (
The pipe (6) from the absorber (2) is connected to the nuclear cell (10b) and the other cell (tOa).
Pipes (7) and (8) are led from the absorber to the evaporator.

このような構造では、セル(10b′)内の稀吸収液中
の冷媒液は重力により半透膜(9)を浸透して下方のセ
ル(10a’)に落下し、この結果、セル(1ob’)
内の吸収液が濃縮される。そして、この′a縮された吸
収液が配管(7)を通じて吸収器(2)に、またセル(
10a)側の冷媒液が配管(8ンを通じて蒸発器(1)
にそれぞれ供給される。
In such a structure, the refrigerant liquid in the dilute absorption liquid in the cell (10b') permeates the semipermeable membrane (9) by gravity and falls into the cell (10a') below, and as a result, the cell (1ob ')
The absorbent liquid inside is concentrated. Then, this 'a-condensed absorption liquid is transferred to the absorber (2) through the pipe (7) and to the cell (
The refrigerant liquid on the 10a) side is connected to the evaporator (1) through the pipe (8).
are supplied respectively.

第2図(C)はイオン交換膜、より詳細には、陽イオン
だけを透過させるカチオン交gjJ(11人)と陰イオ
ンだけを透過させるアニオン交換膜(IIB)の特性を
利用したちのである。すなわち、吸収液濃縮器(3)を
構成する容器(A)は交互に配置されたカチオン交換膜
(11A)及びアニオン交換膜(IIB)により複数の
セル(12a)〜(12e)に仕切られている。本実施
例ではCM(カチオン交換膜)−AM(アニオン交換膜
)−CM−AMの;、′i:1に配jなされ、これ1こ
より5つのセル(12a)〜(12e)が形成されてい
る。そして、カチオン交換膜(IIA)によって仕切ら
れた容器一端側のセル(a)には陽極(至)が、またア
ニオン交換膜(IIB)によって仕切られた容器他践側
のセル(e)には陰極0僧がそれぞれ配置されている。
Figure 2 (C) shows an ion exchange membrane that utilizes the characteristics of an ion exchange membrane (11 people), which allows only cations to pass through, and an anion exchange membrane (IIB) that allows only anions to pass through. . That is, the container (A) constituting the absorption liquid concentrator (3) is partitioned into a plurality of cells (12a) to (12e) by cation exchange membranes (11A) and anion exchange membranes (IIB) arranged alternately. There is. In this example, CM (cation exchange membrane)-AM (anion exchange membrane)-CM-AM; There is. The anode (to) is placed in the cell (a) on one end of the container partitioned by the cation exchange membrane (IIA), and the cell (e) on the other end of the container partitioned by the anion exchange membrane (IIB) is There are 0 cathode monks placed in each.

各セル(IL)〜(e)には吸収器(2)からの配’t
 (61の分岐管がそれぞれ接続され、またセル(12
b)、(Bd)には吸収器(2)への配管(7)の分岐
管が、またセル(12a) (12c) (12e) 
iこは蒸発器(1ノヘの配管(8ンの分岐管がそれぞれ
接続されている。
Each cell (IL) to (e) is connected to the absorber (2).
(61 branch pipes are connected to each other, and cells (12
b), (Bd) have branch pipes of piping (7) to absorber (2), and cells (12a) (12c) (12e)
This is the evaporator (1 pipe with 8 branch pipes connected to each pipe).

このような構造では、陽極Q3.陰極α4及び各交換膜
の作用により、吸収液の陽イオン及び陰イオン(臭化リ
チウムの場合IこはI4.Br”)が特定のセルに集め
られ、吸収液の濃縮がなされる。すなわち、各セルのL
lは陰極α4側に、またnr−はII ? Cl3側に
それぞれ移行しようとする。このうちLlはその途中で
アニオン交換膜Qxg)Jこ移行を阻止され、この結果
、セルへ)。
In such a structure, anode Q3. By the action of the cathode α4 and each exchange membrane, the cations and anions (in the case of lithium bromide, I4.Br") of the absorption liquid are collected in a specific cell, and the absorption liquid is concentrated. That is, L of each cell
l is on the cathode α4 side, and nr- is on the II? Each tries to migrate to the Cl3 side. Of these, Ll is prevented from migrating to the anion exchange membrane Qxg)J on the way, and as a result, to the cell).

(d)に集められ、またBr−も逆方向に移行する際、
カチオン交換膜(11A)に阻止され、同じくセル(b
)(d)に集められる。この結果、セルら)、(d)に
吸収液が濃縮された形となり、これらから配管(7)を
通じ吸収器(2)に吸収液が送られる。一方。
(d), and when Br- also moves in the opposite direction,
It is blocked by the cation exchange membrane (11A) and is also blocked by the cell (b).
)(d). As a result, the absorption liquid becomes concentrated in cells (cell et al.) and (d), and is sent from these to the absorber (2) through the pipe (7). on the other hand.

セル[株])、(c)及び(e)からは冷媒液が配管(
8ンを通じ蒸発器(1)に送られる。
The refrigerant liquid flows from the pipes (Cell Co., Ltd.), (c) and (e).
8 to the evaporator (1).

なお1以上のイオン交換膜を用いる方式では、 a)カチオン交換膜とアニオン交換膜とを交互に配置す
る、 b)イオン交換膜で仕切られるセルを3以上設ける。
In addition, in a method using one or more ion exchange membranes, a) cation exchange membranes and anion exchange membranes are arranged alternately, and b) three or more cells partitioned by ion exchange membranes are provided.

C)両端のセルのうち、カチオン交換膜によって仕切ら
れる一端側のセルに陽極を。
C) Out of the cells at both ends, place the anode in the cell at one end that is partitioned by a cation exchange membrane.

アニオン交換膜によって仕切られる他端側のセルに陰極
を配置する。
A cathode is placed in the cell at the other end, which is partitioned by an anion exchange membrane.

という条件を満す適宜な構成を採用するこ吉ができる。Kokichi can adopt an appropriate configuration that satisfies these conditions.

以上の吸収液mKa器(3)では、従来方式の投入エネ
ルギーに較べ、半透膜を利用したもので約1/3程度、
またイオン交換膜を利用したもので約l/10以下の投
入エネルギーで済み、また、イオン交換膜方式では分な
速j隻も速いという利点が得られる。
In the above absorption liquid mKa device (3), compared to the conventional method, the input energy is about 1/3 using a semi-permeable membrane.
Furthermore, the use of an ion exchange membrane requires less than about 1/10 of the input energy, and the ion exchange membrane method has the advantage of being faster by a fraction of the time.

以上のような本発明のヒートポンプでは、蒸発器(1)
内の伝熱管(4a)に熱源水(海水、河川水、温排水)
が流通し、この伝熱′W(4a)の表面に散布された冷
媒液(水)が蒸発することにより、蒸発潜熱として熱源
水から熱を汲み上げる。吸収器(2)では濃吸収液(臭
化リチウム)が滴下され、蒸発器(1)で蒸発した薫気
を吸収し、この蒸気を吸収する際発生する吸収PA(凝
稲熱)を伝熱管(4b)内の流体に放出する。蒸気を吸
収した後の稀吸収液は吸収液濃縮器(3j(こおいて、
上述した半透膜((+1 <4+またはイオン交換膜(
IIAXIIB)により熱1不ルギーを用いることなく
長線さn、これによる濃吸収液と冷媒液とがそれぞれ吸
収器(2)及び蒸発器(11に供給される。
In the heat pump of the present invention as described above, the evaporator (1)
Heat source water (sea water, river water, heated wastewater) is placed in the heat transfer tube (4a) inside.
flows, and the refrigerant liquid (water) sprinkled on the surface of this heat transfer 'W (4a) evaporates, drawing up heat from the heat source water as latent heat of evaporation. A concentrated absorption liquid (lithium bromide) is dripped into the absorber (2), absorbs the fumes evaporated in the evaporator (1), and absorbs the absorbed PA (condensed rice heat) generated when absorbing this vapor into a heat transfer tube. (4b) into the fluid within. After absorbing the vapor, the diluted absorption liquid is transferred to an absorption liquid concentrator (3j).
The above-mentioned semipermeable membrane ((+1 <4+ or ion exchange membrane (
IIAXIIB), a long line n without using heat 1 energy, thereby supplying concentrated absorption liquid and refrigerant liquid to the absorber (2) and the evaporator (11), respectively.

〔発明の効果〕〔Effect of the invention〕

以上述べた本発明により、ば吸収gL濃縮器という単一
の機器で吸収液の濃縮分離を行うことができるためヒー
トポンプ自体の構造の簡易化を図ることができ、また濃
縮のための熱エネルギーを全く使用し7ないことから加
熱付帯設備も必要とせず、しかも低コストで運転するこ
とができる効果がある。
According to the present invention described above, the absorption liquid can be concentrated and separated using a single device called the absorption gL concentrator, so the structure of the heat pump itself can be simplified, and the thermal energy for concentration can be reduced. Since it is not used at all, it does not require any heating equipment and has the advantage of being able to operate at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す説明図である。第2図
(a)ないしくc)は、それぞれ本発明を構成する吸収
液濃縮器の実施例を示す説明図である。第3図は従来の
ヒートポンプの構造を示す説明図である。 図において、(1)は蒸発器、(2)は吸収器、(3)
は吸収液e縮器、(4a) (4b)は伝熱管、(61
(7)(3)は配管、(9) (9’)は半透膜、 (
10a)(10b) (IZa) (12b)(12c
)(12d)はセル、(IIA)はカチオン交換膜、(
IIB)はアニオン交換膜を各示す。
FIG. 1 is an explanatory diagram showing one embodiment of the present invention. FIGS. 2(a) to 2(c) are explanatory diagrams each showing an embodiment of an absorption liquid concentrator constituting the present invention. FIG. 3 is an explanatory diagram showing the structure of a conventional heat pump. In the figure, (1) is the evaporator, (2) is the absorber, and (3)
is an absorption liquid e-condenser, (4a) (4b) is a heat exchanger tube, (61
(7) (3) is piping, (9) (9') is semipermeable membrane, (
10a) (10b) (IZa) (12b) (12c
) (12d) is a cell, (IIA) is a cation exchange membrane, (
IIB) shows anion exchange membranes.

Claims (1)

【特許請求の範囲】 伝熱管内を流通する熱源流体により冷媒 液を蒸発させる蒸発器と、該蒸発器で発生 した蒸気を吸収液で吸収し、その吸収熱を 伝熱管内を流通する流体に放出する吸収器 と、吸収器から供給される稀吸収液を濃縮 して濃吸収液と冷媒液とに分離し、濃吸収液を吸収器に
、冷媒液を蒸発器に各供給するように した吸収液濃縮器とからなり、該吸収液濃 縮器は稀吸収液を濃吸収液と冷媒液とに分 離し得る半透膜またはイオン交換膜を備え てなる吸収式ヒートポンプ。
[Scope of Claims] An evaporator that evaporates a refrigerant liquid using a heat source fluid flowing in a heat transfer tube, and an absorption liquid absorbing the vapor generated in the evaporator, and the absorbed heat is transferred to a fluid flowing in the heat transfer tube. The absorber to be discharged and the dilute absorption liquid supplied from the absorber are concentrated and separated into concentrated absorption liquid and refrigerant liquid, and the concentrated absorption liquid is supplied to the absorber and the refrigerant liquid to the evaporator. An absorption heat pump comprising an absorption liquid concentrator, the absorption liquid concentrator comprising a semipermeable membrane or an ion exchange membrane capable of separating the dilute absorption liquid into a concentrated absorption liquid and a refrigerant liquid.
JP21031985A 1985-09-25 1985-09-25 Absorption type heat pump Pending JPS6273055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21031985A JPS6273055A (en) 1985-09-25 1985-09-25 Absorption type heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21031985A JPS6273055A (en) 1985-09-25 1985-09-25 Absorption type heat pump

Publications (1)

Publication Number Publication Date
JPS6273055A true JPS6273055A (en) 1987-04-03

Family

ID=16587455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21031985A Pending JPS6273055A (en) 1985-09-25 1985-09-25 Absorption type heat pump

Country Status (1)

Country Link
JP (1) JPS6273055A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013525727A (en) * 2010-04-20 2013-06-20 エボニック デグサ ゲーエムベーハー Absorption heat pump having an absorbent comprising a lithium salt and an organic salt having the same anion
JP2013529280A (en) * 2010-04-20 2013-07-18 エボニック デグサ ゲーエムベーハー Absorption heat pump having an absorbent containing lithium chloride and an organic chloride salt
US8784537B2 (en) 2010-11-12 2014-07-22 Evonik Degussa Gmbh Amine-containing absorption medium, process and apparatus for absorption of acidic gases from gas mixtures
US8932478B2 (en) 2008-02-05 2015-01-13 Evonik Degussa Gmbh Process for the absorption of a volatile substance in a liquid absorbent
US9630140B2 (en) 2012-05-07 2017-04-25 Evonik Degussa Gmbh Method for absorbing CO2 from a gas mixture
US9840473B1 (en) 2016-06-14 2017-12-12 Evonik Degussa Gmbh Method of preparing a high purity imidazolium salt
JP2018013277A (en) * 2016-07-20 2018-01-25 矢崎エナジーシステム株式会社 Absorption type system
US9878285B2 (en) 2012-01-23 2018-01-30 Evonik Degussa Gmbh Method and absorption medium for absorbing CO2 from a gas mixture
US10105644B2 (en) 2016-06-14 2018-10-23 Evonik Degussa Gmbh Process and absorbent for dehumidifying moist gas mixtures
US10138209B2 (en) 2016-06-14 2018-11-27 Evonik Degussa Gmbh Process for purifying an ionic liquid
US10493400B2 (en) 2016-06-14 2019-12-03 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
US10500540B2 (en) 2015-07-08 2019-12-10 Evonik Degussa Gmbh Method for dehumidifying humid gas mixtures using ionic liquids
US10512881B2 (en) 2016-06-14 2019-12-24 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
US10512883B2 (en) 2016-06-14 2019-12-24 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
CN116428740A (en) * 2023-06-14 2023-07-14 沈阳世杰电器有限公司 Solid heat storage constant temperature water heating device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60185071A (en) * 1984-03-02 1985-09-20 日立造船株式会社 Heat pump

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60185071A (en) * 1984-03-02 1985-09-20 日立造船株式会社 Heat pump

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8932478B2 (en) 2008-02-05 2015-01-13 Evonik Degussa Gmbh Process for the absorption of a volatile substance in a liquid absorbent
JP2013525727A (en) * 2010-04-20 2013-06-20 エボニック デグサ ゲーエムベーハー Absorption heat pump having an absorbent comprising a lithium salt and an organic salt having the same anion
JP2013529280A (en) * 2010-04-20 2013-07-18 エボニック デグサ ゲーエムベーハー Absorption heat pump having an absorbent containing lithium chloride and an organic chloride salt
KR101403155B1 (en) * 2010-04-20 2014-06-03 에보니크 데구사 게엠베하 Absorption heat pump with sorbent comprising lithum chloride and an organic chloride salt
US8784537B2 (en) 2010-11-12 2014-07-22 Evonik Degussa Gmbh Amine-containing absorption medium, process and apparatus for absorption of acidic gases from gas mixtures
US9878285B2 (en) 2012-01-23 2018-01-30 Evonik Degussa Gmbh Method and absorption medium for absorbing CO2 from a gas mixture
US9630140B2 (en) 2012-05-07 2017-04-25 Evonik Degussa Gmbh Method for absorbing CO2 from a gas mixture
US10500540B2 (en) 2015-07-08 2019-12-10 Evonik Degussa Gmbh Method for dehumidifying humid gas mixtures using ionic liquids
US9840473B1 (en) 2016-06-14 2017-12-12 Evonik Degussa Gmbh Method of preparing a high purity imidazolium salt
US10105644B2 (en) 2016-06-14 2018-10-23 Evonik Degussa Gmbh Process and absorbent for dehumidifying moist gas mixtures
US10138209B2 (en) 2016-06-14 2018-11-27 Evonik Degussa Gmbh Process for purifying an ionic liquid
US10493400B2 (en) 2016-06-14 2019-12-03 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
US10512881B2 (en) 2016-06-14 2019-12-24 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
US10512883B2 (en) 2016-06-14 2019-12-24 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
JP2018013277A (en) * 2016-07-20 2018-01-25 矢崎エナジーシステム株式会社 Absorption type system
CN116428740A (en) * 2023-06-14 2023-07-14 沈阳世杰电器有限公司 Solid heat storage constant temperature water heating device
CN116428740B (en) * 2023-06-14 2023-08-29 沈阳世杰电器有限公司 Solid heat storage constant temperature water heating device

Similar Documents

Publication Publication Date Title
JPS6273055A (en) Absorption type heat pump
EP0659258B1 (en) Absorption heat pump with direct heat exchange between a second cycle generator and a first cycle absorber and condenser
WO2016041292A1 (en) Fluid-gap multi-effect membrane distillation process and device thereof
WO1991000771A1 (en) Air conditioning process and apparatus therefor
GB1590843A (en) Solar energy distillation apparatus
JP6655063B2 (en) Absorption refrigerator and dehumidifier
Karhe et al. A solar desalination system using humidification-dehumidification process-A review of recent research
US4864830A (en) Air conditioning process and apparatus
CN206027114U (en) Humidification dehumidification system
WO2009051582A1 (en) Membrane concentrator for absorption chillers
CN206027113U (en) System for be arranged in separated material liquid moisture
JPH05322358A (en) Absorption type water cooler using reverse osmotic film
CN106237636A (en) For separating the system of moisture in feed liquid and applying its method of evaporating
US1922713A (en) Means and method of refrigeration
JPS6351044B2 (en)
CN115490383B (en) Membrane distillation device
Sharshir et al. An entirely solar-powered hybrid thermal-membrane desalination system integrated with Solar heaters and preheating technique
JPS61272565A (en) Absorption type refrigerator
CN208362092U (en) Oil-water separation system
KR101721203B1 (en) Desalination apparatus using solar thermal energy and waste heat
JP2000180078A (en) Heat exchanging/transporting apparatus
JP3326697B2 (en) Absorption chiller / heater
JPS61272566A (en) Absorption type refrigerator
JPH0424370Y2 (en)
JPS60169608A (en) Turbine plant utilizing hot water