JPS6271883A - Manufacture of multichannel type radiation detector - Google Patents

Manufacture of multichannel type radiation detector

Info

Publication number
JPS6271883A
JPS6271883A JP60212935A JP21293585A JPS6271883A JP S6271883 A JPS6271883 A JP S6271883A JP 60212935 A JP60212935 A JP 60212935A JP 21293585 A JP21293585 A JP 21293585A JP S6271883 A JPS6271883 A JP S6271883A
Authority
JP
Japan
Prior art keywords
cut
detector
radiation detector
radiation
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60212935A
Other languages
Japanese (ja)
Inventor
Matsuki Baba
末喜 馬場
Yasuichi Oomori
大森 康以知
Hiroshi Tsutsui
博司 筒井
Osamu Yamamoto
理 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60212935A priority Critical patent/JPS6271883A/en
Publication of JPS6271883A publication Critical patent/JPS6271883A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To manufacture a multichannel detector which is highly stable and has no deterioration in sensitivity by an easy method by working a fixed area which is sensitive to radiation on a conductor substrate with a wire saw and then working the substrate to narrow groove cutting width by a slicing machine. CONSTITUTION:The area 1 of the semiconductor detector which is fixed on the conductive substrate 3, equipped with a counter electrode 2, and sensitive to radiation is cut with piano wires 6 and the wire saw of abrasive grains so that cut crushing is small. Then, the substrate 3 is cut at a high speed with high precision by using the slicing machine to groove cut width B narrower than said groove cut width A, and then a rod radiation detector is formed, and detectors are laminated in contact to form the multichannel radiation detector which is highly stable and has no deterioration in sensitivity by the easy method using a proper saw according to the working.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は空間的に独立した多チャンネル型放射線検出器
のjlJ造力注力法する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention focuses on a spatially independent multi-channel radiation detector method.

従来の技術 空間的に独立した多チャンネル型放射線検出器の形成方
法においては、特開昭58−93292号公報における
ように、固定板上に検出器となる半導体基板を接着した
後に、Co2レーザやYAGレーザ、イオンミリング装
置、機械的カッタ等を用いて切断分離する方法が提案さ
れている。第3図はその例である。固定板2上に検出器
1を固定し、分離用の加工溝4を前記方法により形成し
、多チャンネル型放射線検出器を形成する。
Conventional technology In the method of forming a spatially independent multi-channel radiation detector, as in Japanese Patent Laid-Open No. 58-93292, after bonding a semiconductor substrate that will become a detector on a fixed plate, a Co2 laser or a Methods of cutting and separating using a YAG laser, an ion milling device, a mechanical cutter, etc. have been proposed. Figure 3 is an example. The detector 1 is fixed on the fixing plate 2, and the processing grooves 4 for separation are formed by the method described above to form a multi-channel radiation detector.

発明が解決しよう°とする問題点 しかし、し・−ザ等の熱的な加工法によっては、熱的に
不安定な材料に対しては半導体有感層の熱劣化が生じや
すく、実用的な方法とは成し難い。
Problems that the invention attempts to solve However, thermal processing methods such as laser processing tend to cause thermal deterioration of the semiconductor sensitive layer for thermally unstable materials, making it impractical for practical use. It is difficult to know the method.

また、イオンミリング法の提案もなされているが、有感
層の分離溝深さが100μm以上の場合、本方法も実用
的なものとけ成り難い。
Further, an ion milling method has been proposed, but this method is unlikely to be practical if the separation groove depth of the sensitive layer is 100 μm or more.

現在、最も一般的な加工技術としては、機械的カッタに
よる方法である。特に加工変質層を6μm以下と小さく
出来るワイヤソーによる溝加工法は、ワイヤ径の大きさ
の間型を除くと最適の加工法である。ワイヤソーは80
μm〜2oOμmのピア、ノ線と1μ〜10μmの粒径
の砥粒とによって、試料を研磨しながら切断する方法で
あるため、切断溝幅は、ピア、ノ線径よシも大きくなる
。このため、1mビづチ以下の微少センサの加工におい
て、切断溝幅が感度低下の原因となる。
Currently, the most common processing technique is a method using a mechanical cutter. In particular, the groove machining method using a wire saw, which can reduce the process-affected layer to 6 μm or less, is the most suitable machining method except for intermediate molds with a large wire diameter. Wire saw is 80
Since this is a method of cutting the sample while polishing it using a pier wire of μm to 200 μm and abrasive grains of a grain size of 1 μm to 10 μm, the width of the cutting groove is larger than the diameter of the pier wire. For this reason, when processing minute sensors with a pitch of 1 m or less, the width of the cutting groove causes a decrease in sensitivity.

また、切断された個々の検出器を個々、独立に運べて層
ぐことも考えられるが、検出器寸法が100μm程度の
ものでは、精度よく配置することは不可能で奢る。
It is also conceivable to carry each cut detector individually and layer it in layers, but if the detector size is about 100 μm, it is impossible to arrange them with high precision.

このように、従来の方法においては、溝切幅が広いため
11Il11以下の微小な素子寸法を有する多チャンネ
ル型放射線検出器を形成する場合、溝切幅か不感領域と
なシ、単位長さ当りの検出器の数が増加するど著しく検
出感度が低下する。例えば、溝切幅が100μmの場合
でも、1+a当り5個の七/すを配置した場合の感度は
、溝切幅が理想的にゼロの場合と比較して、6o%低下
する。
In this way, in the conventional method, since the groove width is wide, when forming a multi-channel radiation detector with a minute element size of 11Il11 or less, the groove width or dead area is As the number of detectors increases, the detection sensitivity decreases significantly. For example, even when the groove width is 100 μm, the sensitivity when five 7/s are arranged per 1+a is reduced by 60% compared to the case where the groove width is ideally zero.

本発明はかかる点に鑑みてなされたもので、簡単な方法
で、高安定で感度低下の少ない多チャンネル型放射線検
出器を提供することを目的としている。
The present invention has been made in view of the above, and an object of the present invention is to provide a multi-channel radiation detector that is highly stable and exhibits little decrease in sensitivity using a simple method.

間顕点を解決するだめの手段 本発明は上記問題点を解決するため加工変質層が少ない
ワイヤソーにより、放射線に有感な領域の加工を行ない
、加工精度の必要な固定板領域の加工においては、高速
、高精度なスライシングマシンのような切断器により、
ワイヤソーの溝切幅より狭い幅で切断し、切断された棒
状のセンサを積層固着することを特徴とする。
In order to solve the above-mentioned problem, the present invention uses a wire saw with a small amount of damaged layer to process the area sensitive to radiation. , a high-speed, high-precision cutting machine like a slicing machine.
It is characterized in that it is cut with a width narrower than the groove cutting width of a wire saw, and the cut rod-shaped sensors are laminated and fixed.

作  用 本発明は上記した方法により、放射線に有感な半導体領
域を最大にし、かつ、多数個のセンサを配列することに
よる寸法誤差を最小にすることが出来る。更に、固定板
の幅が半導体領域の幅よりも、広くなるため、積層した
場合においでも、半導体の空間的独立性を確保できるた
め、きわめて、簡易で高精度の加工が可能となる。
Operation According to the method described above, the present invention can maximize the semiconductor area sensitive to radiation and minimize the dimensional error caused by arranging a large number of sensors. Furthermore, since the width of the fixing plate is wider than the width of the semiconductor region, spatial independence of the semiconductors can be ensured even when stacked, allowing extremely simple and highly accurate processing.

実施例 第1図は本発明の多チャンネル型放射検出器の一実施例
である。第1図において、1け放射線に有感な半導体検
出器、2は電極、3は半導体検出器1が固着された導体
基板であり、複数個が固着されで多チャンネル型放射線
検出器を形成している。以下、第2図に従って本実施例
を説明する。
Embodiment FIG. 1 shows an embodiment of the multi-channel radiation detector of the present invention. In Fig. 1, 1 is a semiconductor detector sensitive to radiation, 2 is an electrode, and 3 is a conductive substrate to which the semiconductor detector 1 is fixed, and a plurality of these are fixed to form a multi-channel radiation detector. ing. The present embodiment will be described below with reference to FIG.

第2図(a)において、前記半導体検出器1は、薄い平
板型の半導体ウェファであり、上・下面に対向電極2が
形成されている。半導体検出器1の材料としては、Si
、Go、CdTe、GaAs、Hql、等の放射線に有
感で、かつ高安定な材料が使われる。
In FIG. 2(a), the semiconductor detector 1 is a thin flat semiconductor wafer, and counter electrodes 2 are formed on the upper and lower surfaces. The material of the semiconductor detector 1 is Si.
, Go, CdTe, GaAs, Hql, and other radiation-sensitive and highly stable materials are used.

X線検出用としては、原子番号の大きな材料が、高感度
であり、Hg I 2 、 Cd T e等では、1鵡
以下の厚さでも60 KeVのX線を90%以上吸収す
る。
For X-ray detection, materials with large atomic numbers have high sensitivity, and Hg I 2 , Cd Te, etc. absorb 90% or more of 60 KeV X-rays even with a thickness of 1 mm or less.

対向電極2はAn、Au、Ptなど外部回路との接合性
の優れたものとする。導体基板3としては、Cu、Fe
、AJ!等の金属やコパール等の合金、更に低抵抗に処
理されたSi基板や各種のセラミックが使用される。半
導体検出器1と導体基板3の固着には、導電性接着剤や
低融点金属・・ンダあるいはAu−an等の共晶化合金
等が使われる。
The counter electrode 2 is made of a material having excellent bondability with an external circuit, such as An, Au, or Pt. As the conductor substrate 3, Cu, Fe
, AJ! metals such as copper, alloys such as copper, Si substrates treated to have low resistance, and various ceramics are used. For fixing the semiconductor detector 1 and the conductive substrate 3, a conductive adhesive, a low melting point metal, or a eutectic alloy such as Au-an is used.

次に切断方法について説明する。前記方法により作製さ
れた半導体検出器1は、まず、ワイヤソーによる加工を
行なう。ワイヤソーは移動するピアノ線に砥粒を流して
切断物のワイヤ接触部分だけ研磨していくことにより、
切断して1ハくため、ワイヤや荷重等の調整により、切
断部分の破砕層を極めて小さく出来る。このため、切断
部のエツチング等の処理をしなくとも、安定な表面を形
成することが可能である。勿論、特別な処理を行なう物
に対しても、本発明は適用される。第2図(b)におい
て、ワイヤ6はその線径と前記砥粒の粒径とによって決
まる溝切幅Aで溝を切っていく。ワイヤソーの切断速度
は、切断される材質により変化するため半導体検出器1
と導体基板3と接合点は、この切断速度の変化をモニタ
することにより確認される。ワイヤソーの切断寸法精度
は一般的に6μm・−20μm程度であるため、検出器
を多数個積層して配列する場合は、積算による寸法誤差
が犬きくなりすぎる。100μmの検出器を積層した場
合、最大20%の位置ズ7を生ずるだけでなり、魁工時
の寸法ズレ、平面性の均−等てよる反り等によし、組立
の困難性や、検出部のショートや破損を生ずることとな
る。そこで本実施例においては、導体基板3の切断には
、極薄円板ブレードのスライシングマシンによる切断を
行なった。第2図(a)、第2図(b)におけるスライ
シングマシンの切断溝は一般的に寸法精度および加工面
の平面性が良好であるばかりでなく、高速切断が可能で
ある。第2図(b>の溝切幅Bは、ワイヤソーの韓切幅
Aより小さくする。溝切幅Bの寸法精度は高く、6μm
以下とすることも容易であるため、スライシングマシン
のブレードの厚さをワイヤソーのワイヤ径以下にするこ
とにより、 (導体基板厚さ)〉(検出部厚さ) である棒状の検出器を正確に加工出来る。なお、第2図
において、4はワイヤソーによる切断部、sはスライシ
ングマシンによる切断部を示す。
Next, the cutting method will be explained. The semiconductor detector 1 manufactured by the method described above is first processed using a wire saw. A wire saw uses abrasive grains on a moving piano wire to polish only the part of the cut object that comes into contact with the wire.
Since it is cut into one square, the fracture layer at the cut portion can be made extremely small by adjusting the wire, load, etc. Therefore, it is possible to form a stable surface without etching or other treatment of the cut portion. Of course, the present invention is also applicable to objects that undergo special processing. In FIG. 2(b), the wire 6 cuts a groove with a groove cutting width A determined by the wire diameter and the grain size of the abrasive grains. The cutting speed of the wire saw varies depending on the material being cut, so the semiconductor detector 1
The connection point with the conductive substrate 3 is confirmed by monitoring the change in cutting speed. Since the cutting dimensional accuracy of a wire saw is generally about 6 .mu.m.-20 .mu.m, when a large number of detectors are stacked and arranged, the dimensional error due to integration becomes too large. When stacking 100 μm detectors, only a maximum of 20% of the positional difference 7 will occur, and this will result in dimensional deviations during assembly, warping due to uneven flatness, etc., resulting in difficulty in assembly and damage to the detection part. This may result in short circuit or damage. Therefore, in this embodiment, the conductive substrate 3 was cut using a slicing machine using an extremely thin disk blade. The cutting grooves of the slicing machines shown in FIGS. 2(a) and 2(b) generally not only have good dimensional accuracy and flatness of the machined surface, but also allow high-speed cutting. The groove cutting width B in Fig. 2 (b>) is smaller than the wire saw cutting width A.The dimensional accuracy of the groove cutting width B is high, 6 μm.
By making the blade thickness of the slicing machine less than or equal to the wire diameter of the wire saw, it is easy to make the rod-shaped detector as follows: (conductor substrate thickness) > (detection part thickness) Can be processed. In addition, in FIG. 2, 4 indicates a cutting section by a wire saw, and s indicates a cutting section by a slicing machine.

こうして得られた棒状の検出器を第2図(C)に示すよ
うに複数個積層し、導体基板3を固着する。
A plurality of rod-shaped detectors thus obtained are stacked as shown in FIG. 2(C), and the conductive substrate 3 is fixed.

固着には、導電性接着剤や低融点金属ノ・ンダ等が使わ
れる。本実施例では前記した導体基板3のみの固着を行
なったが、導体基板3の固着に当って、別途底板を使い
組立加工を容易にすることも可能である。また、この棒
状の検出器の積層に際しては、半導体検出器1の検査を
実施することによシ、不良部分の摘出が可能となる。さ
らに、一部分のみの不良なものにあっては、積層時に位
置を合わせ良好な部分のみを同じ場所に配列することに
より、切断後の良品とすることが出来る等、製造上にお
ける歩留率を大きく向上することが出来る。
Conductive adhesives or low-melting point metals are used for fixing. In this embodiment, only the conductor substrate 3 described above was fixed, but it is also possible to use a separate bottom plate to facilitate the assembly process when fixing the conductor substrate 3. Moreover, when stacking these rod-shaped detectors, by inspecting the semiconductor detector 1, it becomes possible to extract defective parts. Furthermore, if a product is defective in only one part, by aligning the parts during stacking and arranging only the good parts in the same place, it is possible to make a good product after cutting, greatly increasing the yield rate in manufacturing. It can be improved.

こうして積層された棒状の検出器のブロックは、積層方
向と平行な方向で切断される。ここでもやはり、検出部
の切断にはワイヤソーが使われる。
The rod-shaped detector blocks stacked in this manner are cut in a direction parallel to the stacking direction. Again, a wire saw is used to cut the detection part.

導体基板部の切断は、複数個の積層を行なわない場合は
、そのままのワイヤソーによる切断でも良い。二次元の
多チャンネル型検出器を作る場合は前記と同様知行なう
When a plurality of conductor substrates are not laminated, the conductor substrate portion may be cut using a wire saw. When making a two-dimensional multi-channel detector, the same procedure as described above is used.

発明の効果 以上述べてきたように、本発明によれば、空間的に独立
した極めて小型の放射線検出器の多チャンネル化を容易
ならしめるとともに、放射線入射面の不感部分を極小と
することが出来、従来に比して、感度の大幅な向上をは
かることが出来る。
Effects of the Invention As described above, according to the present invention, it is possible to easily create multiple channels in a spatially independent and extremely small radiation detector, and to minimize the insensitive portion of the radiation entrance surface. , it is possible to significantly improve sensitivity compared to the conventional method.

さらに、歩留が大幅に向上しただめ、コストの引下げも
可能となり、実用的にきわめて有用である。
Furthermore, since the yield is significantly improved, it is also possible to reduce costs, which is extremely useful from a practical standpoint.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における多チャンネル型放射
線検出器の斜視図、第2図(a)、 (b)、 (c)
は同多チャンオル型放射線検出器の加エエ稈を示す斜視
図、第3図¥i従来の多チャンネル型放射線検出器の斜
視図である。 1・・・・半導体検出器、2・・・−・−電極、3・・
・・・導体基板。 代理人の氏名 弁理士 中 尾 敏 男 は2′)1名
/−−−半N咽しイ4所ミ士5ミ)シL1≠へ、2−一
一電極 第 2 @ I 第2図 第3図       。
Fig. 1 is a perspective view of a multi-channel radiation detector according to an embodiment of the present invention, Fig. 2 (a), (b), (c)
3 is a perspective view showing a modified culm of the same multi-channel radiation detector, and FIG. 3 is a perspective view of a conventional multi-channel radiation detector. 1...Semiconductor detector, 2...--electrode, 3...
...Conductor board. Name of agent: Patent attorney Toshi Nakao 2') 1 person / --- Half-N throat A 4 positions M 5 M) L1 ≠ to 2-11 electrode 2 @ I Fig. 2 Figure 3.

Claims (2)

【特許請求の範囲】[Claims] (1)放射線に有感な半導体検出器を線状あるいは面状
に配列した多チャンネル型放射線検出器であって、導体
基板上に放射線に有感な半導体検出器を固着し、切断破
砕の少ない第一の切断器にて前記放射線に有感な半導体
検出器を切断し、その後に第一の切断器による切断溝幅
と同等あるいは狭い切断幅をもつ第二の切断器により導
体基板を切断し、次に第二の切断器により切断された各
々の導体基板を密着積層することを特徴とする多チャン
ネル型放射線検出器の製造方法。
(1) A multi-channel radiation detector in which radiation-sensitive semiconductor detectors are arranged in a linear or planar manner, in which the radiation-sensitive semiconductor detectors are fixed on a conductive substrate, resulting in less cutting and shattering. The radiation-sensitive semiconductor detector is cut with a first cutter, and then the conductive substrate is cut with a second cutter having a cutting width that is equal to or narrower than the width of the cutting groove made by the first cutter. . A method for manufacturing a multi-channel radiation detector, characterized in that the respective conductor substrates cut by a second cutter are then closely laminated.
(2)第一の切断器がワイヤソーであることを特徴とす
る特許請求の範囲第1項記載の多チャンネル型放射線検
出器の製造方法。 (2)第二の切断器がスライシングマシンであることを
特徴とする特許請求の範囲第1項記載の多チャンネル型
放射線検出器の製造方法。
(2) The method for manufacturing a multi-channel radiation detector according to claim 1, wherein the first cutter is a wire saw. (2) The method for manufacturing a multi-channel radiation detector according to claim 1, wherein the second cutter is a slicing machine.
JP60212935A 1985-09-26 1985-09-26 Manufacture of multichannel type radiation detector Pending JPS6271883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60212935A JPS6271883A (en) 1985-09-26 1985-09-26 Manufacture of multichannel type radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60212935A JPS6271883A (en) 1985-09-26 1985-09-26 Manufacture of multichannel type radiation detector

Publications (1)

Publication Number Publication Date
JPS6271883A true JPS6271883A (en) 1987-04-02

Family

ID=16630728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60212935A Pending JPS6271883A (en) 1985-09-26 1985-09-26 Manufacture of multichannel type radiation detector

Country Status (1)

Country Link
JP (1) JPS6271883A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008072136A (en) * 2007-10-24 2008-03-27 Nagoya Industrial Science Research Inst Method for manufacturing semiconductor radiation detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008072136A (en) * 2007-10-24 2008-03-27 Nagoya Industrial Science Research Inst Method for manufacturing semiconductor radiation detector

Similar Documents

Publication Publication Date Title
JP4751634B2 (en) Manufacturing method of semiconductor device
EP0538798A1 (en) Diamond heat sink and method of manufacturing the same
JPH04276645A (en) Dicing method of compound semiconductor wafer
US20020126941A1 (en) Thick wafer processing and resultant products
US20080029877A1 (en) Method for separating package of wlp
US4396967A (en) Multielement magnetic head assembly
JPS59186345A (en) Manufacture of semiconductor device
US3977071A (en) High depth-to-width ratio etching process for monocrystalline germanium semiconductor materials
JPS6271883A (en) Manufacture of multichannel type radiation detector
US8111480B2 (en) Electronic component and tape head having a closure
KR100253320B1 (en) Tem plane test piece and the manufacturing method for wafer test
JP2942989B1 (en) Method of manufacturing disc-shaped blade and multi-blade apparatus
JP3584539B2 (en) Cutting method of semiconductor wafer with glass
CN113634878A (en) Optical system and method for laser cutting multilayer materials
JPH06260671A (en) Semiconductor radiation detector and manufacture thereof
JP2665062B2 (en) Method for manufacturing semiconductor device
JPS62147387A (en) Multichannel type semiconductor radiation detector
JPH06302836A (en) Manufacture of semiconductor strain sensor
JP2001196332A (en) Method for cutting hard nonmetallic film with laser beam
Bacquian Diamond Saw Blade with Enhanced Dual Concentration
JP2001006141A (en) Manufacture of magnetic head
JP2798274B2 (en) Manufacturing method of chip-shaped parts
CN110877893A (en) Method for manufacturing physical quantity detection sensor, and physical quantity detection sensor
JPS63275155A (en) Manufacture of semiconductor device
JPH0552135B2 (en)