JPS6272528A - Production of magnetic powder - Google Patents

Production of magnetic powder

Info

Publication number
JPS6272528A
JPS6272528A JP60213782A JP21378285A JPS6272528A JP S6272528 A JPS6272528 A JP S6272528A JP 60213782 A JP60213782 A JP 60213782A JP 21378285 A JP21378285 A JP 21378285A JP S6272528 A JPS6272528 A JP S6272528A
Authority
JP
Japan
Prior art keywords
sintered body
hexagonal ferrite
component
ferrite
magnetic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60213782A
Other languages
Japanese (ja)
Inventor
Kazuhiro Sano
佐野 一広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Techno Glass Co Ltd
Original Assignee
Toshiba Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Glass Co Ltd filed Critical Toshiba Glass Co Ltd
Priority to JP60213782A priority Critical patent/JPS6272528A/en
Publication of JPS6272528A publication Critical patent/JPS6272528A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To produce the titled magnetic powder having excellent dispersibility by heat-treating an amorphous material obtained from a mixture of the essential component of hexagonal ferrite, a substituent component and a vitrifying compo nent, reheating the material and then quenching the material. CONSTITUTION:A mixture of (A) the essential component of hexagonal ferrite, (B) the substituent component (e.g., TiO2) for reducing coercive force and (C) the vitrifying component is heated, melted and then quenched to obtain the amorphous material. The amorphous material is packed in a heat-resistant vessel and heat-treated to deposit a hexagonal ferrite crystal and a sintered body is obtained. The sintered body is then pulverized, heated at temps. of (250-350 deg.C) which are below the Curie point of the ferrite and then quenched to provide thermal strain. The vitreous phase in the sintered body is released from the ferrite crystal phase at their interface and cracks are formed on the vitreous phase side. Then the fine powder of the sintered body is treated with a dilute acid to dissolve and remove the vitreous substance, then washed with water until the pH is controlled to >=6 and dried.

Description

【発明の詳細な説明】 し発明の技術分野1 本発明は、高密度磁気記録媒体の製造に用いられる磁性
粉末の@1造方法に係り、特に六方晶系フェライトを高
収率で含む焼結体から均一に分散された状態で大方晶系
フェライトを抽出することのできる磁性粉末の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention 1 The present invention relates to a method for producing magnetic powder used in the production of high-density magnetic recording media, and particularly relates to a method for producing magnetic powder using a sintered powder containing hexagonal ferrite in high yield. The present invention relates to a method for producing magnetic powder that can extract orthogonal ferrite from a body in a uniformly dispersed state.

[発明の技術的背景とその問題点] 従来から、六方晶系フェライトの微粒子を用いて塗布法
により垂直磁気媒体を¥J造する場合には、単一の六方
晶系フエイトでは保磁力が大きく記録時に磁気ヘッドが
飽和して磁気記録ができなくなるため、六方晶系フェラ
イトの構成原子の一部を特定の他の原子で置換すること
により、その保隅力を垂直磁気記録に適する値まで低減
させることが行なわれている。
[Technical background of the invention and its problems] Conventionally, when manufacturing perpendicular magnetic media by a coating method using fine particles of hexagonal ferrite, a single hexagonal ferrite has a large coercive force. During recording, the magnetic head becomes saturated and magnetic recording becomes impossible, so by replacing some of the constituent atoms of hexagonal ferrite with specific other atoms, the corner retention force is reduced to a value suitable for perpendicular magnetic recording. It is being done to

またこのような垂直磁気記録に用いる六方晶系フェライ
ト微粒子の粒径は、結晶の粒径が0.01μm未満では
磁気記録に葭する強い磁性を呈することができず、0.
311Illを超えると高密度記録としての垂直磁気記
録を有利に行ない難いため、0.01〜0.3μmの範
囲のものが適している。
Further, if the grain size of the hexagonal ferrite fine particles used for such perpendicular magnetic recording is less than 0.01 μm, it cannot exhibit strong magnetism comparable to magnetic recording,
If the thickness exceeds 311 Ill, it is difficult to advantageously perform perpendicular magnetic recording as high-density recording, so a thickness in the range of 0.01 to 0.3 μm is suitable.

上記のような条件に適合する磁性粉末を製造する方法と
しては、六り晶系フェライトの基本成分、保磁力低減の
ための置換成分およびガラス形成成分を混合して加熱溶
解させた後、この溶解物を急速に冷却して非晶質体とし
、これを熱処理して六方晶系フェライト微粒子を析出さ
せ、希酸で処理してフェライトを分離抽出する方法が採
用されている。
The method for producing magnetic powder that meets the above conditions is to mix the basic component of hexagonal ferrite, a substitute component for reducing coercive force, and a glass-forming component, heat and melt the mixture, and then melt this. The method used is to rapidly cool the material to make it amorphous, heat-treat it to precipitate hexagonal ferrite fine particles, and then treat it with dilute acid to separate and extract the ferrite.

しかしながらこのような従来の方法では、非晶質体が薄
いフレーク状を呈し、特に六方晶系フエライ1〜の基本
成分と置換成分との合計量が、これらとガラス形成成分
との合計Φに対して、40@量%を越えるような高収率
の場合には、生成したフェライト微粒子の相nの間隔が
接近し、熱処理後もフレーク状非晶質体がほとんど形状
変化をしないため、希酸処理に右利な形状にまで微粉化
することが難しいという問題があった。すなわちこのよ
うに六方晶系フェライトの比率が高いフレーク状非晶質
体をディスク回転型粉砕機で粉砕する場合、フレーク状
非晶質体が薄片状であるためディスク間からすりぬけて
しまい微粉化が充分に行なわれず、このため粉砕後もガ
ラス形成成分が非常に接近したフェライト微粒子間に挾
まれた状態となり、希酸の浸透による溶解が困難となり
、分散性の良いフェライト微粒子を傳ることができなか
ったのである。
However, in such conventional methods, the amorphous material takes on a thin flake shape, and in particular, the total amount of the basic components and substituted components of the hexagonal crystal ferrite 1 is smaller than the sum of these and the glass-forming components Φ. In the case of a high yield exceeding 40% by weight, the spacing of the phase n of the produced ferrite fine particles becomes close, and the flaky amorphous material hardly changes its shape even after heat treatment, so dilute acid There was a problem in that it was difficult to pulverize into a shape suitable for processing. In other words, when a flaky amorphous material with a high proportion of hexagonal ferrite is pulverized using a rotating disk type pulverizer, the flaky amorphous material is thin, so it slips between the disks and becomes a fine powder. As a result, even after pulverization, the glass-forming components remain sandwiched between closely spaced ferrite particles, making it difficult for dilute acid to permeate and dissolve them, making it impossible to form ferrite particles with good dispersibility. There wasn't.

[発明の目的] 本発明は、このような従来の難点を解消するためになさ
れたもので、熱処理した焼結体をキューリ一点以下の温
度で再加熱し、これを急冷して熱歪を加えるだけの簡単
な操作により、フレーク状の非晶質体のガラス相と六方
晶系フェライト結晶相との界面に剥離やクラックを発生
させ、これによって希酸の透過性や超音波による解砕性
を向上させて分散性の良い六方晶系フェライトを得るこ
とを可能とした磁性粉の製造方法を提供することを目的
とする。
[Object of the Invention] The present invention has been made to solve these conventional difficulties, and involves reheating a heat-treated sintered body at a temperature below one curie point, and then rapidly cooling it to apply thermal strain. With a simple operation, peeling and cracking is generated at the interface between the glass phase of the flaky amorphous material and the hexagonal ferrite crystal phase, which improves the permeability of dilute acids and the ability to be crushed by ultrasonic waves. It is an object of the present invention to provide a method for producing magnetic powder that makes it possible to obtain hexagonal ferrite with improved dispersibility.

[発明の概要] 本発明は上記の目的を達成するために、(イ)六方晶系
フェライトの基本成分、保磁力低減のための置換成分お
にびガラス形成成分の混合物を加熱溶解させ、次いで急
冷して非晶質体とする工程と、(ロ)この非晶質体に熱
処理を施して六方晶系フエライ1〜の結晶を析出させる
工程と、(ハ)熱処理により結晶を析出した焼結体を微
粉砕してキューリ一点以下の温度で再加熱した後、これ
を急冷して熱歪を加える工程と、(ニ)熱歪の加えられ
た前記焼結体の微粉末を希酸で処理して六方晶系フェラ
イトの結晶を抽出する工程とを具備している。
[Summary of the Invention] In order to achieve the above-mentioned object, the present invention has been made by (a) heating and melting a mixture of a basic component of hexagonal ferrite, a substitute component for reducing coercive force, and a glass-forming component; a step of rapidly cooling to form an amorphous body; (b) a step of subjecting the amorphous body to heat treatment to precipitate crystals of hexagonal crystal ferrite 1; and (c) a sintering step in which crystals are precipitated by heat treatment. After finely pulverizing the body and reheating it at a temperature below one curie point, it is rapidly cooled and thermally strained, and (d) the fine powder of the thermally strained sintered body is treated with dilute acid. and extracting hexagonal ferrite crystals.

本発明においては、まず目的とする磁性粉末を得るため
に、マグネトブランバイト型フェライ]−の出発原料と
磁気記録媒体用磁性粉末に要求される保磁力とするため
の置換成分の出発原料とガラス形成成分とを所定の比率
で調合する。すなわらマグネトブランバイト型バリウム
フェライト中の1: 65+イオンの一部をCO1+イ
オンおよびTi4+イオンで置換する場合には、)−1
3BO3,3a C03、Fe2O:+、Ti0z、C
OOを所定の比率で秤量して均一に混合する。次いでこ
れらの混合物を加熱溶融させ、この溶融物を水冷双ロー
ル上に注いで急冷し、非晶質体を作製する。さらにこの
非晶質体を耐熱容器に充填し、電気炉内に収容して所定
の温度条件のもとて置換バリウムフェライトの結晶を析
出させて焼結体とする。こうして(qられた焼結体を、
微粉砕して再度バリウムフェライトのキューリ一点(約
350℃)以下の250〜350℃程度の温度まで加熱
し、これをたとえば冷水中に投入して急冷させる。
In the present invention, in order to obtain the desired magnetic powder, first, a starting material of magnetobrambite-type ferrite, a starting material of a replacement component to obtain the coercive force required for a magnetic powder for magnetic recording media, and a glass The forming components are mixed in a predetermined ratio. In other words, when replacing some of the 1:65+ ions in magnetobrambite barium ferrite with CO1+ ions and Ti4+ ions, -1)
3BO3,3a C03, Fe2O:+, Ti0z, C
Weigh out OO in a predetermined ratio and mix uniformly. Next, these mixtures are heated and melted, and this melt is poured onto water-cooled twin rolls and rapidly cooled to produce an amorphous body. Further, this amorphous body is filled into a heat-resistant container, placed in an electric furnace, and crystals of substituted barium ferrite are precipitated under predetermined temperature conditions to form a sintered body. In this way, the sintered body (q) is
The powder is finely pulverized and heated again to a temperature of about 250 to 350° C., which is below the curie point (about 350° C.) of barium ferrite, and then put into, for example, cold water to be rapidly cooled.

このようにして置換バリウムフェライトの結晶を含む焼
結体微粉末は、再加熱と急冷により熱歪を加えらるので
、焼結体中のガラス相とバリウムフェライト結晶相との
界面は剥離し、あるいはガラス相側にクラックが発生す
る。
In this way, the sintered fine powder containing substituted barium ferrite crystals is thermally strained by reheating and rapid cooling, so the interface between the glass phase and the barium ferrite crystal phase in the sintered body peels off. Alternatively, cracks occur on the glass phase side.

この後、常法により所定の粒度まで粉砕し、酢酸水溶液
で13a OB203相やBaO相等のガラス質物質を
溶解除去する。この際、酢酸水溶液の液温は80℃以上
、粉砕物は20重量%程度となるようにし、必要に応じ
て超音波を用いてガラス質物質の溶解を促進させる。酢
酸で処理した粉砕物は、水洗をくり返し、液のpHが6
以上となったところで水洗をやめ、濾別、乾燥させるこ
とにより3aフ工ライト微粒子が得られる。
Thereafter, the powder is pulverized to a predetermined particle size by a conventional method, and glassy substances such as the 13a OB203 phase and BaO phase are dissolved and removed using an acetic acid aqueous solution. At this time, the temperature of the acetic acid aqueous solution is set to 80° C. or higher, the pulverized material is set to about 20% by weight, and if necessary, ultrasonic waves are used to promote dissolution of the glassy substance. The pulverized material treated with acetic acid is washed repeatedly with water until the pH of the liquid is 6.
When the temperature reaches the above point, washing with water is stopped, and 3a flute fine particles are obtained by filtering and drying.

このように本発明においては、希酸処理のため微粉砕さ
れた焼結体粉末には、再加熱と急冷により熱歪を加えら
るので焼結体中のガラス相とバリウムフェライト結晶相
との界面は剥離し、あるいはガラス相側にクラックが発
生して希酸の浸透や超音波による解砕が効率よく進行し
、この結果ガラス相が容易に除去されて分散性の良好な
バリウムフェライト微粉末を1qることができる。
In this way, in the present invention, thermal strain is applied to the finely pulverized sintered body powder for dilute acid treatment by reheating and rapid cooling, so that the glass phase and barium ferrite crystal phase in the sintered body are separated. The interface peels off or cracks occur on the glass phase side, allowing penetration of dilute acid and disintegration by ultrasonic waves to proceed efficiently. As a result, the glass phase is easily removed, resulting in fine barium ferrite powder with good dispersibility. 1q can be obtained.

なお本発明は、いかなる粒径の磁性粉末の製法にも用い
ることができるが、特に500Å以下の従来法では良好
な分散性の得られなかった微粒子の磁性粉末の製造に有
効である。
Although the present invention can be used for producing magnetic powder of any particle size, it is particularly effective for producing magnetic powder with fine particles of 500 Å or less, for which good dispersibility could not be obtained by conventional methods.

[発明の実施例] 次に本発明を、[e31イオンの一部を、CO2+イオ
ンおよびTi 4+イオンでM換した一般式%式% で表わされる置換マグネトブランバイト型3aフエライ
1〜からなる磁性粉末の製造に適用した例について説明
する。
[Embodiments of the Invention] Next, the present invention will be described in detail below. An example of application to powder production will be described.

実施例 3aフエライトのフェライ1〜成分1’c203と、保
磁力低減のための置換成分子! 02 、Co Oと、
ガラス形成成分Ba o、B203とを重量百分率で8
2031γ、8、Ba Q45,9、Fe2O331,
6、T! 02 2.44 、Co O2,29の組成
比となるように柱間し、これらを充分に混合した後、1
350℃で加熱溶融し、この溶融物を直径20cm、回
転数50Orpm 、線圧5tOnの水冷双ロール上に
注いで急冷し、非晶質体を作製した。次にこの非晶質体
を耐熱容器に充填し、電気炉内に収容して所定の湯度条
件のもとて焼成してassaフェライトの結晶を析出さ
せた。しかる後この焼結体をブラウン型クラッシャーを
用い、粉砕し 100メツシユ以下の微粉末とし、この
微粉末を200〜300℃に加熱し、これを直ちに20
℃以下の温度の大量の水中に投入し急冷して微粉末中に
熱歪を発生さけた。この微粉末を回収し乾燥した後10
%酢酸水溶液により洗浄してBaO−8203相やBa
O相等のガラス質部分を溶解除去した。なおこの際、酢
酸水溶液の液温は80℃以上、粉砕物は全体の約20東
予%とじ、ざらに超音波を2W/cc稈度か【)て溶解
を促進させた。この後処理物を、くり返し水洗し、液の
DHが6以上と<【ったところで濾別し乾燥させた。
Example 3a Ferrite 1 to component 1'c203 of ferrite and substituted component molecules for reducing coercive force! 02, CoO and
Glass-forming components Bao and B203 in a weight percentage of 8
2031γ,8, Ba Q45,9, Fe2O331,
6.T! 02 2.44, Co O2,29, and after thoroughly mixing them, 1
The material was melted by heating at 350° C., and the molten material was poured onto a water-cooled twin roll having a diameter of 20 cm, a rotational speed of 50 rpm, and a linear pressure of 5 tOn, and was rapidly cooled to prepare an amorphous body. Next, this amorphous body was filled into a heat-resistant container, placed in an electric furnace, and fired under predetermined hot water temperature conditions to precipitate assa ferrite crystals. Thereafter, this sintered body was crushed into a fine powder of 100 mesh or less using a Brown type crusher, and this fine powder was heated to 200 to 300°C, and immediately heated to 20°C.
The fine powder was poured into a large amount of water at a temperature below ℃ and rapidly cooled to avoid thermal distortion in the fine powder. After collecting and drying this fine powder,
% acetic acid aqueous solution to remove the BaO-8203 phase and Ba
Glassy parts such as O phase were dissolved and removed. At this time, the temperature of the acetic acid aqueous solution was 80° C. or higher, the pulverized material was concentrated at about 20% of the total, and ultrasonic waves were applied at 2 W/cc to promote dissolution. This post-treated product was repeatedly washed with water, and when the DH of the liquid reached 6 or more, it was filtered and dried.

このようにして得られた3aフ工ライト微粒子は、次表
に示すように極めて分散性が良好で、磁性粉末としての
特性も良好であった。
The thus obtained 3a fluorite fine particles had extremely good dispersibility and good properties as a magnetic powder, as shown in the following table.

なお表中比較例は、焼結体を微粉砕した後加熱および急
冷の処理を施さなかった点を除いて実施例と同じ出発原
v1、方法により製造した磁性粉末であって本発明との
比較のために示したちのである。
In addition, the comparative examples in the table are magnetic powders manufactured using the same starting material v1 and method as in the examples except that the sintered body was not subjected to heating and quenching treatment after being finely pulverized, and is a comparison with the present invention. This is what I have shown for you.

また表中、保磁力、飽和磁化は、最終的に得られた磁性
粉の値であり、角型比は、jlられLこ磁性粉を使用し
て製作した記録媒体の角型比である。
In the table, the coercive force and saturation magnetization are the values of the finally obtained magnetic powder, and the squareness ratio is the squareness ratio of the recording medium manufactured using the magnetic powder.

[発明の効果] 以上のように本発明においては、結晶を析出させた焼結
体を微粉砕した後、これにキューリ一点以下の温度で再
加熱および急冷の処理を施して熱歪を発生させるだけの
簡単な操作を加えるだけでフレーク状の非晶質体のガラ
ス相と六方晶系フェライト結晶相との界面に剥離やクラ
ックを発生させることができる。そしてこれらの界面の
剥離部やクラックの発生部では希酸が容易に浸透し1.
Xつ超音波による解砕が容易に行なわれるのでフト常に
接近していたフェライト微粒子間をもl<うl<うに微
粉化することができ、分散性の良好な磁性y)末を得る
ことができる。
[Effects of the Invention] As described above, in the present invention, after pulverizing a sintered body in which crystals have been precipitated, it is reheated and rapidly cooled at a temperature below one curie point to generate thermal strain. Peeling or cracking can be generated at the interface between the glass phase of the flaky amorphous body and the hexagonal ferrite crystal phase by simply adding the following simple operations. Dilute acid easily penetrates into the peeled areas and cracked areas at these interfaces.1.
Since crushing by ultrasonic waves is easily carried out, the ferrite fine particles that are always close to each other can be further finely divided, and a magnetic powder with good dispersibility can be obtained. can.

Claims (3)

【特許請求の範囲】[Claims] (1)(イ)六方晶系フェライトの基本成分、保磁力低
減のための置換成分およびガラス形成成分の混合物を加
熱溶解させ、次いで急冷して非晶質体とする工程と、 (ロ)この非晶質体に熱処理を施して六方晶系フェライ
トの結晶を析出させる工程と、 (ハ)熱処理により結晶を析出した焼結体を微粉砕しキ
ューリー点以下の温度で再加熱した後、これを急冷して
熱歪を加える工程と、 (ニ)熱歪の加えられた前記焼結体の微粉末を希酸で処
理して六方晶系フェライトの結晶を抽出する工程と からなることを特徴とする磁性粉末の製造方法。
(1) (a) A step of heating and melting a mixture of a basic component of hexagonal ferrite, a substitution component for reducing coercive force, and a glass-forming component, and then rapidly cooling it to form an amorphous body; A process of heat-treating the amorphous body to precipitate hexagonal ferrite crystals; (c) finely pulverizing the sintered body in which crystals have been precipitated by the heat treatment and reheating it at a temperature below the Curie point; It is characterized by comprising a step of rapidly cooling and applying thermal strain, and (d) a step of treating the fine powder of the thermally strained sintered body with dilute acid to extract hexagonal ferrite crystals. A method for producing magnetic powder.
(2)(ハ)の工程が、熱処理により結晶を析出した焼
結体を200〜350℃の温度で再加熱し、これを水中
に投入して熱歪を加える工程であることを特徴とする特
許請求の範囲第1項記載の磁性粉末の製造方法。
(2) The step (c) is characterized in that the sintered body in which crystals have been precipitated by heat treatment is reheated at a temperature of 200 to 350°C, and then placed in water to apply thermal strain. A method for producing magnetic powder according to claim 1.
(3)六方晶系フェライトの基本成分と置換成分の合計
量が、これらとガラス形成成分との合計量に対して40
重量%を越える量である特許請求の範囲第1項または第
2項記載の磁性粉末の製造方法。
(3) The total amount of basic components and substituted components of hexagonal ferrite is 40% relative to the total amount of these and glass forming components.
The method for producing magnetic powder according to claim 1 or 2, wherein the amount exceeds % by weight.
JP60213782A 1985-09-27 1985-09-27 Production of magnetic powder Pending JPS6272528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60213782A JPS6272528A (en) 1985-09-27 1985-09-27 Production of magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60213782A JPS6272528A (en) 1985-09-27 1985-09-27 Production of magnetic powder

Publications (1)

Publication Number Publication Date
JPS6272528A true JPS6272528A (en) 1987-04-03

Family

ID=16644948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60213782A Pending JPS6272528A (en) 1985-09-27 1985-09-27 Production of magnetic powder

Country Status (1)

Country Link
JP (1) JPS6272528A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5118637A (en) * 1988-10-08 1992-06-02 Fujitsu Limited Method of fabricating hemt device with selective etching of gallium arsenide antimonide
JP2015013785A (en) * 2013-07-08 2015-01-22 富士フイルム株式会社 Hexagonal ferrite magnetic particle, method for producing the same, and magnetic recording medium
JP2015016999A (en) * 2013-07-08 2015-01-29 富士フイルム株式会社 Hexagonal ferrite magnetic particles and method of manufacturing the same, and magnetic recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5118637A (en) * 1988-10-08 1992-06-02 Fujitsu Limited Method of fabricating hemt device with selective etching of gallium arsenide antimonide
JP2015013785A (en) * 2013-07-08 2015-01-22 富士フイルム株式会社 Hexagonal ferrite magnetic particle, method for producing the same, and magnetic recording medium
JP2015016999A (en) * 2013-07-08 2015-01-29 富士フイルム株式会社 Hexagonal ferrite magnetic particles and method of manufacturing the same, and magnetic recording medium

Similar Documents

Publication Publication Date Title
US4493874A (en) Production of a magnetic powder having a high dispersibility
JPS6136685B2 (en)
JPS6323134B2 (en)
JPH0430086B2 (en)
JPS6272528A (en) Production of magnetic powder
JPS6324935B2 (en)
JPS6281007A (en) Manufacture of magnetic powder
JPS6246506A (en) Manufacture of magnetic powder
JPS6233403A (en) Manufacture of magnetic powder
JPH0348139B2 (en)
JPS6323133B2 (en)
JPS6121921A (en) Preparation of magnetic powder
JPS63148413A (en) Production of magnetic powder
JP2802653B2 (en) Magnetic powder for high-density magnetic recording and method for producing the same
JPH02252209A (en) Manufacture of magnetic powder
JPS644330B2 (en)
JPS63148412A (en) Production of magnetic powder
JPH02215105A (en) Manufacture of magnetic fluid
JPH05326233A (en) Production of magnetic powder
JPS63209109A (en) Manufacture of magnetic powder
JPH0412604B2 (en)
JPS6081028A (en) Manufacture of w-phase hexagonal ferrite particle
JPH03104201A (en) Magnetic powder for high density magnetic recording medium
JPH02288206A (en) Manufacture of magnetic powder
JP3016242B2 (en) Oxide magnetic material and method for producing the same