JPH0535175B2 - - Google Patents

Info

Publication number
JPH0535175B2
JPH0535175B2 JP59125868A JP12586884A JPH0535175B2 JP H0535175 B2 JPH0535175 B2 JP H0535175B2 JP 59125868 A JP59125868 A JP 59125868A JP 12586884 A JP12586884 A JP 12586884A JP H0535175 B2 JPH0535175 B2 JP H0535175B2
Authority
JP
Japan
Prior art keywords
epoxy resin
type epoxy
novolak type
parts
cresol novolak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59125868A
Other languages
Japanese (ja)
Other versions
JPS614721A (en
Inventor
Kunimasa Kamio
Koichi Okuno
Yasuo Akita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP12586884A priority Critical patent/JPS614721A/en
Publication of JPS614721A publication Critical patent/JPS614721A/en
Publication of JPH0535175B2 publication Critical patent/JPH0535175B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はエポキシ樹脂組成物に関する。更に詳
しくは、本発明は特に半導体封止用として有用な
エポキシ樹脂組成物にして、従来のエポキシ硬化
物に比べガラス転移点は少なくとも同等でありな
がら、低弾性率、低内部応力を有する硬化物を与
えるエポキシ樹脂組成物に関する。 一般に、半導体素子を熱硬化性樹脂で封止した
場合、硬化時の硬化収縮および冷却時の熱収縮に
より内部応力が発生し、半導体素子に割れを生じ
たり、ボンデイング線が切断されるなどの問題が
あり、内部応力が小さくすることが望まれてい
る。 エポキシ硬化物の内部応力は下式により求めら
れる。 F=K∫T Tg(α1−α2)EdT ただし、F:硬化物の内部応力 α1:封止部材の熱膨張率 α2:半導体素子の熱膨張率 E :硬化物の弾性率 Tg:硬化物のガラス転位点 したがつて、内部応力を小さくするためには、
(1)弾性率を小さくする。(2)硬化物の熱膨張率を小
さくする。(3)ガラス転位点を低くする。などの方
法が挙げられるが、耐熱性、耐湿性の面からガラ
ス転位点は高い方が良く、少なくとも150℃以上
が要求される。 例えば、上述の(1)の方法として、従来のポリエ
ステルエラストマーやシリコーンゴムなどの可撓
性付与剤を用いた場合、弾性率を低くする効果は
あるが、ガラス転位点の低下が大きく、高温での
電気特性、耐湿性に問題がある。また、シリコー
ン系樹脂を用いた場合、金属との接着性が劣り耐
湿性に問題がある。 次に(2)の方法として、無機質充填剤を多量に使
用する場合、半導体素子の表面の損傷や封止材料
の粘度の上昇のため作業性が劣るなどの問題があ
る。 本発明者らは上述したような問題を解決すべく
鋭意研究を重ねた結果、低エポキシ当量のO−ク
レゾールノボラツク型エポキシ樹脂を特定の液状
ゴムで変性させたものを含有する組成物が、ガラ
ス転移点が高く、かつ低弾性率、低内部応力の硬
化物を与えることを見い出し、本発明に至つた。 すなわち、本発明はエポキシ当量180〜205g/
eq.のO−クレゾールノボラツク型エポキシ樹脂
100部と、末端にカルボキシル基、アミノ基、又
は水酸基を有するブタジエン−アクリロニトリル
共重合物、又はカルボキシル基含有ポリブタジエ
ン5〜50部を反応させて得られる液状ゴム変性ノ
ボラツク型エポキシ樹脂、硬化剤、硬化促進剤、
充填剤を含有することを特徴とするエポキシ樹脂
組成物を提供する。 本発明に用いるO−クレゾールノボラツク型エ
ポキシ樹脂は、フエノール性水酸基を1分子当り
2個以上含有するO−クレゾールノボラツクをグ
リシジルエーテル化したもので、エポキシ当量が
180〜205g/eq.のものである。エポキシ当量が
180g/eq.未満のものは工業的に合成することが
困難であり、205g/eq.を越えるものはガラス転
位点の低下が大きい。とりわけ、従来のエポキシ
当量が210〜230g/eq.のノボラツク型エポキシ
樹脂の場合は、ガラス転位点の低下に加えて熱膨
張率が大きくなるなどの問題がある。 本発明において変性剤として用いる末端にカル
ボキシル基、アミノ基、又は水酸基を有するブタ
ジエン−アクリロニトリル共重合物、あるいはカ
ルボキシル基含有ポリブタジエンとしてはいずれ
も従来公知のものを使用することができ、前者の
市販品としては例えば、グツトリツチ社製Hycar
−CTBN,ATBN,HTBNなどが、また、後者
の市販品としては、日本曹達社製PB−C−1000,
PB−C−2000などが例示される。O−グレゾー
ルノボラツク型エポキシ樹脂とブタジエン−アク
リロニトリル共重合物、又はポリブタジエンとの
反応は従来公知の方法で、例えば120℃〜200℃
で、トリフエニルホスフインや3級アミンなどの
触媒を添加し、エポキシ当量の変化がなくなるま
で反応させることによつて得られる。又、ブタジ
エン−アクリロニトリル共重合物、又はポリブタ
ジエンの反応させる比率はO−クレゾールノボラ
ツク型エポキシ樹脂100重量部に対して、5〜50
重量部が好ましいが、特に10〜40重量部が耐熱
性、機械的性質が良好で好ましい。なお、5重量
部未満では、低弾性率化の効果が低く、50重量部
を越える場合は、ガラス転移温度の低下および、
粘度の上昇により作業性が低下するので好ましく
ない。 硬化剤は、公知のものが使用でき、例えばフエ
ノールノボラツクやクレゾールノボラツクなどの
ノボラツク樹脂、ジアミノジフエニルメタンやジ
アミノジフエニルスルホンなどの芳香族ポリアミ
ン、無水ピロメリツト酸や無水ベンゾフエノンテ
トラカルボン酸などの酸無水物などが例示される
が、これらに限定されるものではない。また、硬
化剤の使用量は理論配合量に対して0.7〜1.2の割
合が好ましい。 硬化促進剤は必要により添加されるが、2,
4,6−トリス(ジメチルアミノメチル)フエノ
ールやベンジルジメチルアミンのような三級アミ
ン、2−エチル−4−メチルイミダゾールや2−
フエニル−4−メチルイミダゾールなどのイミダ
ゾール類、1,8−ジアザ−ビシクロ(5,4,
0)ウンデセン−7などが例示され、その添加量
はエポキシ樹脂100重量部に対して、0.3〜3重量
部が好ましい。 所望により添加される充填剤としては、例え
ば、シリカ粉、石英ガラス粉、アルミナ粉などが
あり、その添加量は組成物中50〜90重量%が好ま
しい。 本発明において、その他、必要に応じて天然ワ
ツクス、合成ワツクス、高級脂肪酸およびその金
属塩類、もしくはパラフインなどの離型剤あるい
はカーボンブラツクのような着色剤、さらにカツ
プリング剤などを添加してもよい。また、三酸化
アンチモン、リン化合物、ブロム化エポキシ樹脂
などの難燃剤を添加してもよい。 以下に、実施例をあげて、具体的に説明する。 実施例、比較例 下記の材料を用いて、表−1に示した組成の配
合物を50℃〜100℃×5分の条件で加熱ロールに
より溶融混練し、冷却後粉砕して夫々の樹脂組成
物を得た。次に、これら組成物を175℃×70Kg/
cm2×10分の条件でトランスフアー成型し、180℃
×5Hrの後硬化を行なつた後、物性評価を行なつ
た。その結果を表−2に示した。 エポキシ樹脂 A:O−クレゾールノボラツク型エポキシ樹脂
(住友化学社製スミエポキシESCN−195XL、
エポキシ当量195g/eq.) B:O−クレゾールノボラツク型エポキシ樹脂
(エポキシ当量190g/eq.) C:O−クレゾールノボラツク型エポキシ樹脂
(住友化学社製スミエポキシESCN220L,エポ
キシ当量217g/eq.) 変性剤 A:CTBN−1300×8(グツトリツチ社製末端
カルボ酸ブタジエン−アクリロニトリル共重合
物、分子量3500) B:ATBN−1300×16(グツドリツチ社製末端
アミノ基ブタジエン−アクリロニトリル共重合
物、分子量3400) C:PB−C−2000(日本曹達社製カルボキシル
基含有ポリブタジエン、分子量2000) 硬化剤 フエノールノボラツク樹脂(荒川化学社製タマ
ノル754 OH当量110g/eq) 硬化促進剤 1,8−ジアザ−ビシクロ(5,4,0)ウン
デセン−7 充填剤 結晶性シリカ粉(林化成社製ハイシレツクスNo.
3,平均粒径10μ) その他離型剤としてカルナバワツクス、カツプ
リング剤として、シランカツプリング剤(東レシ
リコン社製SH−6040)を用いた。 O−クレゾールノボラツク型エポキシ樹脂と変
性剤との反応は、変性剤がAあるいはCの場合
は、エポキシ樹脂、変性剤、及びエポキシ樹脂
100部に対して0.5部のトリフエニルホスフインを
フラスコに仕込み、窒素雰囲下、130℃で3時間
撹拌することにより行ない、また変性剤Bの場合
にはエポキシ樹脂及び変性剤を窒素気流中で無触
媒で130℃で3時間加熱撹拌して行なつた。
The present invention relates to epoxy resin compositions. More specifically, the present invention provides an epoxy resin composition particularly useful for semiconductor encapsulation, which has a glass transition point at least equivalent to that of conventional epoxy cured products, while having a low elastic modulus and low internal stress. The present invention relates to an epoxy resin composition that provides the following properties. Generally, when a semiconductor element is sealed with a thermosetting resin, internal stress is generated due to curing shrinkage during curing and thermal shrinkage during cooling, causing problems such as cracks in the semiconductor element and breakage of bonding wires. Therefore, it is desired to reduce the internal stress. The internal stress of the cured epoxy product is determined by the formula below. F=K∫ T Tg1 − α 2 ) EdT, where F: Internal stress of the cured product α 1 : Coefficient of thermal expansion of the sealing member α 2 : Coefficient of thermal expansion of the semiconductor element E: Modulus of elasticity of the cured product Tg : Glass transition point of cured product Therefore, in order to reduce internal stress,
(1) Decrease the elastic modulus. (2) Decrease the coefficient of thermal expansion of the cured product. (3) Lower the glass transition point. However, from the viewpoint of heat resistance and moisture resistance, the higher the glass transition point, the better, and a temperature of at least 150°C or higher is required. For example, in method (1) above, when conventional flexibility imparting agents such as polyester elastomer or silicone rubber are used, it has the effect of lowering the elastic modulus, but the glass transition point decreases significantly and at high temperatures. There are problems with electrical properties and moisture resistance. Furthermore, when a silicone resin is used, its adhesion to metal is poor and there is a problem in moisture resistance. Next, as for method (2), when a large amount of inorganic filler is used, there are problems such as damage to the surface of the semiconductor element and increase in the viscosity of the sealing material, resulting in poor workability. As a result of extensive research by the present inventors to solve the above-mentioned problems, a composition containing a low epoxy equivalent O-cresol novolak type epoxy resin modified with a specific liquid rubber has been developed. It was discovered that a cured product having a high glass transition point, low elastic modulus, and low internal stress can be obtained, leading to the present invention. That is, the present invention has an epoxy equivalent of 180 to 205 g/
O-cresol novolak type epoxy resin of eq.
A liquid rubber-modified novolac type epoxy resin obtained by reacting 100 parts of a butadiene-acrylonitrile copolymer having a carboxyl group, an amino group, or a hydroxyl group at the end, or 5 to 50 parts of a carboxyl group-containing polybutadiene, a curing agent, and a curing agent. accelerator,
An epoxy resin composition containing a filler is provided. The O-cresol novolak type epoxy resin used in the present invention is a glycidyl etherified O-cresol novolak containing two or more phenolic hydroxyl groups per molecule, and has an epoxy equivalent of
It is 180-205g/eq. The epoxy equivalent is
If it is less than 180 g/eq., it is difficult to synthesize it industrially, and if it is more than 205 g/eq., the glass transition point will be significantly lowered. In particular, in the case of conventional novolac type epoxy resins having an epoxy equivalent of 210 to 230 g/eq., there are problems such as a decrease in the glass transition point and an increase in the coefficient of thermal expansion. As the butadiene-acrylonitrile copolymer having a carboxyl group, amino group, or hydroxyl group at the end, or the carboxyl group-containing polybutadiene used as a modifier in the present invention, any conventionally known one can be used, and the former is a commercially available product. For example, Hycar manufactured by Gutstoritsi
-CTBN, ATBN, HTBN, etc. Commercially available products of the latter include PB-C-1000 manufactured by Nippon Soda Co., Ltd.
Examples include PB-C-2000. The reaction between the O-gresol novolak type epoxy resin and the butadiene-acrylonitrile copolymer or polybutadiene is carried out by a conventionally known method, for example at 120°C to 200°C.
It can be obtained by adding a catalyst such as triphenylphosphine or tertiary amine and allowing the reaction to occur until there is no change in the epoxy equivalent. In addition, the ratio of butadiene-acrylonitrile copolymer or polybutadiene to be reacted is 5 to 50 parts by weight based on 100 parts by weight of O-cresol novolak type epoxy resin.
Parts by weight are preferred, and 10 to 40 parts by weight is particularly preferred since heat resistance and mechanical properties are good. In addition, if it is less than 5 parts by weight, the effect of lowering the elastic modulus is low, and if it exceeds 50 parts by weight, the glass transition temperature is lowered and
This is not preferable because workability decreases due to the increase in viscosity. Known curing agents can be used, such as novolak resins such as phenol novolak and cresol novolak, aromatic polyamines such as diaminodiphenylmethane and diaminodiphenyl sulfone, pyromellitic anhydride and benzophenonetetracarboxylic anhydride. Examples include acid anhydrides such as, but are not limited to. The amount of curing agent used is preferably 0.7 to 1.2 of the theoretical amount. A curing accelerator may be added as necessary, but 2.
Tertiary amines such as 4,6-tris(dimethylaminomethyl)phenol and benzyldimethylamine, 2-ethyl-4-methylimidazole and 2-
imidazoles such as phenyl-4-methylimidazole, 1,8-diaza-bicyclo(5,4,
0) Undecene-7 is exemplified, and the amount added is preferably 0.3 to 3 parts by weight per 100 parts by weight of the epoxy resin. Examples of fillers that may be added as desired include silica powder, quartz glass powder, and alumina powder, and the amount added is preferably 50 to 90% by weight of the composition. In the present invention, if necessary, natural waxes, synthetic waxes, higher fatty acids and their metal salts, or release agents such as paraffin, coloring agents such as carbon black, and coupling agents may be added. Additionally, flame retardants such as antimony trioxide, phosphorus compounds, and brominated epoxy resins may be added. Below, examples will be given and concretely explained. Examples and Comparative Examples Using the following materials, blends with the compositions shown in Table 1 were melt-kneaded using heated rolls at 50°C to 100°C for 5 minutes, cooled, and then crushed to obtain the respective resin compositions. I got something. Next, these compositions were mixed at 175℃×70Kg/
Transfer molded at cm 2 × 10 minutes at 180°C.
After post-curing for ×5 hours, physical properties were evaluated. The results are shown in Table-2. Epoxy resin A: O-cresol novolak type epoxy resin (Sumi Epoxy ESCN-195XL manufactured by Sumitomo Chemical Co., Ltd.,
(epoxy equivalent: 195 g/eq.) B: O-cresol novolak type epoxy resin (epoxy equivalent: 190 g/eq.) C: O-cresol novolak type epoxy resin (Sumi Epoxy ESCN220L manufactured by Sumitomo Chemical Co., Ltd., epoxy equivalent: 217 g/eq.) Modifier A: CTBN-1300×8 (terminal carboxylic acid butadiene-acrylonitrile copolymer manufactured by Gutstoritsi, molecular weight 3500) B: ATBN-1300×16 (terminal amino group butadiene-acrylonitrile copolymer manufactured by Gutstoritsi, molecular weight 3,400) C: PB-C-2000 (Carboxyl group-containing polybutadiene manufactured by Nippon Soda Co., Ltd., molecular weight 2000) Curing agent Phenol novolac resin (Tamanol 754 manufactured by Arakawa Chemical Co., Ltd. OH equivalent 110 g/eq) Curing accelerator 1,8-diaza-bicyclo ( 5,4,0) Undecene-7 Filler Crystalline silica powder (Hisilex No. manufactured by Hayashi Kasei Co., Ltd.)
3. Average particle size: 10μ) In addition, carnauba wax was used as a mold release agent, and a silane coupling agent (SH-6040 manufactured by Toray Silicon Co., Ltd.) was used as a coupling agent. When the modifier is A or C, the reaction between the O-cresol novolak type epoxy resin and the modifier involves the epoxy resin, the modifier, and the epoxy resin.
The test is carried out by charging 0.5 parts of triphenylphosphine per 100 parts into a flask and stirring at 130°C for 3 hours under a nitrogen atmosphere. The mixture was heated and stirred at 130° C. for 3 hours without a catalyst.

【表】【table】

【表】 表−1,表−2より、低エポキシ当量のO−ク
レゾールノボラツク型エポキシ樹脂をその100重
量部に対して5〜50重量部の液状ゴムで変性した
ものは、高エポキシ当量の樹脂を用いたものに比
べ、同一ガラス転位点で比較すれば、より多くの
ゴム変性が可能で低弾性率となり、逆に同一弾性
率であれば、はるかに高い耐熱性を示す組成物が
得られることがわかる。
[Table] Tables 1 and 2 show that low epoxy equivalent O-cresol novolac type epoxy resin modified with 5 to 50 parts by weight of liquid rubber per 100 parts of the O-cresol novolak type epoxy resin has a high epoxy equivalent content. Compared to those using resins, if we compare them at the same glass transition point, more rubber modification is possible and the elastic modulus is lower; conversely, if we have the same elastic modulus, we can obtain a composition that exhibits much higher heat resistance. I know that it will happen.

Claims (1)

【特許請求の範囲】[Claims] 1 エポキシ当量180〜205g/eq.のO−クレゾ
ールノボラツク型エポキシ樹脂と、末端にカルボ
キシル基、アミノ基、又は水酸基を有するブタジ
エン−アクリロニトリル共重合物、又はカルボキ
シル基含有ポリブタジエンを反応させて得られる
液状ゴム変性ノボラツク型エポキシ樹脂および硬
化剤を必須成分として含有することを特徴とする
エポキシ樹脂組成物。
1 Obtained by reacting an O-cresol novolak type epoxy resin with an epoxy equivalent of 180 to 205 g/eq. and a butadiene-acrylonitrile copolymer having a carboxyl group, an amino group, or a hydroxyl group at the end, or a carboxyl group-containing polybutadiene. An epoxy resin composition comprising a liquid rubber-modified novolak type epoxy resin and a curing agent as essential components.
JP12586884A 1984-06-19 1984-06-19 Epoxy resin composition Granted JPS614721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12586884A JPS614721A (en) 1984-06-19 1984-06-19 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12586884A JPS614721A (en) 1984-06-19 1984-06-19 Epoxy resin composition

Publications (2)

Publication Number Publication Date
JPS614721A JPS614721A (en) 1986-01-10
JPH0535175B2 true JPH0535175B2 (en) 1993-05-25

Family

ID=14920918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12586884A Granted JPS614721A (en) 1984-06-19 1984-06-19 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JPS614721A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338887A (en) * 2001-05-22 2002-11-27 Hitachi Chem Co Ltd Insulating varnish using modified cyanate ester based resin composition and method for producing its resin film
JP4984596B2 (en) * 2005-05-31 2012-07-25 住友ベークライト株式会社 Epoxy resin composition and semiconductor device
JP2011252152A (en) * 2011-07-04 2011-12-15 Hitachi Chem Co Ltd Insulating varnish using modified cyanate ester-based resin composition, and manufacturing method of resin film of the same
JP5920431B2 (en) * 2014-09-19 2016-05-18 横浜ゴム株式会社 Epoxy resin composition for fiber reinforced composite material, method for producing epoxy resin composition for fiber reinforced composite material, prepreg and honeycomb panel
WO2017175274A1 (en) * 2016-04-04 2017-10-12 株式会社日立製作所 Sealing structure and method for manufacturing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176958A (en) * 1982-04-09 1983-10-17 Nitto Electric Ind Co Ltd Semiconductor device
JPS59181035A (en) * 1983-03-30 1984-10-15 Nitto Electric Ind Co Ltd Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176958A (en) * 1982-04-09 1983-10-17 Nitto Electric Ind Co Ltd Semiconductor device
JPS59181035A (en) * 1983-03-30 1984-10-15 Nitto Electric Ind Co Ltd Semiconductor device

Also Published As

Publication number Publication date
JPS614721A (en) 1986-01-10

Similar Documents

Publication Publication Date Title
JPS6355532B2 (en)
US5731370A (en) Semiconductor encapsulating epoxy resin compositions with 2-phenyl-4,5-dihydroxymethylimidazole curing accelerator
JPH0535175B2 (en)
JPS58174416A (en) Epoxy resin composition for sealing of semiconductor
JPH0564990B2 (en)
JPS6031523A (en) Sealing resin composition
JP3003887B2 (en) Resin composition for semiconductor encapsulation
JPS63349A (en) Epoxy resin composition for use in sealing semiconductor
JP3206317B2 (en) Method for producing epoxy resin composition and epoxy resin composition
JP3008981B2 (en) Epoxy resin composition
JP2823632B2 (en) High heat resistant epoxy resin composition
JPH0249329B2 (en)
JPH04337316A (en) Epoxy resin composition
JPH04328117A (en) Epoxy resin composition for sealing semiconductor
JP2675108B2 (en) Epoxy resin composition
JP2823636B2 (en) High heat resistant epoxy resin composition
JPS63273624A (en) Epoxy resin composition
JP2699885B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2680351B2 (en) Resin composition for sealing
JPH1112442A (en) Sealing resin composition and sealed semiconductor device
JP2869077B2 (en) Epoxy resin composition
JP2591124B2 (en) Epoxy resin composition for sealing
JPH0676475B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH01113455A (en) Resin composition for sealing semiconductor
JPH0530862B2 (en)