JPS6272190A - Manufacture of semiconductor laser - Google Patents
Manufacture of semiconductor laserInfo
- Publication number
- JPS6272190A JPS6272190A JP21098885A JP21098885A JPS6272190A JP S6272190 A JPS6272190 A JP S6272190A JP 21098885 A JP21098885 A JP 21098885A JP 21098885 A JP21098885 A JP 21098885A JP S6272190 A JPS6272190 A JP S6272190A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- quantum well
- optical waveguide
- active layer
- grow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
- H01S5/1228—DFB lasers with a complex coupled grating, e.g. gain or loss coupling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/34313—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/34313—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
- H01S5/3432—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs the whole junction comprising only (AI)GaAs
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、内部に屈折率の高い多重v子井戸4%!造
の活性層或は光導波路層を有し、■つその左右を屈折率
の低い上記多ff1ffl子井戸構造の平均化された組
成で囲んだ埋込み構造の半導体レーザ装置の製造法に関
するもので、特に分布帰還型埋込みへテロ構造の半導体
レーザ装置を精度良く、且つ簡易に製造する方法に関す
るものである。[Detailed Description of the Invention] (Industrial Application Field) This invention has a multi-V well with a high refractive index of 4% inside! The present invention relates to a method for manufacturing a semiconductor laser device having a buried structure, which has an active layer or an optical waveguide layer, and whose left and right sides are surrounded by the averaged composition of the multi-ff1ffl child well structure having a low refractive index; In particular, the present invention relates to a method for easily and accurately manufacturing a distributed feedback buried heterostructure semiconductor laser device.
(従来の技術)
分l!+帰還型埋込みへテロ構造のレーザ装置は、縦モ
ード及び横モード共に単一のレーザ光を発振できる半導
体レーデ装置として知られているが。(Prior art) Min! +Feedback buried heterostructure laser devices are known as semiconductor radar devices that can oscillate a single laser beam in both longitudinal and transverse modes.
その構造は第2図に示すように二種の化合物゛ト導体極
薄膜を交互に三層以上積み重ねて構成した多毛量子井戸
構造の光導波路P:!jaの左右を禁制帯幅の広い半導
体層すで埋込み、且つ光導波路層aに回折格子Cを設け
るようにしである。As shown in Figure 2, its structure is an optical waveguide P:! with a multi-hair quantum well structure, which is constructed by alternately stacking three or more ultra-thin films of two types of compounds and conductors. A semiconductor layer with a wide forbidden band width is already embedded on the left and right sides of the optical waveguide layer a, and a diffraction grating C is provided in the optical waveguide layer a.
従来このような分布帰還型埋込みへテロ構造のレーザ装
置は、従来光の干#等を利用した化学工;・チングによ
り基板納品1−に周期的な凹凸の回折格fを作り、この
トに液相成長法でダブルへテロ構造の結晶を成長させ、
この結晶を化学エツチングでメサストライプ状にした後
、2回目の液相成長でこのメサストライプを禁制帯幅の
広い半導体層で埋込むようにして製造されていた。Conventionally, such a distributed feedback buried heterostructure laser device has been manufactured by chemical engineering using optical drying, etc.; Grow a double heterostructure crystal using liquid phase growth method,
After this crystal is formed into a mesa stripe shape by chemical etching, the mesa stripe is filled with a semiconductor layer having a wide forbidden band width by a second liquid phase growth.
(文明の解決しようとするIFi+題点)しかし、以上
のような製造法は複雑であり、高度な技術を要するため
、(1)化学エツチングでのストライプ幅の制御が困難
である、(2)埋込み成長がうまくいかない、(3)基
板結晶上に回折格子がうまく作れない、(4)作った回
折格子が液相成長の際に壊れる等の事態がしばしば起こ
り、このため製品の歩留りが悪かった。(IFI + problem that civilization is trying to solve) However, the above manufacturing method is complicated and requires advanced technology, so (1) it is difficult to control the stripe width by chemical etching; (2) Situations such as buried growth not working well, (3) diffraction gratings not being properly formed on the substrate crystal, and (4) the created diffraction gratings breaking during liquid phase growth often occur, resulting in poor product yields.
(問題点を解決するための手段)
以上の問題点を解決するため、この発明では組成の異な
る二種の化合物半導体極薄膜を交互に三層以に積み重ね
て構成した多重量子井戸構造を活性層或は光導波路層と
し、且つ活性層或は光導波路層の左右を当該層の平均組
成の半導体で構成する゛ト導体レーザ装置の製造方法に
おいて、上記化h’を物゛ト導体極fル膜内に熱処理に
よりL記多毛罎子井戸構造が壊れて二種の化合物半導体
の平均組成となるような不純物を混入し、更に活性層或
は光導波路層うち多重量子井戸構造を必要とする部分に
はL記不純物の存在に拘らずその存在により熱処理の際
に多重量子井戸構造が壊れずに残るような別種の不純物
の集束イオンビームを打ち込み、熱処理してイオンビー
ムの打ち込まれた部分を残して上記活性層或は光導波路
層の組成を平均化するようにしたものである。(Means for Solving the Problems) In order to solve the above problems, the present invention uses a multi-quantum well structure in which two types of compound semiconductor ultrathin films having different compositions are alternately stacked in three or more layers as an active layer. Alternatively, in a method for manufacturing a conductor laser device in which the active layer or the right and left sides of the optical waveguide layer are made of semiconductors having an average composition of the layers, the above formula h' is applied to the conductor pole f. Impurities are mixed into the film so that the multi-quantum well structure is broken by heat treatment and the composition becomes the average composition of the two types of compound semiconductors, and furthermore, in the active layer or the optical waveguide layer, the part that requires the multi-quantum well structure is mixed with an impurity. In this method, a focused ion beam of a different kind of impurity is implanted so that the multi-quantum well structure remains intact during heat treatment regardless of the existence of the impurity listed in L, and the part where the ion beam was implanted is left after heat treatment. The composition of the active layer or optical waveguide layer is averaged.
ここで、活性層或は光導波路層は例えばGaAs層及び
GaAlAs層などMi成の異なる二種の化合物半導体
極i!膜を交互に三層以上積み重ねて構成した多重量子
井戸a造を構成する。Here, the active layer or the optical waveguide layer is composed of two types of compound semiconductor electrodes with different Mi compositions, such as a GaAs layer and a GaAlAs layer. A multi-quantum well structure is constructed by alternately stacking three or more layers of membranes.
また、化合物半導体極薄膜内に混入して熱処理により上
記多重量子井戸構造が壊れる不純物としては例えばSi
等を挙げることができる。In addition, examples of impurities that mix into the compound semiconductor ultrathin film and destroy the multi-quantum well structure due to heat treatment include Si.
etc. can be mentioned.
更に、上記不純物の存在に拘らずその存在により熱処理
の際に多重量子井戸構造が壊れずに残るよフな別種の不
純物としては例えばUe’4をあげることができる。Furthermore, Ue'4 can be cited as another type of impurity that allows the multi-quantum well structure to remain unbroken during heat treatment regardless of the presence of the above-mentioned impurities.
これ等別種の不純物集束イオンビームは埋込み構造の半
導体レーザを形成するために、活性層或は光導波路層の
左右領域には打ち込まれず、活性層或は光導波路層のう
ち多を端子井戸構造を残す必要がある部分に打ち込む0
例えば分布帰還型埋込み構造の半導体レーザとする場合
には、光導波路層の長手方向に沿ってストライプ状のパ
ターンが形成されるように打ち込む。These different types of impurity focused ion beams are not implanted into the left and right regions of the active layer or optical waveguide layer in order to form a semiconductor laser with a buried structure. Type in the part that needs to be left 0
For example, in the case of a semiconductor laser having a distributed feedback buried structure, the laser beam is implanted so that a striped pattern is formed along the longitudinal direction of the optical waveguide layer.
l二連のように不純物の集束イオノビームを活性層或は
光導波路層の所定個所に打ち込んだ後、例えばAs圧下
閉管法で600〜800℃程度の高温で数時間熱処理を
行なう。After a focused ion beam of impurities is injected into a predetermined location of the active layer or optical waveguide layer, heat treatment is performed at a high temperature of about 600 to 800° C. for several hours using, for example, the As pressure closed tube method.
(作用)
以1;のような熱処理を行なうと、Si等の不純物を混
入した化合物半導体極薄膜を桔層した多重量子井戸構造
は壊れ、極薄膜を構成する二種の組成の平均化された屈
折率の低い組成となるが、Be等のト純物集束イオノビ
ームを打ち込んである部分はSl等の不純物が存在して
いるに拘らず屈折率の高い多重量子井戸構造が壊れずに
残るため、中央に屈折率の高い多毛量子井戸構造の活性
層或は光導波路層を有し、且つその左右を屈折率の低い
)−記多東量子井戸構造の平均化された組成で囲んだ埋
込み構造の半導体レーザを簡易に作成することができる
。(Function) When the heat treatment described in 1. Although the composition has a low refractive index, the multiple quantum well structure with a high refractive index remains unbroken despite the presence of impurities such as Sl in the part where a focused ion beam of a pure substance such as Be is implanted. It has an active layer or optical waveguide layer with a multi-hair quantum well structure with a high refractive index in the center, and the left and right sides are surrounded by an averaged composition of the Kidahigashi quantum well structure. A semiconductor laser can be easily created.
また、この発明において活性層或は先導波層となる多毛
量子井戸構造領域とその平均組成構造領域とを選択的に
作成する際に、集束イオンビームを用いるため、活性層
或は先導波層の幅を14mmトド精度で制御できるので
、悶値電流が低く。In addition, in this invention, a focused ion beam is used to selectively create the multi-hair quantum well structure region and its average composition structure region, which will become the active layer or the leading wave layer. The width can be controlled with a precision of 14 mm, resulting in low agony current.
且つ光の横モードが制御されたレーザ装置の製作が可能
となる。Moreover, it becomes possible to manufacture a laser device in which the transverse mode of light is controlled.
同様にこの発明においては活性層領域或は先導波頭域中
に、屈折率の高い多重量子井戸構造と。Similarly, in the present invention, a multi-quantum well structure with a high refractive index is used in the active layer region or the leading wavefront region.
屈折率の低い平均組成構造とを高い精度で周期的に設け
ることができるため、縦モードの制御の良好な分布帰還
型のレーザ装置を簡単に作成することができる。Since the average composition structure with a low refractive index can be provided periodically with high precision, a distributed feedback laser device with good longitudinal mode control can be easily produced.
更に、この発明においては集束イオンビームを用いるこ
とで、化学エツチングが不要となり、多層に結晶を成長
させることができる。Further, in this invention, by using a focused ion beam, chemical etching is not necessary and crystals can be grown in multiple layers.
(実施例) 以下、この発明を図示の実施例に基づいて説明する。(Example) The present invention will be explained below based on illustrated embodiments.
第1図は分布帰還型半導体レーザ装この製造にこの発明
を適用した示すもので、まず分子線成長法でn−GaA
s基板結晶1 (Siドープ、キャリヤ濃度: 2 X
lot”Cm−〕)上にn−Ga1 xAIxAs層
2 (!=0.4、Siドープ、キャリヤ濃度: I
X 1018cm−’)を3鉢1エピタキシヤル成長さ
せる0次にアンドープGaAs−Ga1−xAlxAs
p子井戸活性層3(Ga As層二厚さ100 人
4層、Ga1−xAlxAs層:x−0,2、Hさ6
0人、3層)を1&長させる。この上に先導波層である
P−Gal−xAlxAS層4 (x−0,3、Be
ドープ、キャリヤ濃度: l X 1018cm−3
)を0.2ル1およびn−GaAs−Ga+−xAlx
As u子井戸層5(Si ドープ、キャリヤ濃度:
I X 1011018a、 GaAs層:80人1
0層、Ga1−xAlx As層:x=0.5,120
人 9層)を成長させる。Figure 1 shows the application of this invention to the manufacture of a distributed feedback semiconductor laser device.
s substrate crystal 1 (Si doped, carrier concentration: 2
lot"Cm-]) on the n-Ga1xAIxAs layer 2 (!=0.4, Si doped, carrier concentration: I
0-order undoped GaAs-Ga1-xAlxAs grown epitaxially in 3 pots (1018cm-')
P well active layer 3 (GaAs layer 2 thickness 100 layers 4 layers, Ga1-xAlxAs layer: x-0,2, H 6
0 people, 3 layers) to 1 & length. On top of this is a P-Gal-xAlxAS layer 4 (x-0,3, Be
Dope, carrier concentration: l x 1018 cm-3
) to 0.2l1 and n-GaAs-Ga+-xAlx
As u well layer 5 (Si doped, carrier concentration:
I X 1011018a, GaAs layer: 80 people 1
0 layer, Ga1-xAlx As layer: x=0.5,120
Develop people (9 layers).
ここで成長を市めて分7−線成長装置と超高真空で結合
されている集束イオンビーム打込み装置へ上記結晶を移
動し、Beイオンを、打込みドーズ星2 X 1014
cm?、加速電圧200Xeマ及びビーム径0.1 g
taの条件で先導波層の多重4子井戸層5の中央にスト
ライプ状のパターンで打ち込んだ。After the growth is started here, the crystal is transferred to a focused ion beam implanter which is connected to a 7-line growth device in an ultra-high vacuum, and Be ions are implanted at a dose of 2×1014.
cm? , acceleration voltage 200Xe and beam diameter 0.1 g
A striped pattern was implanted into the center of the multiple quadruple well layer 5 of the leading wave layer under the conditions of ta.
この場合、Be打込みストライブl+1は3鉢■、その
周期は2400人、周期構造のある部分の長さは300
p、tsであり、また周期構造のない部分の長さは1
00 AL履であった。In this case, the Be implanting stripe l+1 is 3 pots, the period is 2400 people, and the length of the part with the periodic structure is 300.
p, ts, and the length of the part without periodic structure is 1
00 AL shoes.
このようにして第1a図に示すような結晶を作成する。In this way, a crystal as shown in FIG. 1a is produced.
次に、この結晶を再び分子線JJ!l長装置へ移し、こ
のトにP−Gal−xAlxAs層6 (x=0.4.
Be ドープキャリヤ濃度: I X 1013cm
−3)をIgmJ&fQさせ、更にその上にP−GaA
s7 (Be ドープ、キャリヤ濃度+ l X10X
10l8’)をl gts J&長させる。Next, use this crystal again as a molecular beam JJ! Transfer to a l-long device, and add a P-Gal-xAlxAs layer 6 (x=0.4.
Be doped carrier concentration: I x 1013cm
-3) to IgmJ&fQ, and then P-GaA
s7 (Be doped, carrier concentration + l X10X
10l8') to l gts J& length.
このようにして作成した結晶をAs圧ド、閉管性で67
5℃で4時間熱処理する。この熱処理によりSiトープ
のn−GaAs−Ga+、xAlxAs Q子井戸層5
が壊れ、平均組成のGaAlAsとなるが、Beを打込
み領域5aは量子井戸構造が壊れずにそのまま残り、そ
の結果先導波層内にはその左右領域を禁制帯幅の広く、
且つ屈折率の低い平均組成のGaAlAs層で構成する
とともに、その中央には量子井戸構造の屈折率の大きな
領域と平均組成のGaAlAs領域の屈折率の小さな領
域とで構成された周期構造を有する分布帰還型埋込みへ
テロ構造の半導体が製造できた。The crystal thus created was heated to 67° C. with As pressure and closed tube.
Heat treatment at 5°C for 4 hours. Through this heat treatment, Si-topped n-GaAs-Ga+, xAlxAs Q well layer 5 is formed.
is broken and becomes GaAlAs with an average composition, but the quantum well structure in the Be implanted region 5a remains unbroken, and as a result, the left and right regions in the leading wave layer have a wide forbidden band width.
In addition, it is composed of a GaAlAs layer with a low average composition and a low refractive index, and has a periodic structure in the center consisting of a region with a high refractive index of a quantum well structure and a region with a low refractive index of a GaAlAs region with an average composition. A semiconductor with a feedback-type buried heterostructure has been manufactured.
したがって、この゛ト導体の両面に電極8.8を形成し
、長さ400μ履、 l’11300 JLm程度に切
り出すことにより第1b図に示すような半導体レーザ装
置が製造できる。Therefore, a semiconductor laser device as shown in FIG. 1b can be manufactured by forming electrodes 8.8 on both sides of this conductor and cutting it out to a length of about 400 μm and 1'11300 JLm.
なお、この実施例では埋込み構造の分布帰還型半導体レ
ーザ装置の製造法について説明したが、他の埋込み構造
の゛ト導体レーザ装置の製造法についてもこの発明が適
用できることは勿論である。In this embodiment, a method of manufacturing a distributed feedback semiconductor laser device with a buried structure has been described, but it goes without saying that the present invention can be applied to a method of manufacturing other conductor laser devices with a buried structure.
(発明の効果)
以上要するに、この発明においては埋込み構造のヤ導体
し−ザ装δ、特に埋込み構造の分7ii帰但型゛ト導体
レーザ装置を簡易に、往つ精度良く製造することができ
る。(Effects of the Invention) In summary, in the present invention, it is possible to easily manufacture a buried structure laser conductor laser device δ, especially a buried structure 7II recursive conductor laser device with high precision. .
第1図は、この発明による分布帰還型埋込みへテロ構造
半導体レーザ製造例を示すもので、第1a図は光導波層
へのBeイオン打込みパターンを示すJ視図、第1b図
は同Eの半導体レーデの完成状態を示す一部欠截した斜
視図、第2図は従来の分1i帰還型埋込み構造の半導体
レーザ装置を示す斜視図である。FIG. 1 shows an example of manufacturing a distributed feedback type buried heterostructure semiconductor laser according to the present invention. FIG. 1a is a J view showing the Be ion implantation pattern into the optical waveguide layer, and FIG. FIG. 2 is a partially cutaway perspective view showing a completed state of the semiconductor laser, and FIG. 2 is a perspective view showing a conventional semiconductor laser device with a 1i feedback type buried structure.
Claims (1)
上積み重ねて構成した多重量子井戸構造を活性層或は光
導波路層とし、且つ活性層或は光導波路層の左右を当該
層の平均組成の半導体で構成する半導体レーザ装置の製
造方法において、上記化合物半導体極薄膜内に熱処理に
より上記多重量子井戸構造が壊れて二種の化合物半導体
の平均組成となるような不純物を混入し、更に活性層或
は光導波路層うち多重量子井戸構造を必要とする部分に
は上記不純物の存在に拘らずその存在により熱処理の際
に多重量子井戸構造が壊れずに残るような別種の不純物
の集束イオンビームを打ち込み、熱処理してイオンビー
ムの打ち込まれた部分を残して上記活性層或は光導波路
層の組成を平均化するようにしたことを特徴とする半導
体レーザ装置の製造方法。The active layer or optical waveguide layer is a multi-quantum well structure constructed by alternately stacking three or more layers of two types of compound semiconductor ultrathin films with different compositions, and the left and right sides of the active layer or optical waveguide layer have the average composition of the layer. In the method for manufacturing a semiconductor laser device comprising a semiconductor, an impurity is mixed into the extremely thin compound semiconductor film so that the multi-quantum well structure is broken by heat treatment and the composition becomes an average composition of two types of compound semiconductors, and an active layer is further added. Alternatively, a focused ion beam of a different type of impurity is applied to a portion of the optical waveguide layer that requires a multiple quantum well structure, so that the multiple quantum well structure remains unbroken during heat treatment regardless of the presence of the impurities. A method for manufacturing a semiconductor laser device, characterized in that the composition of the active layer or optical waveguide layer is averaged by implanting and heat-treating the active layer or optical waveguide layer while leaving a portion into which the ion beam has been implanted.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21098885A JPS6272190A (en) | 1985-09-26 | 1985-09-26 | Manufacture of semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21098885A JPS6272190A (en) | 1985-09-26 | 1985-09-26 | Manufacture of semiconductor laser |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6272190A true JPS6272190A (en) | 1987-04-02 |
JPH0138391B2 JPH0138391B2 (en) | 1989-08-14 |
Family
ID=16598455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21098885A Granted JPS6272190A (en) | 1985-09-26 | 1985-09-26 | Manufacture of semiconductor laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6272190A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01246891A (en) * | 1988-03-28 | 1989-10-02 | Canon Inc | Distributed feedback type semiconductor laser |
JPH0684977U (en) * | 1993-02-01 | 1994-12-06 | 喜久夫 坂本 | Folding fan |
-
1985
- 1985-09-26 JP JP21098885A patent/JPS6272190A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01246891A (en) * | 1988-03-28 | 1989-10-02 | Canon Inc | Distributed feedback type semiconductor laser |
JPH0684977U (en) * | 1993-02-01 | 1994-12-06 | 喜久夫 坂本 | Folding fan |
Also Published As
Publication number | Publication date |
---|---|
JPH0138391B2 (en) | 1989-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02129986A (en) | Semiconductor laser device and manufacture thereof | |
JPS59129486A (en) | Semiconductor laser device and manufacture thereof | |
JPH07112091B2 (en) | Method of manufacturing embedded semiconductor laser | |
JPS6272190A (en) | Manufacture of semiconductor laser | |
JPH021386B2 (en) | ||
US5190891A (en) | Method for fabricating a semiconductor laser device in which the p-type clad layer and the active layer are grown at different rates | |
JPS6214488A (en) | Semiconductor laser and manufacture thereof | |
JPH0138389B2 (en) | ||
JPH01186688A (en) | Semiconductor laser device | |
JPS622719B2 (en) | ||
JP3422933B2 (en) | Method for manufacturing semiconductor device | |
JPS6237835B2 (en) | ||
JPS6124839B2 (en) | ||
JP2933163B2 (en) | Visible light emitting element | |
JPH0131318B2 (en) | ||
JPS59229889A (en) | Manufacture of semiconductor laser | |
JPS61184894A (en) | Semiconductor optical element | |
JPH01115186A (en) | Buried hetero type semiconductor laser element | |
JPS61125189A (en) | Manufacture of semiconductor light-emitting device | |
JPH0243788A (en) | Multi-wavelength integrated semiconductor laser device and manufacture thereof | |
JPH0370391B2 (en) | ||
JPS60258988A (en) | Manufacture of semiconductor laser device | |
JPS6265491A (en) | Semiconductor laser element | |
JPS63236384A (en) | Manufacture of semiconductor laser | |
JPS6226883A (en) | Semiconductor laser device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |