JPS6271172A - Power generation plant of phosphoric acid-type fuel cell - Google Patents

Power generation plant of phosphoric acid-type fuel cell

Info

Publication number
JPS6271172A
JPS6271172A JP60210705A JP21070585A JPS6271172A JP S6271172 A JPS6271172 A JP S6271172A JP 60210705 A JP60210705 A JP 60210705A JP 21070585 A JP21070585 A JP 21070585A JP S6271172 A JPS6271172 A JP S6271172A
Authority
JP
Japan
Prior art keywords
steam
reformer
turbine
sends
piping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60210705A
Other languages
Japanese (ja)
Inventor
Naoki Sakai
直樹 酒井
Masuo Oota
太田 増夫
Yoshito Tajima
田島 芳人
Masazumi Koshiro
小代 正純
Ichiro Koshijima
一郎 越島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Mitsubishi Electric Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Mitsubishi Electric Corp
Priority to JP60210705A priority Critical patent/JPS6271172A/en
Publication of JPS6271172A publication Critical patent/JPS6271172A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To improve efficiency of power generation, by introducing waste air, which includes steam, into a heat exchanger not through a steam separator, and then introducing it into a water-treatment device through the steam separator and the like. CONSTITUTION:Waste air including steam obtained from an air hole 6 in a cell is directly introduced, without it either steam-separated or cooled as it is under high temperature, into a heat exchanger 13, which is installed between a reformer 2 and a carbon monoxide transformer 3, so that it can be heat- exchanged for high-temperature reformed gas obtained from the reformer 2. Thereafter, it is supplied into a turbine 11 through an auxiliary combustion room 10 or a combustion part in the reformer 2. Hence, the waste air passing through a line 39 is increased in flow rate and raised in temperature. Therefore, the amount of high-temperature combustion gas produced by auxiliary combustion becomes reduced, and the auxiliary fuel can be saved together with efficiency of power generation improved.

Description

【発明の詳細な説明】 〔技術分野〕 本発明はリン酸型燃料電池発電プラントの改良に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to improvements in phosphoric acid fuel cell power plants.

〔従来技術〕[Prior art]

従来、リン酸型燃料電池発電プラントにおいては、2つ
の技術があり、その1つは、系内で発生するスチームの
全てを系内において有効利用し、それにより燃料電池に
おける発電効率自体を高める技術であり、他の1つは、
系内で発生するスチームの一部を、系外の加熱装置にお
ける熱源とじて有効利用する方法である。前者の場合、
発電効率自体は向上するという利点はあるものの、プラ
ント全体で得られる全エネルギー回収効率の点では劣る
という欠点があり、一方、後者の場合、前者の場合に比
して、全エネルギー回収効率の点ではすぐれているもの
の、逆に発電効率において劣るという欠点がある。従っ
て、後者の技術においては、その発電効率の向上が技術
課題となっている。
Conventionally, there are two technologies for phosphoric acid fuel cell power generation plants. One is a technology that effectively utilizes all the steam generated within the system, thereby increasing the power generation efficiency of the fuel cell itself. and the other one is
This is a method in which a part of the steam generated within the system is effectively used as a heat source in a heating device outside the system. In the former case,
Although it has the advantage of improving power generation efficiency itself, it has the disadvantage of being inferior in terms of total energy recovery efficiency obtained from the entire plant.On the other hand, in the latter case, the total energy recovery efficiency is lower than in the former case. However, it has the disadvantage of being inferior in power generation efficiency. Therefore, in the latter technology, improving the power generation efficiency is a technical issue.

第3図に、系内で発生するスチームの一部を系外の加熱
装置の熱源として有効利用する従来の発電プラントの代
表的な例についてのフローシートを示す。この従来のフ
ローでは、 ?li池冷却部8とスチームドラム9との
間に凝縮水(冷却水)をライン44及び42を介して循
環させ、スチームドラム9からのスチームの一部をライ
ン45を通して系外へ抜出し、加熱装置の熱源として有
効利用した後、ライン47を通って水処理装置4へ凝縮
水として循環させると共に、?1!池5の空気極6がら
のスチームを含む廃空気は、これを冷却器15に送った
後気水分雛器14に送りここでスチームを凝縮させ、得
られた凝縮水をライン40を通して水処理装置4に送り
、一方、スチームを含まない廃空気を改質器2と一酸化
炭素変成器3との間に配設した熱交換器13に導入した
後、補助燃焼器10に導入することを特徴としている。
FIG. 3 shows a flow sheet for a typical example of a conventional power generation plant that effectively utilizes a portion of the steam generated within the system as a heat source for a heating device outside the system. In this traditional flow? Condensed water (cooling water) is circulated between the Li pond cooling unit 8 and the steam drum 9 through lines 44 and 42, and a part of the steam from the steam drum 9 is extracted outside the system through the line 45, and the heating device After effectively using the water as a heat source, the water is circulated as condensed water through the line 47 to the water treatment device 4. 1! The waste air containing steam from the air electrode 6 of the pond 5 is sent to a cooler 15 and then to a steam/moisture extractor 14 where the steam is condensed, and the resulting condensed water is passed through a line 40 to a water treatment device. 4, and on the other hand, waste air not containing steam is introduced into a heat exchanger 13 disposed between the reformer 2 and the carbon monoxide shift converter 3, and then introduced into the auxiliary combustor 10. It is said that

このような従来法の場合、スチームドラムから得られた
スチームの一部を、系外へ抜出し、系外の加熱装置の熱
源として有効利用することから、第3図からもわかるよ
うに、空気極6を出たスチームを含む廃空気は、これを
直ぐに気水分離S14に導入し、廃空気に含まれるスチ
ームを凝縮して凝縮水とし、これを水処理装置4を介し
てスチームドラム9に導入している。従って、このよう
な系内で発生する熱エネルギーを、スチームとして回収
し、これを系外の加熱装置熱源として有効利用する従来
の発電プラントでは、その発電効率は必然的に低くなり
、第3図に示したプラントの場合。
In the case of this conventional method, a part of the steam obtained from the steam drum is extracted outside the system and effectively used as a heat source for a heating device outside the system. The steam-containing waste air that has come out of the waste air is immediately introduced into the steam/water separator S14, where the steam contained in the waste air is condensed into condensed water, which is then introduced into the steam drum 9 via the water treatment device 4. are doing. Therefore, in conventional power generation plants that recover the thermal energy generated within the system as steam and effectively use it as a heat source for heating equipment outside the system, the power generation efficiency is inevitably low, as shown in Figure 3. For the plant shown in .

その発電効率は約39.5%程度である。Its power generation efficiency is about 39.5%.

〔目   的〕〔the purpose〕

本発明は、第3図に示した如き従来の発電プラントにお
いて、そのg!電電率率高める手段を提供することを目
的とする。
The present invention can be applied to a conventional power plant as shown in FIG. The purpose is to provide a means to increase the electrical rate.

〔構  成〕〔composition〕

本発明によれば、燃料とスチームとを反応させて水素を
生成させる燃焼部付改質器と、該改質器からの生成ガス
に含まれる一酸化炭素を二酸化炭素に変換する一酸化炭
素変成器と、該改質器と一酸化炭素変成器との間に配設
された熱交換器と、水素と酸素とを反応させて電気エネ
ルギーを得るための空気極と燃料極と冷却器を有するリ
ン酸型燃料電池と、補助燃料を燃焼させる補助燃焼器と
According to the present invention, there is provided a reformer with a combustion section that reacts fuel and steam to generate hydrogen, and a carbon monoxide shift converter that converts carbon monoxide contained in the gas produced from the reformer into carbon dioxide. a heat exchanger disposed between the reformer and the carbon monoxide shift converter, an air electrode, a fuel electrode, and a cooler for reacting hydrogen and oxygen to obtain electrical energy. A phosphoric acid fuel cell and an auxiliary combustor that burns auxiliary fuel.

加熱ガスを膨張させて機械エネルギーを得るタービンと
、該タービンにより駆動される空気コンプレッサーと、
該空気コンプレッサーからの圧縮空気を該電池の空気極
、該改質器の燃焼部及び該補助燃焼器に送る配管と、該
電池の燃料極からの高燃料ガスを該改質器の燃焼部へ送
る配管と、 M!A!質器からの燃焼ガスを該補助燃焼
器に送る配管と。
a turbine that expands heated gas to obtain mechanical energy; an air compressor driven by the turbine;
Piping that sends compressed air from the air compressor to the air electrode of the battery, the combustion section of the reformer, and the auxiliary combustor, and the high-fuel gas from the fuel electrode of the battery to the combustion section of the reformer. The pipe to send and M! A! and piping for sending combustion gas from the combustion chamber to the auxiliary combustor.

該補助燃焼器からの燃焼ガスを該タービンに送る配管を
備えると共に、さらに、凝縮水を該電池の冷却器に送り
、該冷却8)4からのスチームを受取るスチームドラム
と、凝縮水を処理し、処理水を1該スチームドラムへ送
る水処理装置と、該スチームドラムから得られるスチー
ムの一部を系外の加熱装置に送る配管と、該スチームの
他の一部を改質器へ送る配管とを備えたリン酸型燃料電
池発電プラントであって、該電池の空気極から得られる
スチームを含む廃空気を、気水分子a器を介することな
く、該改質器と一酸化炭素変成器との間に配設された熱
交換器に送った後、該補助燃焼装置および改質器の燃焼
部へ送る配管と、該タービンからの排出ガス中に含まれ
るスチームを凝縮分離させる冷却器および気水分離器と
、該タービンからの排出ガスを該冷却器を介して該気水
分離器へ送る配管と、該気水分離器からの凝縮水を該水
処理装置へ送る配管を備えたことを特徴とするリン酸型
燃料電池発電プラントが提供される。
It is equipped with piping for sending combustion gas from the auxiliary combustor to the turbine, and further includes a steam drum for sending condensed water to the cooler of the battery and receiving steam from the cooling 8) 4, and for treating the condensed water. , a water treatment device that sends treated water to the steam drum, a pipe that sends a part of the steam obtained from the steam drum to a heating device outside the system, and a pipe that sends another part of the steam to the reformer. A phosphoric acid fuel cell power generation plant comprising: the reformer and the carbon monoxide shift converter, in which waste air containing steam obtained from the air electrode of the cell is transferred to the reformer and the carbon monoxide shift converter without passing through the steam/water molecule a device; and a cooler for condensing and separating the steam contained in the exhaust gas from the turbine; A steam separator, piping that sends exhaust gas from the turbine to the steam separator via the cooler, and piping that sends condensed water from the steam water separator to the water treatment device. A phosphoric acid fuel cell power generation plant is provided.

次に、本発明を図面により詳述する。なお、第1図〜第
3図において示した符号において、同一符号は同一の意
味を有する。
Next, the present invention will be explained in detail with reference to the drawings. In addition, in the reference numerals shown in FIGS. 1 to 3, the same reference numerals have the same meanings.

第1図において、燃料(天然ガスやナフサ等の炭化水素
)は、ライン(配管)20を通り、−酸化炭素変成器3
から返還される燃料ガス(水素含有ガス)と共に、脱硫
91に導入される。脱硫器1からの生成物は、スチーム
ドラム9からライン46を通って返還されるスチームと
共に、燃焼部付改質器2に送られる。この改質器2にお
いては次の反応が起り、水素が生成される。
In FIG. 1, fuel (hydrocarbon such as natural gas or naphtha) passes through a line (piping) 20 to a carbon oxide shift converter 3.
It is introduced into the desulfurizer 91 together with the fuel gas (hydrogen-containing gas) returned from the The product from the desulfurizer 1 is sent to the combustion section reformer 2 along with steam returned from the steam drum 9 through line 46. In this reformer 2, the following reaction occurs and hydrogen is produced.

CnHm+ nH2O→ (n+1/2m)I12+nC○        (1
)ncO+nH2O−Snil 2+nCO7(II)
この主反応(1)は高温吸熱反応であり1反応に必要な
熱は、改質器に設けた燃焼部における燃料の燃焼によっ
て供給される。この場合、燃料としては、電池5の燃料
極7からの高燃料ガスが用いられ、また燃焼に必要な空
気は、電池5の空気極6からの廃空気と、空気コンプレ
ッサー12からの空気とが用いられる。
CnHm+ nH2O→ (n+1/2m)I12+nC○ (1
)ncO+nH2O-Snil 2+nCO7(II)
This main reaction (1) is a high-temperature endothermic reaction, and the heat required for one reaction is supplied by combustion of fuel in a combustion section provided in the reformer. In this case, high fuel gas from the fuel electrode 7 of the battery 5 is used as the fuel, and the air necessary for combustion is made up of waste air from the air electrode 6 of the battery 5 and air from the air compressor 12. used.

改質器2からの改質ガスはライン22、熱交換81(1
3及びライン23を通って一酸化炭素変成器3に送られ
、ここで改質ガス中に含まれる一酸化炭素が二酸化炭素
と水素とに変換される。−酸化炭素変成器3からのガス
の一部はうイン25を通って脱硫器Iに供給され、残部
はライン26を通り、電池5に対する燃料ガスとしてそ
の燃料極7に送られる。
The reformed gas from the reformer 2 is passed through the line 22 and the heat exchanger 81 (1
3 and line 23 to the carbon monoxide shift converter 3, where the carbon monoxide contained in the reformed gas is converted into carbon dioxide and hydrogen. - A part of the gas from the carbon oxide shift converter 3 is fed through the inlet 25 to the desulfurizer I, and the remainder is sent through line 26 to its anode 7 as fuel gas for the cell 5.

燃料11池5は、電解質としてリン酸を用いる加圧型の
もの(リン酸型燃料電池)であり、この電池においては
、前記のようにして供給された燃料ガスに含まれる水素
と、空気コンプレッサー12からライン31及び34を
通ってその空気極6に供給される空気に含まれる酸素と
が反応して、水が生成され、その際の反応エネルギーが
電気エネルギーとして取出される。
The fuel 11 tank 5 is a pressurized type (phosphoric acid fuel cell) that uses phosphoric acid as an electrolyte, and in this cell, hydrogen contained in the fuel gas supplied as described above and the air compressor 12 Water is produced by reacting with oxygen contained in the air supplied to the air electrode 6 through lines 31 and 34, and the reaction energy at that time is extracted as electrical energy.

燃料極7からの高燃料ガスはライン35を通り。High fuel gas from fuel electrode 7 passes through line 35.

改質器2の燃焼部へ送られ、一方、空気極6からの廃空
気は前記水素と酸素で生じたスチームを含むものである
が、このものは、%水分離されることな(、改質器2と
一酸化炭素変成器3との間に配設された熱交換器13に
送られた後、ライン39を通って補助燃焼器lOとライ
ン49を通って改質器2の燃境部にそれぞれ送られる。
The waste air from the air electrode 6 is sent to the combustion section of the reformer 2, while the waste air from the air electrode 6 contains the steam generated from the hydrogen and oxygen, which is not subjected to water separation (in the reformer). After being sent to the heat exchanger 13 disposed between the carbon monoxide shift converter 3 and the carbon monoxide shift converter 3, it passes through the line 39 to the auxiliary combustor lO and the line 49 to the combustion boundary section of the reformer 2. each will be sent.

補助燃焼器10においては、前記のようにして廃空気が
供給されると共に、補助燃料がライン27を通って供給
され、さらに改質器2の燃焼部からの燃焼ガスがライン
36を通って供給され、また空気コンプレッサー12か
らの空気の一部がライン32を通って供給され、ここで
補助燃料の燃焼が行われる。補助燃焼器10から得られ
る加熱ガスは、タービン11に供給され、ここで膨張さ
れるが、その際のガスの膨張エネルギーによりタービン
は回転され、このタービンの回転力により、空気コンプ
レッサー12が駆動される。空気コンプレッサー12で
は、ライン30を通って空気が吸引され、圧縮空気がラ
イン31に押出される。
In the auxiliary combustor 10, waste air is supplied as described above, auxiliary fuel is supplied through the line 27, and combustion gas from the combustion section of the reformer 2 is further supplied through the line 36. A portion of the air from the air compressor 12 is also supplied through line 32 where combustion of the auxiliary fuel takes place. The heated gas obtained from the auxiliary combustor 10 is supplied to the turbine 11 and expanded there. The turbine is rotated by the expansion energy of the gas at this time, and the air compressor 12 is driven by the rotational force of this turbine. Ru. Air compressor 12 draws air through line 30 and forces compressed air into line 31.

タービン11からの排出ガスは、ライン29及び51を
通り、さらに冷却器15を通った後、ライン52を通り
、気水分離器14に送られる。気水分離器14では、タ
ービン排出ガスに含まれるスチームが凝縮水として分離
され、この凝縮水はライン40を通って水処理装置4に
送られ、一方、ガス成分はライン50を通って排出され
る。水処理装置4で清浄化処理された凝縮水はライン4
1を通ってスチームドラム9に送られる。
Exhaust gas from the turbine 11 passes through lines 29 and 51 and further passes through a cooler 15 before passing through line 52 and being sent to a steam separator 14 . In the steam-water separator 14, steam contained in the turbine exhaust gas is separated as condensed water, which is sent to the water treatment device 4 through a line 40, while gas components are discharged through a line 50. Ru. The condensed water that has been purified by the water treatment device 4 is transferred to the line 4.
1 and sent to the steam drum 9.

スチームドラム9に送られた凝縮水は、ライン44を通
って電池5の冷却器8に送られ、電池を所定温度に冷却
すると共に、それ自体はスチームに変換され、ライン4
2を通ってスチームドラム9に循環される。メチ−11
ドラム9におけるスチームは、ライン43を通って抜出
され、その一部はライン45により糸外へ抜出され、系
外に配設された加熱装置の熱源として利用され、その利
用により生じた凝縮水は、ライン47を通って水処理装
置4に循環される。また、ライン43により抜出された
スチームの他の一部は、ライン46を通って改質器2に
送られる。
The condensed water sent to the steam drum 9 is sent to the cooler 8 of the battery 5 through a line 44 to cool the battery to a predetermined temperature, and is also converted to steam.
2 and circulated to the steam drum 9. Mechi-11
The steam in the drum 9 is extracted through a line 43, and a part of it is extracted to the outside of the yarn through a line 45 and is used as a heat source for a heating device installed outside the system, and the condensation generated by its use is Water is circulated to the water treatment device 4 through line 47. Further, another part of the steam extracted through line 43 is sent to reformer 2 through line 46.

本発明においては、補助燃焼器10の使用は必ずしも必
要とされず、それを省略することができる。
In the present invention, the use of the auxiliary combustor 10 is not necessarily required and can be omitted.

即ち、第2図に示すように、熱交換器13からのスチー
ムを含む廃空気をライン39から改質器の燃焼部に直接
導入すると共に、その燃焼部からの燃焼ガスをライン2
8を通してタービン11に直接導入する。この場合には
、第1図において、ライン27を通って補助燃焼器10
を供給する補助燃料に相当する分の燃料をライン20を
通る燃料に対する増加分として加える。
That is, as shown in FIG. 2, waste air containing steam from the heat exchanger 13 is directly introduced into the combustion section of the reformer through line 39, and combustion gas from the combustion section is introduced into line 2.
8 directly into the turbine 11. In this case, in FIG.
An amount of fuel corresponding to the auxiliary fuel supplied is added as an increment to the fuel passing through line 20.

〔効  果〕〔effect〕

本発明においては、前記したように、?!!池の空気極
6から得られるスチームを含む廃空気は、気水分離され
ることなく、また冷却されずに高温のまま、改質器2と
一酸化炭素変成器3との間に配設した熱交換器13に直
接導入して、改質器2から得られる高温の改質ガスと熱
交換させた後、補助燃焼器IO又は改質器2の燃焼部を
介してタービン11に供給する。従って、ライン39を
通る廃空気は。
In the present invention, as described above, ? ! ! The waste air containing steam obtained from the air electrode 6 of the pond was placed between the reformer 2 and the carbon monoxide shift converter 3 without being separated into water and water, and without being cooled and kept at a high temperature. The gas is directly introduced into the heat exchanger 13 to exchange heat with the high temperature reformed gas obtained from the reformer 2, and then supplied to the turbine 11 via the auxiliary combustor IO or the combustion section of the reformer 2. Therefore, the waste air passing through line 39.

第3図に示した従来の場合よりも、その流量が増加され
ている上に、温度も高い。それ故、第3図に示した従来
の場合よりも、補助燃焼により生成させる高温燃焼ガス
量は少なくてすみ、補助燃料が節約され、その結果、消
費燃料あたりの発電効率の向上が達成される。
The flow rate is increased and the temperature is also higher than in the conventional case shown in FIG. Therefore, compared to the conventional case shown in Figure 3, the amount of high-temperature combustion gas generated by auxiliary combustion is smaller, auxiliary fuel is saved, and as a result, the power generation efficiency per unit of consumed fuel is improved. .

また、本発明においては、タービン11からの高温排出
ガスを低水分#i器14で処理することから、本発明の
場合には、燃料の燃焼により生成した水蒸気(スチーム
)も凝縮水として回収される利点がある。
Furthermore, in the present invention, since the high-temperature exhaust gas from the turbine 11 is treated in the low moisture #i unit 14, in the case of the present invention, steam generated by combustion of fuel is also recovered as condensed water. It has the advantage of

本発明の発電プラントにおいて、その使用した燃料あた
りの全エネルギー回収率、即ち電池による電気エネルギ
ーとして及び系外の加熱装置へ送るスチームの熱エネル
ギーとして回収される合計エネルギーは、約74%であ
り、また電気エネルギーとして回収される割合(発電効
率)は約42.1%である。これに対し、従来の場合に
は、電池による電気エネルギーとスチームの熱エネルギ
ーとして回収される合計エネルギーは約69%であり、
またその電気エネルギーとして回収される割合(発電効
率)は約39.5%である。従って、本発明によれば、
系内で発生するスチームの一部を系外において有効利用
するリン酸型燃料電池発電プラントにおいて、従来困難
とされていた発電効率を簡単な手段により向上させるこ
とができ、その産業的意義は大きい。
In the power generation plant of the present invention, the total energy recovery rate per fuel used, that is, the total energy recovered as electrical energy by the battery and thermal energy of the steam sent to the heating device outside the system, is about 74%, Furthermore, the rate of recovery as electrical energy (power generation efficiency) is approximately 42.1%. In contrast, in the conventional case, the total energy recovered as electrical energy from batteries and thermal energy from steam is about 69%.
Furthermore, the rate at which the electricity is recovered as electrical energy (power generation efficiency) is approximately 39.5%. Therefore, according to the invention:
In a phosphoric acid fuel cell power generation plant that effectively utilizes a portion of the steam generated within the system outside the system, the power generation efficiency, which was previously considered difficult, can be improved by simple means, and this has great industrial significance. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第3図はリン酸型燃料電池発電プラントのフ
ローシートを示し、第1図は本発明及び第3図は従来の
例を示す。第2図は、第1図の1部変更図を示す。 1・・・脱硫器、2・・・改質器、3・・・−酸化炭素
変成器、4・・・水処理装置、5・・・リン酸型燃料電
池、6・・・空気極、7・・・燃料極、8・・・冷却器
、9・・・スチームドラム、]0・・・補助燃焼器、1
1・・・タービン、12・・・空気コンプレッサー、1
3・・・熱交換器、14・・・気水分離器。 出願人代理人 弁理士 池 浦 敏 明渠   1  
1 and 3 show flow sheets of a phosphoric acid fuel cell power generation plant, with FIG. 1 showing the present invention and FIG. 3 showing a conventional example. FIG. 2 shows a partially modified view of FIG. 1. DESCRIPTION OF SYMBOLS 1... Desulfurizer, 2... Reformer, 3...-carbon oxide shift converter, 4... Water treatment device, 5... Phosphoric acid fuel cell, 6... Air electrode, 7...Fuel electrode, 8...Cooler, 9...Steam drum, ]0...Auxiliary combustor, 1
1...Turbine, 12...Air compressor, 1
3... Heat exchanger, 14... Steam-water separator. Applicant's agent Patent attorney Satoshi Ikeura Akiyuki 1
figure

Claims (2)

【特許請求の範囲】[Claims] (1)燃料とスチームとを反応させて水素を生成させる
燃焼部付改質器と、該改質器からの生成ガスに含まれる
一酸化炭素を二酸化炭素に変換する一酸化炭素変成器と
、該改質器と一酸化炭素変成器との間に配設された熱交
換器と、水素と酸素とを反応させて電気エネルギーを得
るための空気極と燃料極と冷却器を有するリン酸型燃料
電池と、補助燃料を燃焼させる補助燃焼器と、加熱ガス
を膨張させて機械エネルギーを得るタービンと、該ター
ビンにより駆動される空気コンプレッサーと、該空気コ
ンプレッサーからの圧縮空気を該電池の空気極、該改質
器の燃焼部及び該補助燃焼器に送る配管と、該電池の燃
料極からの廃燃料ガスを該改質器の燃焼部へ送る配管と
、該改質器からの燃焼ガスを該補助燃焼器に送る配管と
、該補助燃焼器からの燃焼ガスを該タービンに送る配管
を備えると共に、さらに、凝縮水を該電池の冷却器に送
り、該冷却器からのスチームを受取るスチームドラムと
、凝縮水を処理し、処理水を該スチームドラムへ送る水
処理装置と、該スチームドラムから得られるスチームの
一部を系外の加熱装置に送る配管と、該スチームの他の
一部を改質器へ送る配管とを備えたリン酸型燃料電池発
電プラントであって、該電池の空気極から得られるスチ
ームを含む廃空気を、気水分離器を介することなく、該
改質器と一酸化炭素変成器との間に配設された熱交換器
に送った後、該補助燃焼装置および該改質器の燃焼部へ
送る配管と、該タービンからの排出ガス中に含まれるス
チームを凝縮分離させる冷却器および気水分離器と、該
タービンからの排出ガスを該冷却器を介して該気水分離
器へ送る配管と、該気水分離器からの凝縮水を該水処理
装置へ送る配管を備えたことを特徴とするリン酸型燃料
電池発電プラント。
(1) A reformer with a combustion section that generates hydrogen by reacting fuel and steam, and a carbon monoxide shift converter that converts carbon monoxide contained in the gas produced from the reformer into carbon dioxide; A phosphoric acid type having a heat exchanger disposed between the reformer and the carbon monoxide shift converter, an air electrode, a fuel electrode, and a cooler for reacting hydrogen and oxygen to obtain electrical energy. A fuel cell, an auxiliary combustor that burns auxiliary fuel, a turbine that expands heated gas to obtain mechanical energy, an air compressor that is driven by the turbine, and compressed air from the air compressor that connects the compressed air to the air electrode of the battery. , piping to send waste fuel gas from the fuel electrode of the cell to the combustion part of the reformer, and piping to send the combustion gas from the reformer to the combustion part of the reformer and the auxiliary combustor. A steam drum that includes piping to send to the auxiliary combustor and piping to send combustion gas from the auxiliary combustor to the turbine, and further sends condensed water to the cooler of the battery and receives steam from the cooler. , a water treatment device that processes condensed water and sends the treated water to the steam drum, piping that sends a part of the steam obtained from the steam drum to a heating device outside the system, and a pipe that sends the other part of the steam to a heating device outside the system. A phosphoric acid fuel cell power generation plant equipped with piping to send to a reformer, wherein waste air containing steam obtained from the air electrode of the cell is connected to the reformer without passing through a steam/water separator. The steam contained in the exhaust gas from the turbine is sent to the heat exchanger disposed between the carbon monoxide shift converter, and then to the combustion section of the auxiliary combustion device and the reformer. A cooler and a steam water separator for condensation and separation, piping that sends exhaust gas from the turbine to the steam water separator via the cooler, and condensed water from the steam water separator to the water treatment device. A phosphoric acid fuel cell power generation plant characterized by being equipped with pipes for feeding.
(2)燃料とスチームとを反応させて水素を生成させる
燃焼部付改質器と、該改質器からの生成ガスに含まれる
一酸化炭素を二酸化炭素に変換する一酸化炭素変成器と
、該改質器と一酸化炭素変成器との間に配設された熱交
換器と、水素と酸素を反応させて電気エネルギーを得る
ための空気極と燃料極と冷却器を有するリン酸型燃料電
池と、加熱ガスを膨張させて機械エネルギーを得るター
ビンと、該タービンにより駆動される空気コンプレッサ
ーと、該空気コンプレッサーからの圧縮空気を該電池の
空気極及び該改質器の燃焼部に送る配管と、該電池の燃
料極からの廃燃料ガスを該改質器の燃焼部へ送る配管と
、該改質器からの燃焼ガスを該タービンに送る配管を備
えると共に、さらに、凝縮水を該電池の冷却器に送り、
該冷却部からのスチームを受取るスチームドラムと、凝
縮水を処理し、処理水を該スチームドラムへ送る水処理
装置と、該スチームドラムから得られるスチームの一部
を系外の加熱装置に送る配管と、該スチームの他の一部
を改質器へ送る配管とを備えたリン酸燃料型電池発電プ
ラントであって、該電池の空気極から得られるスチーム
を含む廃空気を、気水分離器を介することなく、該改質
器と一酸化炭素変成器との間に配設された熱交換器に送
った後、該改質器の燃焼部へ送る配管と、該タービンか
らの排出ガス中に含まれるスチームを凝縮分離させる冷
却器および気水分離器と、該タービンからの排出ガスを
該冷却器を介して該気水分離器へ送る配管と、該気水分
離器からの凝縮水を該水処理装置へ送る配管を備えたこ
とを特徴とするリン酸型燃料電池発電プラント。
(2) a reformer with a combustion section that reacts fuel and steam to generate hydrogen; and a carbon monoxide shift converter that converts carbon monoxide contained in the gas produced from the reformer into carbon dioxide; A phosphoric acid fuel having a heat exchanger disposed between the reformer and a carbon monoxide shift converter, an air electrode, a fuel electrode, and a cooler for reacting hydrogen and oxygen to obtain electrical energy. A battery, a turbine that expands heated gas to obtain mechanical energy, an air compressor driven by the turbine, and piping that sends compressed air from the air compressor to the air electrode of the battery and the combustion section of the reformer. , a pipe that sends waste fuel gas from the fuel electrode of the battery to the combustion section of the reformer, and a pipe that sends the combustion gas from the reformer to the turbine; send it to the cooler of
A steam drum that receives steam from the cooling section, a water treatment device that processes condensed water and sends the treated water to the steam drum, and piping that sends a portion of the steam obtained from the steam drum to a heating device outside the system. A phosphoric acid fuel cell power generation plant comprising: a phosphoric acid fuel cell power generation plant having a pipe for sending another part of the steam to a reformer; The exhaust gas from the turbine is sent to the heat exchanger installed between the reformer and the carbon monoxide shift converter, and then to the combustion section of the reformer. a cooler and a steam water separator that condense and separate the steam contained in the turbine, piping that sends the exhaust gas from the turbine to the steam water separator via the cooler, and a pipe that sends condensed water from the steam water separator A phosphoric acid fuel cell power generation plant characterized by being equipped with piping for sending the water to the water treatment device.
JP60210705A 1985-09-24 1985-09-24 Power generation plant of phosphoric acid-type fuel cell Pending JPS6271172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60210705A JPS6271172A (en) 1985-09-24 1985-09-24 Power generation plant of phosphoric acid-type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60210705A JPS6271172A (en) 1985-09-24 1985-09-24 Power generation plant of phosphoric acid-type fuel cell

Publications (1)

Publication Number Publication Date
JPS6271172A true JPS6271172A (en) 1987-04-01

Family

ID=16593733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60210705A Pending JPS6271172A (en) 1985-09-24 1985-09-24 Power generation plant of phosphoric acid-type fuel cell

Country Status (1)

Country Link
JP (1) JPS6271172A (en)

Similar Documents

Publication Publication Date Title
RU2119700C1 (en) Method and plant for cogeneration of electrical and mechanical energy
EP2127005B1 (en) Integrated fuel cell and heat engine hybrid system for high efficiency power generation
JP2572905B2 (en) Internal reforming molten carbonate fuel cell power generator
JP3092670B2 (en) Method of generating electricity in fuel cell and fuel cell
PL164615B1 (en) Method of and apparatus for generating electric power
JPS6139459A (en) Fuel cell power generating plant
EP3221916B1 (en) Fuel cell system with waste heat recovery for production of high pressure steam
JP2018500726A5 (en)
JPH1126004A (en) Power generating system
JPS6257072B2 (en)
JP2000200617A (en) Fuel-cell composite power generating plant system
JPS6185773A (en) Composite fuel battery power generation facility
CA2065385C (en) Process and installation for generating electrical energy
JPH02168570A (en) Method of generating
JPH04169073A (en) Exhaust heat recovery method and device for fuel cell
JPS6271172A (en) Power generation plant of phosphoric acid-type fuel cell
JP3257604B2 (en) Fuel cell generator
JP3286795B2 (en) Molten carbonate fuel cell power generator
JPS6257073B2 (en)
JPS62150662A (en) Normal pressure type fuel cell power generation plant
JPS6280970A (en) Power generating method of fuel cell
JP2888604B2 (en) Fuel cell power plant
JPS63141269A (en) Fuel cell generating system
JPS6362160A (en) Power generation by recovering converter gas energy
JPS62119872A (en) Waste heat recovery device for combined power generation plant