JPS6272510A - Device for separating and concentrating carbon monoxide - Google Patents

Device for separating and concentrating carbon monoxide

Info

Publication number
JPS6272510A
JPS6272510A JP60213501A JP21350185A JPS6272510A JP S6272510 A JPS6272510 A JP S6272510A JP 60213501 A JP60213501 A JP 60213501A JP 21350185 A JP21350185 A JP 21350185A JP S6272510 A JPS6272510 A JP S6272510A
Authority
JP
Japan
Prior art keywords
absorption liquid
absorption
carbon monoxide
liq
absorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60213501A
Other languages
Japanese (ja)
Inventor
Takahiro Nishida
隆弘 西田
Toshiki Furue
古江 俊樹
Hiroyuki Kako
宏行 加来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP60213501A priority Critical patent/JPS6272510A/en
Publication of JPS6272510A publication Critical patent/JPS6272510A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

PURPOSE:To efficiently separate and concentrate CO for a long period by combining an adsorption tower and a desorption tower respectively used for absorbing and desorbing CO with an liq. absorbent line and an adsorption unit for removing H3PO4 and obtaining the specified function. CONSTITUTION:A liq. absorbent contg. CuCl, tris(dimethylamino)phosphine oxide (hmpa) and toluene is brought into countercurrent contact with raw gas in the absorption tower 1 and the CO in the raw gas is adsorbed. The liq. absorbent after absorbing CO is sent to a heat exchange 3 from a rich liq. line 2 and heated therein to a temp. close to the temp. at which CO is desorbed. The liq. absorbent heated in the heat exchanger 3 is introduced into a stripper 4 and then passed through a condenser 14 and the product is obtained. The liq. absorbent from a control valve 8 is introduced into the adsorption unit 9A, wherein weakly acidic H3PO4 in the liq. absorbent generated by the hydrolysis of the hmpa reacts with NaOH constituting the bed of the adsorption unit 9A, and the H3PO4 in the liq. absorbent is removed as Na3PO4.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は一酸化炭素(以下、COと記す)分離濃縮装置
に係り、特に塩化第1銅(以下CuC1と記す)、トリ
ス(ジメチルアミノ)ホスフィンオキシドとを含む吸収
液を用いるプロセスにおいて、吸収液の循環使用に際し
て吸収液の安定化を図るのに好適なCO分離・濃縮装置
に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a carbon monoxide (hereinafter referred to as CO) separation and concentration device, and particularly relates to a carbon monoxide (hereinafter referred to as CO) separation and concentration device, and in particular, to a device for separating and concentrating carbon monoxide (hereinafter referred to as CO), and in particular, to a device for separating and concentrating carbon monoxide (hereinafter referred to as CO), and in particular for cuprous chloride (hereinafter referred to as CuC1), tris(dimethylamino)phosphine. The present invention relates to a CO separation/concentration device suitable for stabilizing the absorption liquid when circulating the absorption liquid in a process using an absorption liquid containing oxides.

〔発明の背景〕[Background of the invention]

従来、CuC1とトリス(ジメチルアミノ)ホスフィン
オキシド(以下、hmp aと記す)と溶媒としてトル
エンを含む吸収液を用いるCO分離・/店鋪装置は、第
2図に示される。第2図において、COを含有する原料
ガスは吸収塔Iにて吸収液と向流接触し、原料ガス中の
COが選択的に吸収される。COを吸収した吸収液はリ
ッチ液ライン2から熱交換器3に送られ、ここで吸収液
中からCOを放散しうる温度近くまで加熱される。熱交
換器3で加熱された吸収液は、脱離塔(ストリッパ)4
に導入され、ここでCOを放散する。ストリッパ4の塔
底液はリポイラ5で加熱され、このとき発生したトルエ
ン蒸気はCOストリッピングエージェントとして働き、
COの放散を助ける。
A conventional CO separation/store system using an absorption liquid containing CuC1, tris(dimethylamino)phosphine oxide (hereinafter referred to as hmpa), and toluene as a solvent is shown in FIG. In FIG. 2, a raw material gas containing CO comes into countercurrent contact with an absorption liquid in an absorption tower I, and CO in the raw material gas is selectively absorbed. The absorption liquid that has absorbed CO is sent from the rich liquid line 2 to the heat exchanger 3, where it is heated to a temperature close to the temperature at which CO can be dissipated from the absorption liquid. The absorption liquid heated by the heat exchanger 3 is transferred to a desorption column (stripper) 4
where it dissipates CO. The bottom liquid of the stripper 4 is heated by the repoiler 5, and the toluene vapor generated at this time acts as a CO stripping agent.
Helps dissipate CO.

上記した吸収液の吸収脱離機構は弐fllCuCJ −
hmp a +CO,1 CuCn  ・ hmp a  −co−・・−(tl
で示される。
The absorption/desorption mechanism of the above-mentioned absorption liquid is
hmp a +CO,1 CuCn ・ hmp a -co-・・-(tl
It is indicated by.

したがって、安定したCO吸収性能を得るためには上記
した+11式の反応に合致した運転条件が要求される。
Therefore, in order to obtain stable CO absorption performance, operating conditions that match the above-mentioned reaction of equation +11 are required.

吸収液を循環使用するプロセス内で高温・酸性の条件下
になるとhmp aは弐(2)((CH3)2N)3P
O+3HzO→3 (C)is)zN H+ H:lP
 Os・・・・・・(2)で示すように加水分解し、ジ
メチルアミンとH3P Oaを生成する。
When the absorption liquid is recycled under high temperature and acidic conditions, hmp a becomes 2(2)((CH3)2N)3P.
O+3HzO→3 (C)is)zN H+ H:lP
Os... Hydrolyzes as shown in (2) to produce dimethylamine and H3P Oa.

この反応で生じたジメチルアミンは、弐(3)で示すよ
うに一座配位子としてC,uC7!とアンミン錯体を生
成し、CO吸収性能を低下させる。
The dimethylamine produced in this reaction has C, uC7! as a monodentate ligand, as shown in 2(3). and ammine complexes, reducing CO absorption performance.

CuCff−hmpa+ (CH*)zNIl−CuC
12・ (CHz)zNll+hmp a−・−−−−
(3)一方、Hs P Oaは、式(4)で示すように
CuC/−hmpaと反応し、難溶性のリン酸第1銅を
生成し、CO吸収能力を有するCuC1’・hmpa錯
体の濃度を減少させる。
CuCff-hmpa+ (CH*)zNIl-CuC
12. (CHz)zNll+hmp a-・----
(3) On the other hand, Hs P Oa reacts with CuC/-hmpa as shown in equation (4) to produce poorly soluble cuprous phosphate, which increases the concentration of the CuC1'·hmpa complex that has CO absorption ability. decrease.

CuC1・ hmpa+H3PO4→ Cu C1’  HzP Oa  ↓+h m p a
 + H’  =−(41さらにジメチルアミン自体は
強い塩基性を示すが、CuCeとの反応により生成する
アンミン錯体により中性となる。しかもH,PO,は式
(4)に示すようにH゛を放出するため、全体としてh
mp aの加水分解の進行に伴い、p Hが低下し、h
 m paの加水分解を加速させる。
CuC1・hmpa+H3PO4→ Cu C1' HzP Oa ↓+h m pa
+ H' = - (41 Furthermore, although dimethylamine itself exhibits strong basicity, it becomes neutral due to the ammine complex produced by the reaction with CuCe. Moreover, H, PO, and H' as shown in formula (4) As a whole, h
As the hydrolysis of mpa progresses, the pH decreases and h
Accelerates hydrolysis of mpa.

したがって、吸収液のpHが5以下の酸性状態であった
場合、高温条件下のストリッパ4、リボイラ5及びスト
リッパ4とリボイラ5とを連絡するライン等でhmpa
の分解が進行する。hmpaの加水分解によって生した
ジメチルアミンと11゜PO,は上述のようにCO吸収
性能を低下させ、さらに吸収液のpHをより低下させる
ため、ストリッパ4の後流側でhmpaの加水分解を加
速させる。このため、上記の吸収液を循環使用するCO
分離・濃縮装置では吸収液を安定化させ、長期間にわた
ってCOを効率的に分離・濃縮することが困i書であっ
た。
Therefore, if the pH of the absorption liquid is in an acidic state of 5 or less, the stripper 4, the reboiler 5, the line connecting the stripper 4 and the reboiler 5, etc.
decomposition progresses. Dimethylamine and 11°PO produced by the hydrolysis of hmpa reduce the CO absorption performance as described above, and further lower the pH of the absorption liquid, so they accelerate the hydrolysis of hmpa on the downstream side of the stripper 4. let For this reason, CO
In separation/concentration equipment, it has been difficult to stabilize the absorption liquid and efficiently separate and concentrate CO over a long period of time.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記した従来技術の欠点をなくし、C
uC1とトリス(ジメチルアミノ)ホスフィンオキシド
とを含む吸収液を循環使用するCO分離・4縮装置にお
いて、吸収液のCO吸収性能を安定化させ、長期間にわ
たってCOを効率的に分離・4縮できるco分離・濃縮
装置を提供することにある。
The purpose of the present invention is to eliminate the above-mentioned drawbacks of the prior art and to
In a CO separation and 4-condensation device that circulates and uses an absorption liquid containing uC1 and tris(dimethylamino)phosphine oxide, the CO absorption performance of the absorption liquid is stabilized and CO can be efficiently separated and 4-condensed over a long period of time. Our objective is to provide a CO separation/concentration device.

〔発明の概要] 要するに本発明は、CuCl!とトリス(ジメチルアミ
ノ)ホスフィンオキシドとを含むCO吸収液をvi環使
用するCO分離・(農縮プロセスにおいて、吸収液のC
O吸収性能が経時的に低下するのは吸収液中のhmpa
の加水分解において生じる83PO4に起因し、かつこ
のH3PO4はストリッパ等の高温雰皿気で生成しやす
い点に着目し、COを放散した吸収液をストリツパから
吸収塔に供給するラインの途中で吸収液中のHs P 
Oaを吸着除去し、吸収液の安定化を図るようにしたも
のである。
[Summary of the Invention] In short, the present invention provides CuCl! and tris(dimethylamino)phosphine oxide.
O absorption performance decreases over time due to hmpa in the absorption liquid.
Focusing on the fact that 83PO4 is generated during the hydrolysis of CO and that this H3PO4 is easily generated in high-temperature atmospheres such as strippers, the absorption liquid is Hs P inside
This is to remove Oa by adsorption and stabilize the absorption liquid.

〔発明の実施例〕[Embodiments of the invention]

以下、図面に基づいて本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail based on the drawings.

第2図は本発明の一実施例を示す系統構成図である。こ
のco分離・濃縮装置は、吸収塔lとストリッパ4とリ
ボイラ5とを備えており、吸収塔lからのリッチ液ライ
ンの途中に熱交換器3が設置されるとともにこのリッチ
液ライン2はストリッパ4の頂部に接続されている。ス
トリッパ4の塔下部側から塔底液をリボイラ5に導入す
るラインが設けられ、このラインは再びストリッパ4の
塔下部側に連結されている。
FIG. 2 is a system configuration diagram showing an embodiment of the present invention. This CO separation/concentration apparatus is equipped with an absorption tower 1, a stripper 4, and a reboiler 5. A heat exchanger 3 is installed in the middle of a rich liquid line from the absorption tower 1, and this rich liquid line 2 is connected to a stripper 4. Connected to the top of 4. A line is provided for introducing the bottom liquid into the reboiler 5 from the lower side of the column of the stripper 4, and this line is again connected to the lower side of the column of the stripper 4.

ストリッパ4の塔底部からのリーン液ライン6の途中に
前記熱交換器3が設置され、この熱交換器3よりもリー
ン液下流側に吸収液冷却器7が設置されており、リーン
液ライン6は熱交換器3及び吸収液冷却器7を介して吸
収塔1の頂部に連結されている。
The heat exchanger 3 is installed in the lean liquid line 6 from the bottom of the stripper 4, and the absorption liquid cooler 7 is installed downstream of the lean liquid from the heat exchanger 3. is connected to the top of the absorption tower 1 via a heat exchanger 3 and an absorption liquid cooler 7.

リーン液ライン6は、ストリッパ4付近で分岐されたバ
イパスライン8を備え、このバイパスライン8に対して
並列に吸着ユニット9A、9Bが設置されている。この
吸着ユニット9A、9BにはそれぞれNaOH等の固型
塩基性化合物からなるヘッドが形成されている。また吸
着ユニット9A、9Bよりもバイパスライン8の上流側
にコントロールバルブ10が設置され、リーン液ライン
6とバイパスライン8の合流点11よりもリーン液ライ
ン6の下流側にp H検知器12が設置されている。
The lean liquid line 6 includes a bypass line 8 branched near the stripper 4, and adsorption units 9A and 9B are installed in parallel to the bypass line 8. A head made of a solid basic compound such as NaOH is formed in each of the adsorption units 9A and 9B. Further, a control valve 10 is installed upstream of the bypass line 8 from the adsorption units 9A and 9B, and a pH detector 12 is installed downstream of the lean liquid line 6 from the confluence 11 of the lean liquid line 6 and the bypass line 8. is set up.

ストリッパ4の頂部からのガスライン13の途中にコン
デンサ14が設置され、コンデンサ14からのドレンラ
イン15の途中にドレンセパレータ16が設置され、ド
レンセパレータ16で回収されたトルエンをストリッパ
4の下流側に導入するラインが設けられている。
A condenser 14 is installed in the middle of the gas line 13 from the top of the stripper 4, and a drain separator 16 is installed in the middle of the drain line 15 from the condenser 14, and the toluene recovered by the drain separator 16 is transferred to the downstream side of the stripper 4. There is a line for introduction.

次に上記のような構成からなるCO分離・濃縮装置の作
用について説明する。
Next, the operation of the CO separation/concentration device configured as described above will be explained.

CuC1とトリス(ジメチルアミノ)ホスフィンオキシ
ドとトルエンを含む吸収液は吸収塔lにおいて、原料ガ
スと向流接触し、原料ガス中のC0を吸収する。COを
吸収した吸収液は、リッチ液ライン2から熱交換器3に
送られ、ここでCOを放散する温度の近くまで加熱され
る0次に熱交換器3で加熱された吸収液は、ストリッパ
4に導入される。
The absorption liquid containing CuC1, tris(dimethylamino)phosphine oxide, and toluene comes into countercurrent contact with the raw material gas in the absorption tower 1, and absorbs C0 in the raw material gas. The absorption liquid that has absorbed CO is sent from the rich liquid line 2 to the heat exchanger 3, where it is heated to a temperature close to the point at which CO is released. 4 will be introduced.

ここでストリッパ4、リポイラ5及びこれらを連結する
ライン内の雰囲気が、酸性状態で高温条件の場合、上記
した式(2)により83PO4が生成する。このHs 
P Oaを含む吸収液はストリッパ4の塔底部からリー
ン液ライン6、コントロールバルブ8を経てバイパスラ
イン8から吸着ユニットに至る。吸着ユニットは2塔弐
であり、一方の吸着ユニット9Aの前流側及び後流側の
バルブが開とされ、他方の吸着ユニット9Bの前流側及
び後流側のバルブは閉とされている。コントロールバル
ブ8からの吸収液は、吸着ユニット9A内に導入され、
ここでhmp aの加水分解によって生じた吸収液中の
弱酸性のH3P0.は吸着ユニット9Aのベッドを形成
するN a O+(と式(5)%式% に示すように反応し、吸収液中のH3P 04はNa3
Po、として除去される。
Here, when the atmosphere in the stripper 4, the repoiler 5, and the line connecting them is acidic and under high temperature conditions, 83PO4 is generated according to the above equation (2). This Hs
The absorption liquid containing P 2 Oa flows from the bottom of the stripper 4 through the lean liquid line 6, the control valve 8, and the bypass line 8 to the adsorption unit. The adsorption unit has two towers, and the upstream and downstream valves of one adsorption unit 9A are open, and the upstream and downstream valves of the other adsorption unit 9B are closed. . The absorption liquid from the control valve 8 is introduced into the adsorption unit 9A,
Here, weakly acidic H3P0. reacts with NaO+ (which forms the bed of the adsorption unit 9A) as shown in formula (5)%, and H3P04 in the absorption liquid becomes Na3
It is removed as Po.

吸着ユニッ)9Aを経た吸収液は、合流点11を経て再
びリーン液ライン6に導入され、このリーン液ライン6
の途中でp H検出器12に、より吸収液のpH値が連
続的に検知される。吸収液中のhmp aの分解により
生しるH3PO4の生成星が多いと、吸収液のpH値が
低下し、吸収液のCO吸収性能が低下する。吸収液のp
H値としての安定化領域は、5〜6程度であるのでこの
安定化領域の吸収液のpH値を設定値とし、この設定値
とpH検知器12による吸収液のpif検出値との偏差
値に基づいてコントロールバルブ10の開度が調整され
る。このようにして吸収液中のhmpaの分解に起因し
、吸収液のCO吸収性能を低下させる要因となるH、P
O,が吸着ユニット9Aで吸着除去された後、吸収液は
熱交換器3、及び吸収液冷却器7を経てCO吸収性能を
高くした状態で吸収塔1に導入される。なお吸着ユニッ
ト9Aでは、吸収液中からのHtPO4の吸着除去の他
に吸収液中の沈澱物を吸着除去するためのフィルタとし
ての機能をも有している。
The absorption liquid that has passed through the adsorption unit) 9A is introduced into the lean liquid line 6 again through the confluence point 11.
During the process, the pH value of the absorption liquid is continuously detected by the pH detector 12. If there are many stars of H3PO4 produced by the decomposition of hmp a in the absorbing liquid, the pH value of the absorbing liquid will decrease, and the CO absorption performance of the absorbing liquid will decrease. p of absorption liquid
Since the stabilization region as an H value is about 5 to 6, the pH value of the absorption liquid in this stabilization region is set as the set value, and the deviation value between this set value and the pif detection value of the absorption liquid by the pH detector 12. The opening degree of the control valve 10 is adjusted based on. In this way, H and P, which are factors that reduce the CO absorption performance of the absorbent due to the decomposition of hmpa in the absorbent,
After O, is adsorbed and removed by the adsorption unit 9A, the absorption liquid passes through the heat exchanger 3 and the absorption liquid cooler 7 and is introduced into the absorption tower 1 in a state where the CO absorption performance is increased. Note that the adsorption unit 9A has a function as a filter for adsorbing and removing precipitates in the absorption liquid in addition to adsorption and removal of HtPO4 from the absorption liquid.

吸着ユニット9AによるI(ff P 04の吸着除去
と、吸収液中の沈澱物の吸着除去の機能が低下した場合
、吸着ユニット9Aの前流側及び後流側のバルブをそれ
ぞれ閉とし、吸着ユニット9Bの前流側及び後流側のバ
ルブをそれぞれ開とし、ストリッパ4からの吸収液を吸
着ユニット9Bに導入する。このように吸着ユニット9
A、9Bには交互にストリッパ4からの吸収液が導入さ
れ、連続的にH,pOaの吸着除去と吸収液中の沈澱物
の吸着除去を行うことができる。
When the adsorption and removal functions of I(ff P 04 and precipitate in the absorption liquid by the adsorption unit 9A deteriorate, the valves on the upstream and downstream sides of the adsorption unit 9A are closed, respectively, and the adsorption unit The valves on the upstream side and the downstream side of 9B are opened, respectively, and the absorption liquid from the stripper 4 is introduced into the adsorption unit 9B.In this way, the adsorption unit 9
The absorption liquid from the stripper 4 is alternately introduced into A and 9B, so that H and pOa can be adsorbed and removed, and precipitates in the absorption liquid can be adsorbed and removed continuously.

本発明において、吸着ユニットは3段以上に並列に設置
してもよく、またH 3 P Oaの中和反応熱が大き
い場合、この中和反応熱をストリッパ4に導入する吸収
液により回収することができる。
In the present invention, the adsorption units may be installed in parallel in three or more stages, and if the heat of neutralization reaction of H 3 P Oa is large, this heat of neutralization reaction can be recovered by the absorption liquid introduced into the stripper 4. I can do it.

なお、吸着ユニットに形成されるベッドはNaOHに限
らすH、P O、との反応により吸収液中に溶解L7な
い反応生成物を形成する固型塩基性化合物であればよい
The bed formed in the adsorption unit is limited to NaOH, as long as it is a solid basic compound that forms a reaction product that is not dissolved in the absorption liquid by reaction with H, PO, etc.

また本発明の装置に用いられる吸収液は、塩化第1銅と
hmp aとを含む吸収液であるが、溶媒として芳香族
炭化水素が用いられ、芳香族炭化水素として特にCOガ
スの法例の物質移動抵抗が小さく、すなわち吸収液の粘
度を小さくする点からはトルエンが有効である。
Further, the absorption liquid used in the apparatus of the present invention is an absorption liquid containing cuprous chloride and hmpa, but an aromatic hydrocarbon is used as a solvent, and as an aromatic hydrocarbon, a substance specified by the law, especially CO gas, is used as a solvent. Toluene is effective because it has low movement resistance, that is, it reduces the viscosity of the absorbing liquid.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、吸収液中のhmpaの加
水分解によって生じ、吸収液のCO吸収性能を低下させ
る要因となる113Po、を効率的に除去することによ
って、吸収液を循環使用するに際して吸収液の性能を長
期間にわたって安定化させ、COを効率的に分離・濃縮
することができる。
As described above, according to the present invention, the absorption liquid can be recycled and used by efficiently removing 113Po, which is generated by the hydrolysis of hmpa in the absorption liquid and causes a decrease in the CO absorption performance of the absorption liquid. In this case, the performance of the absorption liquid can be stabilized over a long period of time, and CO can be efficiently separated and concentrated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかるCO分離・濃縮装置の一実施例
を示す系統構成図、第2図は従来のCO分離・濃縮′i
t置を示す系統構成図である。 l・・・・・・吸収塔、    2・・・・・・リッチ
液ライン、3・・・・・・熱交換器、   4・・・・
・・ストリッパ、5・・・・・・リボイラ、   6・
・・・・・リーン液ライン、7・・・・・・吸収液冷却
器、8・・・・・・バイパスライン、9A、9B・・・
・・・吸s:y−ニット、10・・・・・・コントロー
ルバルブ、12・・・・・・pH検知器、14・・・・
・・コンデンサ、16・・・・・・ドレンセパータ。
Fig. 1 is a system configuration diagram showing an embodiment of the CO separation/concentration device according to the present invention, and Fig. 2 is a conventional CO separation/concentration device.
It is a system configuration diagram showing the t position. 1...Absorption tower, 2...Rich liquid line, 3...Heat exchanger, 4...
...Stripper, 5...Reboiler, 6.
...Lean liquid line, 7...Absorption liquid cooler, 8...Bypass line, 9A, 9B...
... Suction S: Y-nit, 10... Control valve, 12... pH detector, 14...
...Capacitor, 16...Drain separator.

Claims (5)

【特許請求の範囲】[Claims] (1)塩化第1銅とトリス(ジメチルアミノ)ホスフィ
ンオキシドとを含む一酸化炭素吸収液を一酸化炭素を含
有するガスと接触させ、その吸収液中に一酸化炭素を吸
収させる吸収塔と、この吸収塔からの吸収液を加熱して
一酸化炭素を放散させる脱離塔と、この脱離塔から一酸
化炭素を放散した吸収液を前記吸収塔に供給する吸収液
ラインとを備えた一酸化炭素の分離・濃縮装置において
、前記吸収液ラインの途中に吸収液中のトリス(ジメチ
ルアミノ)ホスフィンオキシドの加水分解によって生じ
るH_3PO_4を吸着除去する吸着ユニットを設置し
たこと特徴とする一酸化炭素の分離・濃縮装置。
(1) an absorption tower that brings a carbon monoxide absorption liquid containing cuprous chloride and tris(dimethylamino)phosphine oxide into contact with a gas containing carbon monoxide, and absorbs carbon monoxide into the absorption liquid; A desorption tower that heats the absorption liquid from this absorption tower to diffuse carbon monoxide, and an absorption liquid line that supplies the absorption liquid from which carbon monoxide has been liberated from this desorption tower to the absorption tower. The carbon monoxide separation/concentration device is characterized in that an adsorption unit for adsorbing and removing H_3PO_4 produced by hydrolysis of tris(dimethylamino)phosphine oxide in the absorption liquid is installed in the middle of the absorption liquid line. Separation/concentration equipment.
(2)前記吸着ユニットは、固型塩基性化合物のベッド
が形成されている特許請求の範囲第1項記載の一酸化炭
素の分離・濃縮装置。
(2) The carbon monoxide separation/concentration device according to claim 1, wherein the adsorption unit has a bed of a solid basic compound formed therein.
(3)前記吸着ユニットが、脱離塔の塔底部付近の前記
吸収液ラインに設けられている特許請求の範囲第1項記
載の一酸化炭素の分離・濃縮装置。
(3) The carbon monoxide separation/concentration apparatus according to claim 1, wherein the adsorption unit is provided in the absorption liquid line near the bottom of the desorption column.
(4)前記ユニットが前記吸収液ラインより分岐された
バイパスラインに設置され、前記吸着ユニットよりも吸
収液ラインの下流側に吸収液のpH検知するpH検知器
を設け、前記吸着ユニットの上流側の前記バイパスライ
ンに前記pH検知器からの信号に基づいて作動するコン
トロールバルブを設けた特許請求の範囲第1項記載の一
酸化炭素の分離・濃縮装置。
(4) The unit is installed in a bypass line branched from the absorption liquid line, and a pH detector for detecting the pH of the absorption liquid is provided downstream of the absorption liquid line from the absorption unit, and a pH detector is provided on the upstream side of the absorption unit. 2. The carbon monoxide separation/concentration device according to claim 1, wherein the bypass line is provided with a control valve that operates based on a signal from the pH detector.
(5)前記吸着ユニットが、前記バイパスラインに2塔
並列に設置され、各塔に吸収液の流入を切り替え可能と
した特許請求の範囲第1項乃至第4項のいずれかに記載
の一酸化炭素の分離・濃縮装置。
(5) The monoxide according to any one of claims 1 to 4, wherein the adsorption unit is installed in two columns in parallel in the bypass line, and the inflow of the absorption liquid to each column can be switched. Carbon separation and concentration equipment.
JP60213501A 1985-09-26 1985-09-26 Device for separating and concentrating carbon monoxide Pending JPS6272510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60213501A JPS6272510A (en) 1985-09-26 1985-09-26 Device for separating and concentrating carbon monoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60213501A JPS6272510A (en) 1985-09-26 1985-09-26 Device for separating and concentrating carbon monoxide

Publications (1)

Publication Number Publication Date
JPS6272510A true JPS6272510A (en) 1987-04-03

Family

ID=16640240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60213501A Pending JPS6272510A (en) 1985-09-26 1985-09-26 Device for separating and concentrating carbon monoxide

Country Status (1)

Country Link
JP (1) JPS6272510A (en)

Similar Documents

Publication Publication Date Title
KR100490937B1 (en) Carbon dioxide recovery with composite amine blends
JP6575050B2 (en) Carbon dioxide recovery method and recovery apparatus
US3625886A (en) Process for recovering organic material from aqueous streams
US4242108A (en) Hydrogen sulfide concentrator for acid gas removal systems
US3534529A (en) Process for recovering organic vapors from airstream
CA1118457A (en) Olefin separation process
KR20080052547A (en) Method and apparatus for enengy reduction in acid gas capture processes
US2477314A (en) Process for purifying gases
JPH0144370B2 (en)
US3492788A (en) Process of separating solvent vapor and water vapor from gases in scrubbing processes using a liquid organic absorbent
JP2017176954A (en) Carbon dioxide recovery apparatus and natural gas combustion system
US3773895A (en) Removal of acidic gases from gaseous mixtures
JPS6317488B2 (en)
KR101190725B1 (en) Apparatus for separating acid gas from mixed gas
GB283508A (en) Process and apparatus for the recovery of gases or vapours taken up by adsorbents
JPS6272510A (en) Device for separating and concentrating carbon monoxide
JPS5335681A (en) Continuous adsorber using activated carbon
JPS62143808A (en) Separation and recovery of carbon monoxide
US2607657A (en) Extraction of high acidic concentrations from gases
US3607003A (en) Method of removing acetone and acidic gases from gaseous mixtures
JPS5964515A (en) Separation of carbon monoxide
US3242640A (en) Removal of acid constituents from gas mixtures
JPH0111700Y2 (en)
SU787364A1 (en) Method of purifying steam-air mixture from ammonia
JPS63107728A (en) Method and apparatus for recovering cyclohexanone