JPS6272714A - Epoxy resin composition for sealing semiconductor device - Google Patents

Epoxy resin composition for sealing semiconductor device

Info

Publication number
JPS6272714A
JPS6272714A JP60212607A JP21260785A JPS6272714A JP S6272714 A JPS6272714 A JP S6272714A JP 60212607 A JP60212607 A JP 60212607A JP 21260785 A JP21260785 A JP 21260785A JP S6272714 A JPS6272714 A JP S6272714A
Authority
JP
Japan
Prior art keywords
resin
parts
epoxy resin
epoxy
softening point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60212607A
Other languages
Japanese (ja)
Inventor
Kazutaka Matsumoto
松本 一高
Takeshi Uchida
健 内田
Akira Yoshizumi
善積 章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60212607A priority Critical patent/JPS6272714A/en
Publication of JPS6272714A publication Critical patent/JPS6272714A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PURPOSE:The titled composition providing a cured material having improved thermal shock resistance, comprising an epoxy resin, a novolak phenolic resin, a phenol aralkyl resin and a dihydroxy-terminated polyester having a specific molecular weight in a specific ratio. CONSTITUTION:The aimed composition comprising (A) 100pts.wt. epoxy resin (e.g., preferably having at least two epoxy groups in one molecule such as bisphenol A type epoxy resin, etc., having 70-85 deg.C softening point, preferably having 175-200 epoxy equivalent), (B) 10-50pts.wt. novolak type phenolic resin (preferably having 80-100 deg.C softening point and 100-110 hydroxyl group equivalent), (C) 10-50pts.wt. phenolic aralkyl resin (resin having preferably 85-105 deg.C softening point and 195-235 hydroxyl group obtained by reacting aralkyl ether with phenol in the presence of Friedel-Crafts catalyst) in the total amounts of the components B+C of 50-90pts.wt. and (D) 2-40pts.wt. dihydroxy-terminated polyester having 2,500-50,000 number-average molecular weight.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置封止用エポキシ樹脂組成物に関し、
更に詳しくは、優れた耐熱衝撃性を有する硬化物を与え
る半導体装置封止用エポキシ樹脂組成物に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an epoxy resin composition for encapsulating semiconductor devices,
More specifically, the present invention relates to an epoxy resin composition for encapsulating semiconductor devices that provides a cured product having excellent thermal shock resistance.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、半導体装置の封止に関する分野においては、半導
体素子の高集積化に伴って、素子上の各種機能単位の細
密化、素子ペレット自体の大型化が急速に進んでいる。
In recent years, in the field of encapsulation of semiconductor devices, as semiconductor elements have become highly integrated, various functional units on the elements have become finer and the element pellets themselves have become larger.

これらの素子ベレットの変化により封止用樹脂も従来の
封+h用樹脂では耐熱衝撃性等の要求が満足できなくな
ってきた。
Due to these changes in the element pellets, the conventional sealing +h resins are no longer able to satisfy the requirements for thermal shock resistance and the like.

従来、半導体装置の封止用樹脂として用いられているフ
ェノールノボラック樹脂で硬化させるエポキシ樹脂組成
物は吸湿性、高温電気特性、成形性などが優れ、モール
ド用樹脂の主流となっている。
Epoxy resin compositions cured with phenol novolac resins, which have been conventionally used as sealing resins for semiconductor devices, have excellent hygroscopicity, high-temperature electrical properties, moldability, etc., and have become the mainstream resin for molding.

しかし、この系統の樹脂組成物を用いて大型でかつ微細
な表面構造を有する素子ペレットを封(トすると、素子
ペレット表面のアルミニウム(AM >パターンを保護
するための被覆材であるリンケイ酸ガラス(PSG)膜
や窒化ケイ素(SiN)膜に割れを生じたり、素子ベレ
ットに割れを生じたりする。
However, when this type of resin composition is used to seal a large element pellet with a fine surface structure, aluminum (AM) on the surface of the element pellet (> phosphosilicate glass, which is a coating material for protecting the pattern) ( PSG) film or silicon nitride (SiN) film, or the element pellet may be cracked.

特に冷熱サイクル試験を実施した場合に、その傾向が非
常に大きい。その結果、ペレット割れによる素子特性の
不良や保護膜の割れに起因してAMパターンの腐食によ
る不良などを生じる。
This tendency is particularly significant when a thermal cycle test is performed. As a result, defects such as defects in element characteristics due to pellet cracks and defects due to corrosion of the AM pattern occur due to cracks in the protective film.

そこで、このような問題の対策としては、封止樹脂の内
部封入物に対する応力を小さくし、かつ封止樹脂と素子
上のPSG膜やSiN膜などのガラス膜との密着性を大
きくする必要がある。しかも。
Therefore, as a countermeasure to this problem, it is necessary to reduce the stress on the internal sealing resin and to increase the adhesion between the sealing resin and the glass film such as the PSG film or SiN film on the element. be. Moreover.

硬化物については、素子表面のAiパターンの腐食を極
力防止するために、加水分解性の/\ロゲン化合物、特
に、塩素濃度を低くおさえ、かつ吸湿時や高温時の電気
絶縁性能を高レベルに保つ必要がある。
Regarding the cured product, in order to prevent corrosion of the Ai pattern on the surface of the element as much as possible, we use hydrolyzable /\rogen compounds, especially to keep the chlorine concentration low, and to have a high level of electrical insulation performance when absorbing moisture or at high temperatures. need to be kept.

特公昭5B−48135号公報には、エポキシ樹脂、酸
無水物及び特定の末端ジヒドロキシポリエステルからな
る封止用樹脂が記載されているが、このものは半導体装
置の封と用として十分に満足できる耐熱性及び耐湿性を
有するものではなかった。
Japanese Patent Publication No. 5B-48135 describes a sealing resin consisting of an epoxy resin, an acid anhydride, and a specific terminal dihydroxy polyester, which has sufficient heat resistance for sealing semiconductor devices. It had no moisture resistance.

〔発明の目的〕 本発明の目的は、上記した欠点の解消または上記対策項
目の充足を可能にし、優れた耐熱衝撃性を有する硬化物
を事える半導体装置封止用エポキシvAIIIvi組成
物を提供することにある。
[Object of the Invention] An object of the present invention is to provide an epoxy vAIIIvi composition for encapsulating semiconductor devices that can eliminate the above-mentioned drawbacks or satisfy the above-mentioned countermeasures, and can produce a cured product having excellent thermal shock resistance. There is a particular thing.

〔発明の概要〕[Summary of the invention]

本発明者らは、樹脂封止型の半導体装置の信頼性を改善
すべく鋭意研究を重ねた結果、樹脂組成物の成分として
フェノールアラルキル樹脂と数平均分子i 2500〜
50000を有する末端ジヒドロキシポリエステルとを
併用することにより、その組成物が優れた耐熱衝撃性を
有する硬化物を与えることを見い出し、本発明を完成す
るに到った。
As a result of intensive research aimed at improving the reliability of resin-encapsulated semiconductor devices, the inventors of the present invention have found that the components of the resin composition include phenol aralkyl resin and a number-average molecular i of 2500~
The present inventors have discovered that the composition can provide a cured product having excellent thermal shock resistance by using a terminal dihydroxy polyester having a molecular weight of 50,000, and have completed the present invention.

すなわち、本発明の半導体装置封止用エポキシ樹脂組成
物は。
That is, the epoxy resin composition for encapsulating a semiconductor device of the present invention.

a)エポキシ樹脂         100重量部b)
 ノボラック型フェノール樹脂 10〜50毛賃部 C) フェノールアラルキル樹脂 10〜50ffi 
1 部であって (b)+(c)の合計量が50〜90
重量部d)数平均分子量2500〜50000を有する
末端ジヒドロキシポリエステル     2〜40重量
部からなることを特徴とするものである。
a) Epoxy resin 100 parts by weight b)
Novolac type phenolic resin 10-50% C) Phenol aralkyl resin 10-50ffi
1 part and the total amount of (b) + (c) is 50 to 90
Weight part d) Terminal dihydroxy polyester having a number average molecular weight of 2,500 to 50,000 2 to 40 parts by weight.

本発明に係る組成物中の一成分であるエポキシ樹脂(a
)は1分子中にエポキシ基を少なくとも2個有するもの
であればいかなるものであってもよく、例えば、ビスフ
ェノールA型エポキシ樹脂、ノボラック型エポキシ樹脂
、脂環型エポキシ樹脂、グリシジルエステル型エポキシ
樹脂が挙げられる。また、これらを適宜に組み合わせて
用いても良い。これらのエポキシ樹脂の具体例としては
、EOGN−102S(日本化薬■、軟化点74℃、エ
ポキシ当fi 215)、ESCN−195XL (装
置化学■、軟化点71℃、エポキシ5漬19B)、EC
M−1273(チバガイギー社、軟化点り3℃、エポギ
シ当量230)、EPPN−201(ト]本化薬株、軟
化点65℃、エポキシ当量181)、エピコート+00
1 (シェル化学、軟化点70℃、エポキシ当1475
)、チッソノックス201(チッソ■、粘度18(lG
cps(25℃)、エポキシ当量154)、チッソノッ
クス289(チッソ株、粘度870cps(25℃)、
エポキシ1a1219)などが挙げられる。上記エポキ
シ樹脂の中でも軟化点80〜100℃を有するものが好
ましく、特に好ましくは70〜85℃を有するものであ
る。また、エポキシ当a too〜300を有するもの
が好ましく、特に好ましくは 175〜220を有する
ものである。
Epoxy resin (a) which is one component in the composition according to the present invention
) may be of any type as long as it has at least two epoxy groups in one molecule; for example, bisphenol A type epoxy resin, novolac type epoxy resin, alicyclic type epoxy resin, glycidyl ester type epoxy resin. Can be mentioned. Moreover, you may use these in combination suitably. Specific examples of these epoxy resins include EOGN-102S (Nippon Kayaku ■, softening point 74°C, epoxy fi 215), ESCN-195XL (equipment chemistry ■, softening point 71°C, epoxy 5 immersion 19B), EC
M-1273 (Ciba Geigy, softening point 3°C, epoxy equivalent 230), EPPN-201 (T) Honkayaku, softening point 65°C, epoxy equivalent 181), Epicote +00
1 (Shell Chemical, softening point 70℃, epoxy 1475
), Chissonox 201 (Chisso ■, viscosity 18 (lG)
cps (25°C), epoxy equivalent 154), Chissonox 289 (Chisso stock, viscosity 870cps (25°C),
Epoxy 1a1219) and the like. Among the above epoxy resins, those having a softening point of 80 to 100°C are preferred, and those having a softening point of 70 to 85°C are particularly preferred. Moreover, those having an epoxy value of a too much to 300 are preferable, and those having an epoxy value of from 175 to 220 are particularly preferable.

この (a)成分には、好ましくは、エポキシ樹脂10
0重量部に対して、30重量部までの難燃エポキシ樹脂
を加えることで、構成される。
This component (a) preferably contains epoxy resin 10
It is constructed by adding up to 30 parts by weight of a flame-retardant epoxy resin to 0 parts by weight.

本発明に係るノボラック型フェノール樹脂(b)は(a
)成分のエポキシ樹脂の硬化剤として作用するものであ
り、例えば、フェノールノボラック樹脂、クレゾールノ
ボラック樹脂などのフェノール性水酸基を2個以上有す
るものが挙げられる。前記ノボラック型フェノール樹脂
の中でも、軟化点60〜120℃を有するものが好まし
く、特に好ましくは80〜100℃を有するものであり
、水酸基当量100〜150を有するものが好ましく、
特に好ましくは 100〜110を有するものである。
The novolac type phenolic resin (b) according to the present invention is (a
) It acts as a curing agent for the epoxy resin of the component, and examples thereof include those having two or more phenolic hydroxyl groups such as phenol novolac resin and cresol novolak resin. Among the novolac type phenolic resins, those having a softening point of 60 to 120°C are preferred, particularly those having a softening point of 80 to 100°C, and those having a hydroxyl equivalent of 100 to 150 are preferred,
Particularly preferably, it has a value of 100 to 110.

本発明に係るフェノールアラルキル樹脂(c)はアラル
キルエーテルとフェノールとをフリーゾルタラフッ触媒
で反応させた樹脂で、フリーデルクラフッ型樹脂とも呼
ばれる。α、α′−ジメトキシーP−+シレンとフェノ
ールモノマーの縮合重金化合物が良く知られている(プ
ラスチックスVoL 34. No2. PO2) 、
具体的には、XL−225(三井東圧化学■、軟化点8
5℃〜105℃) 、 XYLOK−225(アルブラ
イト・アンド・ウィルソン■、軟化点85℃〜 105
℃)などが挙げられる。これらフェノールアラルキル樹
脂の中でも軟化点80℃〜120℃を有するものが好ま
しく、特に好ましくは85℃〜 105℃を有するもの
であり水酸基当量は、195〜235℃を有するものが
好ましい。
The phenol aralkyl resin (c) according to the present invention is a resin obtained by reacting an aralkyl ether and phenol with a free-sol Tarafluor catalyst, and is also called a Friedel-Kraf type resin. The condensed heavy metal compound of α, α′-dimethoxy P−+silene and phenol monomer is well known (Plastics VoL 34. No. 2. PO2).
Specifically, XL-225 (Mitsui Toatsu Chemical ■, softening point 8
5℃~105℃), XYLOK-225 (Albright & Wilson■, Softening point 85℃~105
℃), etc. Among these phenol aralkyl resins, those having a softening point of 80°C to 120°C are preferred, particularly those having a softening point of 85°C to 105°C, and those having a hydroxyl equivalent of 195°C to 235°C are preferred.

上記(b)、 (c)の添加量は、  (b)+(c)
の合計量がエポキシ樹脂(a)100重量部に対し、5
0重量部〜90重量部の範囲で加えることが必要である
。この配合割合が50重量部未満の場合には、樹脂硬化
物の強度が弱くなって好ましくなく、一方90重量部を
超える場合には、封止樹脂の耐湿性が低下して好ましく
ない、ノボラック型フェノール樹脂とフェノールアラル
キル樹脂の添加量は、上記条件を満たす範囲内で、かつ
、それぞれ10〜50重量部の範囲内で選択できる。
The amounts added in (b) and (c) above are (b) + (c)
The total amount is 5 parts per 100 parts by weight of epoxy resin (a).
It is necessary to add it in a range of 0 to 90 parts by weight. If this blending ratio is less than 50 parts by weight, the strength of the cured resin product will be weakened, which is undesirable. On the other hand, if it exceeds 90 parts by weight, the moisture resistance of the sealing resin will decrease, which is undesirable. The amounts of the phenol resin and the phenol aralkyl resin to be added can be selected within a range that satisfies the above conditions and within a range of 10 to 50 parts by weight, respectively.

フェノール樹脂が10重量部未満では十分な成形品の硬
さが得られず、一方、フェノールアラルキル樹脂が10
屯埴部未満では十分な耐熱衝撃性が得られない。
If the phenolic resin is less than 10 parts by weight, sufficient hardness of the molded product cannot be obtained;
Sufficient thermal shock resistance cannot be obtained if the thickness is less than tunkube.

また、フェノール樹脂が50重酸部より多い場合には、
十分な耐湿性が得られず、一方、フェノールアラルキル
樹脂が50重酸部より多い場合には、粘度が高く成形品
が悪くなる。
In addition, if the phenol resin is more than 50 parts of heavy acid,
Sufficient moisture resistance cannot be obtained, and on the other hand, if the amount of phenol aralkyl resin is more than 50 parts of heavy acid, the viscosity will be high and the molded product will be poor.

本発明の末端ジヒドロキシポリエステル(d)は、数平
均分子il 2500〜50000を有するものであっ
て、重合体の末端に2個の水酸基を有するポリエステル
として一般に知られているものであればいかなるもので
あってもよい、上記した平均分子量が2500未満の場
合には得られる硬化物の熱変形部1度及び機械的特性な
どの低下を招き、50000を超えると粘度の上昇によ
り成形性が低下するので好ましくない、好ましくは、5
000〜30000である。このようなポリエステル(
d)は、エチレングリコール、プロピレングリコール、
ネオペンチルグリコール、1.3−ブタンジオール、1
.8−ヘキサンジオールなどの2価アルコールとイソフ
タル酸、テレフタル酸、アジピン酸、セバシン酸などの
ジカルボン酸;(−カプロラクトンなどのラクトン類と
を縮重合させて容易に得ることができる。また、市販の
有用なものの具体例としては、バイロン103(商品名
、東洋紡績■、分子量 18000〜20000)、バ
イロン200(商品名、東洋紡績■、分子量15000
〜20000)、バイロン300(商品名、東洋紡績株
、分子量20000〜25000)、バイロン500(
商品名、東洋紡績株、分子1i 20000〜2500
0)、バイロン30P(尚品名、東洋紡&!鞠、分子量
18000〜20000)、PH−10073(商品名
、宇部興産■、分子量約10000)が挙げられる。こ
れらの中でも、バイロン200 、 PH−10073
が好ましい。
The terminal dihydroxy polyester (d) of the present invention has a number average molecular weight IL of 2,500 to 50,000, and may be any polyester that is generally known as a polyester having two hydroxyl groups at the end of the polymer. If the above-mentioned average molecular weight is less than 2,500, it will cause a decrease in the heat deformation part and mechanical properties of the obtained cured product, and if it exceeds 50,000, the moldability will decrease due to an increase in viscosity. Not preferable, preferably 5
000 to 30000. Polyester like this (
d) is ethylene glycol, propylene glycol,
Neopentyl glycol, 1,3-butanediol, 1
.. It can be easily obtained by condensation polymerization of dihydric alcohols such as 8-hexanediol and dicarboxylic acids such as isophthalic acid, terephthalic acid, adipic acid, and sebacic acid; (-) and lactones such as caprolactone. Specific examples of useful products include Byron 103 (trade name, Toyobo ■, molecular weight 18,000-20,000), Byron 200 (trade name, Toyobo ■, molecular weight 15,000).
-20,000), Byron 300 (trade name, Toyobo Co., Ltd., molecular weight 20,000-25,000), Byron 500 (
Product name, Toyobo Co., Ltd., Molecule 1i 20000-2500
0), Byron 30P (trade name, Toyobo &! Mari, molecular weight 18,000 to 20,000), and PH-10073 (trade name, Ube Industries, Ltd., molecular weight about 10,000). Among these, Byron 200, PH-10073
is preferred.

この末端ジヒドロキシポリエステルの配合法としては、
使用するポリエステルの軟硬に応じて適宜選択すればよ
い。すなわち、軟かい場合は、予め、エポキシ樹脂と共
に加熱混融して分散させればよい、硬い場合は、粉末と
なし、組成物の混合時に直接添加して使用される。この
粉末の粒径は、成形性の面から300給であり、好まし
くは150 g以下である。
The blending method for this terminal dihydroxy polyester is as follows:
It may be selected appropriately depending on the softness or hardness of the polyester used. That is, if it is soft, it may be dispersed by heating and melting it together with the epoxy resin in advance; if it is hard, it may be made into a powder and used by directly adding it when mixing the composition. The particle size of this powder is 300 g, preferably 150 g or less, from the viewpoint of moldability.

この(d)成分の配合割合は、通常、2〜40重量部で
、好ましくは5〜30重量部である。この配合割合が2
重湯部未満の場合には、耐熱衝撃性能の改良硬化が十分
でなく、40重量部を超える場合には樹脂の成形性が劣
化して好ましくない。
The blending ratio of component (d) is usually 2 to 40 parts by weight, preferably 5 to 30 parts by weight. This mixing ratio is 2
If the amount is less than 40 parts by weight, the improved curing of thermal shock resistance will not be sufficient, and if it exceeds 40 parts by weight, the moldability of the resin will deteriorate, which is not preferable.

つぎに、本発明の半導体樹脂封止用エポキシ樹脂組成物
の製造方法について述べる。
Next, a method for manufacturing the epoxy resin composition for semiconductor resin encapsulation of the present invention will be described.

本発明の組成物は、上記した各成分を、加熱ロールによ
る溶融混練、ニーダ−による溶融混練、押出機による溶
融混線、微粉砕後の特殊混合機による混合及びこれらの
各方法の適宜な組合せによって容易に製造することがで
きる。
The composition of the present invention can be prepared by melt-kneading the above-mentioned components using heated rolls, melt-kneading using a kneader, melt-mixing using an extruder, mixing with a special mixer after pulverization, or an appropriate combination of these methods. It can be easily manufactured.

なお、本発明の組成物は、必要に応じて、イミダゾール
もしくはその誘導体、第三級アミン系誘導体、ホスフィ
ン誘導体、シクロアミジン誘導体などの硬化促進剤;ジ
ルコン、シリカ、溶融石英ガラス、アルミナ、水酸化ア
ルミニウム、ガラス。
The composition of the present invention may optionally contain a curing accelerator such as imidazole or its derivatives, tertiary amine derivatives, phosphine derivatives, and cycloamidine derivatives; zircon, silica, fused silica glass, alumina, and hydroxide. aluminum, glass.

石英ガラス、ケイ酸カルシウム、石コウ、炭酸カルシウ
ム、マグネサイト、クレー、カオリン、りルク、鉄粉、
銅粉、マイカ、アスベスト、炭化珪素、窒化ホウ素、二
酸化モリブデン、鉛化合物、鉛酸化物、亜鉛華、チタン
白、カーボンブラックなどの充填剤;高級脂肪酸、ワッ
クス類などの敲撃剤;エポキシシラン、ビニルシラン、
アミノシラン、ポラン系化合物、アルコキシチタネート
系化合物、アルミキレート系化合物などのカップリング
剤:アンチモン、リン化合物、臭素や塩素を含む公知の
難燃化剤が配合されてもよい、又、耐熱衝撃性等の改良
目的でシリコーンオイルなど各種の改良剤を添加しても
よい。
Quartz glass, calcium silicate, gypsum, calcium carbonate, magnesite, clay, kaolin, Riruku, iron powder,
Fillers such as copper powder, mica, asbestos, silicon carbide, boron nitride, molybdenum dioxide, lead compounds, lead oxide, zinc white, titanium white, and carbon black; Repellents such as higher fatty acids and waxes; Epoxy silane, vinyl silane,
Coupling agents such as aminosilane, poran compounds, alkoxy titanate compounds, aluminum chelate compounds, etc. Known flame retardants containing antimony, phosphorus compounds, bromine and chlorine may be blended, and thermal shock resistance etc. Various improvers such as silicone oil may be added for the purpose of improving.

〔発明の効果〕 以上に詳述した通り、本発明の半導体装置封止用エポキ
シ樹脂組成物は、その硬化物が優れた耐熱衝撃性を有す
るものであり、高集積度の半導体装置等の用途における
実用的価値は極めて大と言える。
[Effects of the Invention] As detailed above, the cured product of the epoxy resin composition for encapsulating semiconductor devices of the present invention has excellent thermal shock resistance, and is suitable for applications such as highly integrated semiconductor devices. The practical value of this can be said to be extremely large.

以下において、実施例及び比較例を掲げ、本発明を更に
詳しく説明する。
EXAMPLES Below, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

なお、実施例及び比較例中、「部」は全て「重縫部」を
示す。
In addition, in Examples and Comparative Examples, all "parts" indicate "heavy seam parts."

〔発明の実施例〕[Embodiments of the invention]

支ム膚」 オルトクレゾールノポラ−2り型エポキシ樹脂(軟化点
76℃、当量20B) 100部、臭素化フェノールノ
ボラック型エポキシ樹脂(臭素含有量30% 。
100 parts of ortho-cresol nopolar-2 type epoxy resin (softening point 76°C, equivalent weight 20B), brominated phenol novolak type epoxy resin (bromine content 30%).

軟化点87℃、エポキシ当量270)15部、フェノー
ルノボラック樹脂(軟化点95℃、水酸基当量104)
36部、フェノールアラルキル樹脂(XL−225:三
井東圧v4)(軟化点90℃、水酸基当量19B)38
部、バイロン200(東洋紡ka@、末端ジヒドロキシ
ポリエステル、分子量15,000〜20,000) 
12部、さらに硬化促進剤としてトルフェニルホスフィ
ン 1.5部、m型剤としてカルナバワックス1部、着
色剤としてカーボン粉末1.8部、充填剤として溶融シ
リカ粉500部、難燃助剤として三酸化アンチモン粉末
15部、エポキシシラン系カップリング剤2.4部を配
合し、70〜100℃の二軸ロールで混練し、得られた
混練物を冷却・粉砕し、タブレット化して本発明の半導
体装置封止用エポキシ樹脂組成物を得た。
Softening point: 87°C, epoxy equivalent: 270) 15 parts, phenol novolac resin (softening point: 95°C, hydroxyl equivalent: 104)
36 parts, phenol aralkyl resin (XL-225: Mitsui Toatsu v4) (softening point 90°C, hydroxyl equivalent 19B) 38
Vyron 200 (Toyobo ka@, terminal dihydroxy polyester, molecular weight 15,000-20,000)
In addition, 1.5 parts of tolphenylphosphine as a hardening accelerator, 1 part of carnauba wax as an M-type agent, 1.8 parts of carbon powder as a coloring agent, 500 parts of fused silica powder as a filler, and 3 parts as a flame retardant aid. 15 parts of antimony oxide powder and 2.4 parts of an epoxy silane coupling agent are blended and kneaded with a twin-screw roll at 70 to 100°C. The resulting kneaded product is cooled and crushed, and then tableted to form the semiconductor of the present invention. An epoxy resin composition for device sealing was obtained.

得られた組成物を用いて、低圧トランスファー成形機(
東亜精機50トンプレス)により 175℃、80Kg
/ cm、 120秒の条件で、表面にPSG層を有す
る大型ベレット評価用試料素子(8mmX am層)を
封止した。
Using the obtained composition, a low pressure transfer molding machine (
Toa Seiki 50 ton press) 175℃, 80Kg
/ cm, for 120 seconds, a large pellet evaluation sample element (8 mm X am layer) having a PSG layer on the surface was sealed.

得られた試料素子について耐熱衝撃性、機械特性(曲げ
弾性率1曲げ強さ)及び熱特性(ガラス転移点、熱膨張
係数)を評価するために、後述する各試験を実施した。
In order to evaluate the thermal shock resistance, mechanical properties (flexural modulus 1 bending strength), and thermal properties (glass transition point, coefficient of thermal expansion) of the obtained sample element, various tests described below were conducted.

耐熱衝撃性試験−得られた試料素子20個を用い一り5
℃〜 150℃の範囲で表に示すサイクル数だけ急熱、
急冷し、クラック発生の有無により耐熱衝撃性を試験し
た。クラック発生の有無は発煙硝酸を用いて成形用樹脂
を溶かし去り、顕微鏡で確認した。
Thermal shock resistance test - one test using 20 sample elements obtained
Rapid heating for the number of cycles shown in the table in the range of ℃ to 150℃,
It was rapidly cooled and tested for thermal shock resistance to determine whether or not cracks occurred. The presence or absence of cracks was confirmed by dissolving the molding resin using fuming nitric acid and using a microscope.

曲げ弾性率はJISK−6911に準じて測定した。The flexural modulus was measured according to JISK-6911.

曲げ強さはJISK−Ei911に準じて測定した。Bending strength was measured according to JISK-Ei911.

ガラス転移点は真空理工製の熱膨張計を用い、熱膨張カ
ーブの変曲点より求めた。
The glass transition point was determined from the inflection point of the thermal expansion curve using a thermal dilatometer manufactured by Shinku Riko.

熱]膨張係数は真空理工製熱膨張計を用いて測定した。Thermal] expansion coefficient was measured using a thermal dilatometer manufactured by Shinku Riko.

結果を表に示す。The results are shown in the table.

支ム1」 実施例1のバイロン200を24部、溶融シリカ粉を4
88部とした以外は、実施例1と同様にして本発明の組
成物を得、同様の評価試験を実施した。
"Support 1" 24 parts of Byron 200 from Example 1, 4 parts of fused silica powder
A composition of the present invention was obtained in the same manner as in Example 1, except that the composition was changed to 88 parts, and the same evaluation test was conducted.

結果を表に示す。The results are shown in the table.

及呈潰」 実施例1のバイロン200をPH−10073(宇部興
産■、末端ジヒドロキシポリエステル、分子量約10.
000)とした以外は、実施例1と同様にして本発明の
組成物を得、同様の評価試験を実施した。
Byron 200 of Example 1 was mixed with PH-10073 (Ube Industries, terminal dihydroxy polyester, molecular weight approximately 10.
A composition of the present invention was obtained in the same manner as in Example 1, except that the composition was changed to 000), and the same evaluation test was conducted.

結果を表に示す。The results are shown in the table.

幻Oり 実施例1のフェノールノボラック樹脂を50部、フェノ
ールアラルキル樹脂20部とした以外は、実施例1と同
様にして本発明の組成物を得、同様の評価試験を実施し
た。結果を表に示す。
A composition of the present invention was obtained in the same manner as in Example 1, except that 50 parts of the phenol novolac resin of Example 1 and 20 parts of the phenol aralkyl resin were used, and the same evaluation tests were conducted. The results are shown in the table.

を較遺」 実施例1のフェノールアラルキル樹脂36部とバイロン
20012部を用いず、代えてフェノールノボラック樹
脂を55部に増量し、フィラーの充填量を一定にするた
め、溶融シリカ粉を 480部にした以外は、実施例1
と同様にして比較用の組成物を得、同様の評価試験を実
施した。結果を表に示す。
Instead of using 36 parts of phenol aralkyl resin and 12 parts of Vylon 2001 in Example 1, the amount of phenol novolac resin was increased to 55 parts, and in order to keep the filler filling amount constant, fused silica powder was added to 480 parts. Example 1 except that
A comparative composition was obtained in the same manner as above, and the same evaluation test was conducted. The results are shown in the table.

を笠1」 実施例1のバイロン20012部を用いずに、溶融シリ
カ粉を 491部に変更した以外は、実施例1と同様に
して比較用の組成物を得、同様の評価試験を実施した。
A comparative composition was obtained in the same manner as in Example 1, except that 491 parts of fused silica powder was used instead of using 12 parts of Vylon 200 in Example 1, and the same evaluation test was conducted. .

結果を表に示す。The results are shown in the table.

瓜笠遭」 実施例1のフェノールアラルキル樹脂36部を用いず、
フェノールノボラック樹脂を55部に、また溶融シリカ
粉を 488部に変更した以外は、実施例1と同様にし
て比較用の組成物を得、同様の評価試験を実施した。結
果を表に示す。
Without using 36 parts of the phenol aralkyl resin of Example 1,
A comparative composition was obtained in the same manner as in Example 1, except that the phenol novolac resin was changed to 55 parts and the fused silica powder was changed to 488 parts, and the same evaluation test was conducted. The results are shown in the table.

皿絞直」 プロピレングリコール5.5モル、1,6−ヘキサンジ
オール6モル、アジピン酸10モルを反応組成分とし、
エステル化反応を行ない分子量約2,200の末端ジヒ
ドロキシポリエステル(A)を得た。
The reaction components were 5.5 moles of propylene glycol, 6 moles of 1,6-hexanediol, and 10 moles of adipic acid.
An esterification reaction was carried out to obtain a terminal dihydroxy polyester (A) having a molecular weight of about 2,200.

上記により得た末端ジヒドロギシポリエステル(A)を
実施例1のバイロン200に代えて用いた以外は、実施
例1と同様にして比較用の組成物を得、同様の評価試験
を実施した。結果を表に示す。
A comparative composition was obtained in the same manner as in Example 1, except that the terminal dihydroxypolyester (A) obtained above was used in place of Vylon 200 in Example 1, and the same evaluation test was conducted. The results are shown in the table.

Claims (1)

【特許請求の範囲】 (a)エポキシ樹脂100重量部 (b)ノボラック型フェノール樹脂10〜50重量部(
c)フェノールアラルキル樹脂10〜50重量部であっ
て、(b)+(c)の合計量が 50〜90重量部 (d)数平均分子量2500〜50000を有する末端
ジヒドロキシポリエステル2〜40重量部 からなることを特徴とする半導体装置封止用エポキシ樹
脂組成物。
[Scope of Claims] (a) 100 parts by weight of epoxy resin (b) 10 to 50 parts by weight of novolac type phenolic resin (
c) 10 to 50 parts by weight of a phenolic aralkyl resin, in which the total amount of (b) + (c) is 50 to 90 parts by weight; (d) 2 to 40 parts by weight of a terminal dihydroxy polyester having a number average molecular weight of 2,500 to 50,000; An epoxy resin composition for encapsulating a semiconductor device, characterized in that:
JP60212607A 1985-09-27 1985-09-27 Epoxy resin composition for sealing semiconductor device Pending JPS6272714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60212607A JPS6272714A (en) 1985-09-27 1985-09-27 Epoxy resin composition for sealing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60212607A JPS6272714A (en) 1985-09-27 1985-09-27 Epoxy resin composition for sealing semiconductor device

Publications (1)

Publication Number Publication Date
JPS6272714A true JPS6272714A (en) 1987-04-03

Family

ID=16625489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60212607A Pending JPS6272714A (en) 1985-09-27 1985-09-27 Epoxy resin composition for sealing semiconductor device

Country Status (1)

Country Link
JP (1) JPS6272714A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4975319A (en) * 1988-07-14 1990-12-04 General Electric Company Printed circuit board from fibers impregnated with epoxy resin mixture, halogenated bisphenol and polyphenylene ether
US5096771A (en) * 1988-07-14 1992-03-17 General Electric Company Fibers impregnated with epoxy resin mixture, brominated bisphenol and polyphenylene ether

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4975319A (en) * 1988-07-14 1990-12-04 General Electric Company Printed circuit board from fibers impregnated with epoxy resin mixture, halogenated bisphenol and polyphenylene ether
US5096771A (en) * 1988-07-14 1992-03-17 General Electric Company Fibers impregnated with epoxy resin mixture, brominated bisphenol and polyphenylene ether

Similar Documents

Publication Publication Date Title
JP3020974B2 (en) Epoxy resin composition and semiconductor encapsulant using the same
KR890003362B1 (en) Epoxy resin composition for encapsulation of silicon-conductor device
JPH02500315A (en) Epoxy resin composition for encapsulating semiconductor devices
JPH08151505A (en) Epoxy resin composition
JPH05331263A (en) Resin composition
JPH06345847A (en) Epoxy resin composition and semiconductor device
JPH10152547A (en) Resin composition for sealing semiconductor
JPS6272714A (en) Epoxy resin composition for sealing semiconductor device
JP2002356539A (en) Epoxy resin composition and semiconductor device
JPS6153320A (en) Epoxy resin composition for sealing semiconductor device
JP2002212397A (en) Epoxy resin composition and semiconductor device
JPH11323097A (en) Epoxy resin composition and sealing agent using the same
JPS61221223A (en) Epoxy resin composition for sealing semiconductor
JPH10158360A (en) Epoxy resin composition
JPS6272713A (en) Epoxy resin composition for sealing semiconductor device
JPS61221219A (en) Epoxy resin composition for sealing semiconductor device
JP4145438B2 (en) Epoxy resin composition and semiconductor device
JPH0535175B2 (en)
JPH06271648A (en) Epoxy resin molding material for sealing electronic component
JPS62181322A (en) Epoxy resin composition
JP2593518B2 (en) Epoxy resin molding compound for semiconductor encapsulation
JPH06145307A (en) Epoxy resin composition for electronic equipment
JP2001106872A (en) Epoxy resin composition and semiconductor device
JP2000309678A (en) Epoxy resin composition and semiconductor device
JPS6243414A (en) Epoxy resin composition for sealing semiconductor device