JPS6270753A - Method for inspecting pulse body current - Google Patents

Method for inspecting pulse body current

Info

Publication number
JPS6270753A
JPS6270753A JP60211600A JP21160085A JPS6270753A JP S6270753 A JPS6270753 A JP S6270753A JP 60211600 A JP60211600 A JP 60211600A JP 21160085 A JP21160085 A JP 21160085A JP S6270753 A JPS6270753 A JP S6270753A
Authority
JP
Japan
Prior art keywords
output
memory
voltage
coil
detection coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60211600A
Other languages
Japanese (ja)
Inventor
Takahide Sakamoto
隆秀 坂本
Noriyuki Matsubara
紀之 松原
Shoji Hayashibe
林部 昭治
Fumio Iida
文夫 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HARA DENSHI SOKKI KK
Nippon Steel Corp
Eddio Corp
Original Assignee
HARA DENSHI SOKKI KK
Sumitomo Metal Industries Ltd
Eddio Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HARA DENSHI SOKKI KK, Sumitomo Metal Industries Ltd, Eddio Corp filed Critical HARA DENSHI SOKKI KK
Priority to JP60211600A priority Critical patent/JPS6270753A/en
Publication of JPS6270753A publication Critical patent/JPS6270753A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To obtain good quality detection output reduced in wave-form distortion, by storing the output of a detection coil at a flawless time and taking the differential voltage between memory output and the output of a detection coil at the time of actual inspection to amplify the same. CONSTITUTION:In a flawless state, switches 42, 44 are closed to an '1' side and a memory order switch 40 is closed. Subsequently, the differential output of detection coils 14, 16 is applied to an A/D converter 26 which in turn samples differential voltage at every clock input of 1,024kHz to write the same in a memory 28. After the storing of the differential voltage in the memory 28 was finished, the switches 42, 44 are changed over to a '2' side to perform the inspection of an actual object to be inspected. The differential voltage of the coils 14, 16 is applied to one input terminal to a differential amplifier 38 and the output voltage of a D/C converteer 30 read from the memory 28 is applied to the other input terminal of the amplifier 38 to calculates the difference between both of them. This difference is almost zero if the object 10 to be inspected is flawless and, if there is a flaw, comes to differential voltage determined by said flaw and S/N is enhanced to a large extent and good amplification can be performed and good quality detection output free from wave-form distortion is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、金属材料を非破壊、非接触にて連続的に検査
する渦流検査法、特にパルス磁場を被検体に作用させ、
このとき被検体に流れる渦電流により生じる検出コイル
電圧を処理して被検体の性状を検査するパルス渦流検査
法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an eddy current inspection method for continuously inspecting metal materials in a non-destructive and non-contact manner, in particular, a pulsed magnetic field is applied to an object to be inspected.
The present invention relates to a pulse eddy current inspection method that processes the detection coil voltage generated by the eddy current flowing through the test object to inspect the properties of the test object.

〔従来の技術〕[Conventional technology]

金属体に作用する磁界を変化させると該金属体に渦流が
発生し、該渦流の分布状態は金属体の性状により変るの
で該分布状態を検出することにより金属体の探傷などを
行なうことができる。磁界は励磁コイルに電流を流して
発生させるが、該電流としては交流(連続波)を用いる
ことが多い。
When the magnetic field acting on a metal body is changed, eddy currents are generated in the metal body, and the distribution state of the eddy currents changes depending on the properties of the metal body, so by detecting the distribution state, it is possible to perform flaw detection on the metal body. . A magnetic field is generated by passing a current through an excitation coil, and an alternating current (continuous wave) is often used as the current.

パルス電流を用いることもあり、このパルス波を用いる
渦流検査は連続波を用いる渦流検査に比べて、■被検体
の局部に強力な磁場を作用させることが可能であるので
、被検体の深部情報まで得られる(内部欠陥の検出及び
厚板の測寸が可能)、■強力磁場の効果で、被検体が強
磁性体の場合、磁気飽和域の特性に関する情報まで検出
できる(高炭素鋼の利質判別)、■パルス波は広い帯域
の周波数成分を含むから多数の周波数に対する渦流反応
を同時に調べることができる(有害欠陥の選択的検出)
、などの特徴がある。第4図にパルス渦流法の概法を示
す。
Pulsed currents may also be used, and compared to eddy current testing that uses continuous waves, eddy current testing that uses pulsed waves can apply a strong magnetic field to the local area of the subject, so it is possible to obtain deep information about the subject. (possible to detect internal defects and measure the dimensions of thick plates); ■If the object to be examined is a ferromagnetic material, it is possible to detect information about the characteristics of the magnetic saturation region due to the effect of a strong magnetic field (the advantages of high carbon steel) (Quality determination); Since the pulse wave contains frequency components in a wide range, it is possible to simultaneously investigate eddy current reactions to multiple frequencies (selective detection of harmful defects).
, and other characteristics. Figure 4 shows the general method of the pulsed eddy current method.

この図で10は被検体、12は励磁コイル、14.16
はイ爽出コイル、20はクロック発生器、24はパルス
発生器、38は増幅器、51〜5nは遅延時間t + 
−t nの遅延回路、61〜6nはサンプルホールド回
路である。第5図の波形図を参照しながら動作を説明す
ると、クロック発生器20で周期Tのタイミング信号(
クロック)を発生し、該クロックをトリガとしてパルス
発生器24にパルス(励磁電流)を発生させ、パルス幅
τの該励磁信号でコイル12を励磁する。コイル12は
磁界を発生し、これにより被検体10に渦流が流れ、検
出コイル14.16に電圧が誘起する。
In this figure, 10 is the subject, 12 is the excitation coil, and 14.16
20 is a clock generator, 24 is a pulse generator, 38 is an amplifier, 51 to 5n are delay times t +
−t n delay circuits, and 61 to 6n are sample and hold circuits. To explain the operation with reference to the waveform diagram in FIG. 5, the clock generator 20 generates a timing signal (
Using the clock as a trigger, the pulse generator 24 generates a pulse (excitation current), and the coil 12 is excited with the excitation signal having a pulse width τ. Coil 12 generates a magnetic field, which causes eddy currents to flow in subject 10 and induces a voltage in detection coils 14,16.

検出コイル14.16は励磁コイル12の両側に配置し
てあり、従って励磁コイル12が発生ずる磁束による誘
起電圧は等しく、かつ差動結線されるので互いに打ち消
し合う。渦流による誘起電圧も打ち消し合うが、被検体
に疵があって渦流分布状態がコイル14直下とコイル1
6直下で異なれば誘起電圧に差があり、この差が増幅器
38で増幅され、出力電圧になる。増幅器出力電圧はサ
ンプルホールド回路61〜6nに与えられ、クロック発
生器20が出力するクロックよりt1〜tn遅れたタイ
ミングで各サンプルホールド回路61〜6nは増幅器出
力電圧をサンプリングする。従って各サンプルホールド
回路61〜6nの出力Ul〜Unは図示の如くなる。こ
の出力U1〜Onから、被検体の表層から深部に亘る被
検体特性情報が得られる。詳しくは、短い遅延時間t1
でサンプリングした出力U1には表面から比較的浅い部
分までの情報が含まれ、長い遅延時間tnでサンプリン
グした出力Unには表面から深部までの情報が含まれ、
中位の遅延時間(t i)でサンプリングした出力(U
i)には表面から中位の深さまでの情報が含まれる。こ
れらの出力U1〜Unの相互演算を適当に行なえば被検
体の表面から深部に亘り各層独立した情報を得ることも
可能であり、疵検出に応用する場合、有害疵の形態を知
れば、それを選択的に抽出することもできる。
The detection coils 14 and 16 are arranged on both sides of the excitation coil 12, so that the induced voltages due to the magnetic flux generated by the excitation coil 12 are equal, and because they are differentially connected, they cancel each other out. The induced voltage caused by the eddy current also cancels each other out, but there is a flaw in the test object and the eddy current distribution state is different from that directly below the coil 14 to that of the coil 1.
6, there is a difference in the induced voltage, and this difference is amplified by the amplifier 38 and becomes the output voltage. The amplifier output voltage is applied to sample and hold circuits 61 to 6n, and each sample and hold circuit 61 to 6n samples the amplifier output voltage at a timing delayed by t1 to tn from the clock output from the clock generator 20. Therefore, the outputs Ul to Un of the sample and hold circuits 61 to 6n are as shown in the figure. From these outputs U1 to On, object characteristic information ranging from the surface layer to the deep part of the object can be obtained. In detail, the short delay time t1
The output U1 sampled at 1 includes information from the surface to a relatively shallow part, and the output Un sampled at a long delay time tn includes information from the surface to the deep part,
Output (U
i) contains information from the surface to medium depth. If these outputs U1 to Un are mutually calculated appropriately, it is possible to obtain independent information for each layer from the surface to the deep part of the object. When applied to defect detection, once the form of a harmful defect is known, it is possible to obtain information that is independent of each layer. It is also possible to selectively extract.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところでパルス渦流法では励磁コイルに大電流を流して
強力な磁界を発生させることができ、強磁場利用がパル
ス渦流法の特徴になっているが、これは該磁界が検査コ
イルに誘起する電圧も著大であることを意味し、その打
消しが問題である。
By the way, in the pulsed eddy current method, it is possible to generate a strong magnetic field by passing a large current through the excitation coil, and the use of a strong magnetic field is a feature of the pulsed eddy current method. This means that it is significant, and the problem is how to cancel it.

検出コイルは励磁コイルに近接させて配置するから両コ
イル間に磁気的結合があり、励磁コイルを流れる電流に
変化があれば検出コイルに電圧が誘起する。この誘起電
圧(雑音電圧)は、被検体を流れる渦流により検出コイ
ルに生じる電圧(信号電圧)より遥かに大きく、微弱な
信号電圧は大幅に増幅して検査に供するので、上記誘起
電圧は厳密に相殺しないと大振幅雑音電圧に微小信号電
圧がのった形になり、一般に増幅器は飽和特性を有する
のでか\る合成波を増幅すると波形が歪み、信号成分の
取出しが不可能になる。有’JJな増幅を行なうために
は雑音電圧を信号電圧以下に抑圧、消去する必要がある
Since the detection coil is placed close to the excitation coil, there is magnetic coupling between the two coils, and if there is a change in the current flowing through the excitation coil, a voltage is induced in the detection coil. This induced voltage (noise voltage) is much larger than the voltage (signal voltage) generated in the detection coil by the eddy current flowing through the test object, and since weak signal voltages are greatly amplified and used for inspection, the above induced voltage must be strictly controlled. If they are not canceled out, a small signal voltage will be superimposed on a large-amplitude noise voltage, and since amplifiers generally have saturation characteristics, amplifying a composite wave will distort the waveform and make it impossible to extract the signal component. In order to perform effective amplification, it is necessary to suppress and eliminate the noise voltage below the signal voltage.

励磁コイルと検出コイルの直接結合による誘起電圧を消
去するには第3図(alに示すように(これは第4図と
同じ)検出コイルを2個として励磁コイルの周囲に等間
隔で配置し、これらの検出コイル−4,16を差動結線
する、あるいは第3図(b)に示すように励磁コイル1
2の周囲を、被検体10との対向面を残して導電体及び
又は磁性体18で電磁シールドする、あるいは第3図(
C1に示すように励磁コイルも検出コイルも2つずつ用
い(12aと12b、14aと14bがそれ)一方の組
は被検体10に、他方の組は基準材10Aに対向させ、
検出コイル14aと14bは差動結線する、という方法
がある。
To eliminate the induced voltage caused by the direct coupling between the excitation coil and the detection coil, two detection coils are placed at equal intervals around the excitation coil as shown in Figure 3 (al) (this is the same as in Figure 4). , by differentially connecting these detection coils 4 and 16, or by connecting the excitation coil 1 as shown in FIG. 3(b).
2 is electromagnetically shielded with a conductive material and/or magnetic material 18, leaving the surface facing the subject 10, or as shown in FIG.
As shown in C1, two excitation coils and two detection coils are used (12a and 12b, 14a and 14b are used), with one set facing the subject 10 and the other set facing the reference material 10A.
There is a method in which the detection coils 14a and 14b are differentially connected.

これらは連続波渦流検査でよく用いられるが、パルス波
渦流検査では不充分である。即ちパルス法では連続波法
に比べて10−1000倍の強力磁場を用いるから、直
接結合による誘起電圧も10〜1000倍になり、一方
、微弱信号電圧の大きさは両法とも大差ないから、パル
ス法を実施するには連続波法に比べて10〜1ooo倍
の誘起電圧抑圧性能が必要になる。第3図の諸方法で誘
起電圧を相当程度抑圧することはできるが、完全な打消
しは困難である。この理由としては、差動的に使用する
2個の検査コイルの寸法、配置などを全く同一に製作、
組立てることは、機械工作精度の限界から不可能である
、等が挙げられる。
These are commonly used in continuous wave eddy current testing, but are insufficient for pulsed wave eddy current testing. In other words, since the pulse method uses a magnetic field that is 10 to 1000 times stronger than the continuous wave method, the induced voltage due to direct coupling is also 10 to 1000 times larger.On the other hand, the magnitude of the weak signal voltage is not much different between the two methods. In order to implement the pulse method, induced voltage suppression performance that is 10 to 100 times higher than that of the continuous wave method is required. Although the induced voltage can be suppressed to a considerable extent by the methods shown in FIG. 3, it is difficult to completely cancel it out. The reason for this is that the two test coils used differentially are made with exactly the same dimensions and arrangement.
For example, it is impossible to assemble it due to the limits of machining accuracy.

本発明は強力磁場での直接結合による誘起電圧を充分に
抑圧して、微弱信号成分を効果的に取り出すことができ
るようにし、強力磁場の効果を充分発揮することができ
るパルス渦流検査法を提供しようとするものである。
The present invention provides a pulsed eddy current inspection method that can sufficiently suppress the induced voltage due to direct coupling in a strong magnetic field, effectively extract weak signal components, and fully utilize the effects of a strong magnetic field. This is what I am trying to do.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、励磁コイルと検出コイルとを用い、励磁コイ
ルに一定周期で繰り返すパルス電流を供給して被検体に
パルス磁場を作用させ、被検体に生じた渦流により発生
する検出コイルの電圧を増幅器で増幅し、その増幅出力
を小間隔でサンプルホールドし、その複数のサンプルホ
ールド出力により被検体の性状を検査するパルス渦流検
査法において、無欠陥時の検出コイル出力を前記パルス
電流と同期させて小間隔でサンプリングし、デジタル化
してメモリに記憶し、検査に当っては、該メモリを前記
パルス電流と同期して読出し、その続出し出力をアナロ
グ化し、これと検出コイル出力との差を求め、該差を前
記増幅器で増幅することを特徴とするものである。
The present invention uses an excitation coil and a detection coil, applies a pulsed magnetic field to a subject by supplying a pulsed current that repeats at a constant cycle to the excitation coil, and converts the voltage of the detection coil generated by the eddy current generated in the subject into an amplifier. In the pulsed eddy current inspection method, in which the amplified output is sampled and held at small intervals and the properties of the specimen are inspected using the multiple sampled and held outputs, the detection coil output when there are no defects is synchronized with the pulsed current. Sample it at small intervals, digitize it, and store it in a memory, and for inspection, read out the memory in synchronization with the pulse current, convert the continuous output into an analog, and find the difference between this and the detection coil output. , the difference is amplified by the amplifier.

〔作用〕[Effect]

本発明では、欠陥がないく被検体と対向していない、又
は対向していても被検体は無欠陥であることが分ってい
る)状態で得た検出コイル出力をメモリに取込み、欠陥
があるかも知れない被検体と対向させて得た(検査時)
検出コイル出力と前記メモリ読出し出力との差をとり、
前記誘起電圧の抑圧を図る。この方法によれば、充分な
誘起電圧の抑圧が図れ、波形歪みを生しることなく増幅
し、検査に供することができる。
In the present invention, the detection coil output obtained in a state where there is no defect and is not facing the object to be inspected, or even if it is facing the object, it is known that there is no defect) is captured in the memory, Obtained by facing a possible specimen (during examination)
Take the difference between the detection coil output and the memory readout output,
The induced voltage is suppressed. According to this method, the induced voltage can be sufficiently suppressed, and the voltage can be amplified and tested without causing waveform distortion.

〔実施例〕〔Example〕

第1図は本発明の実施例を示す。第4図と同じ部分には
同じ符号が付しである。本発明では検出コイル14.1
6の差動出力(アナログ)をサンプリングしてデジタル
化するA/D変換器26、該変換器の出力を記憶するメ
モリ28、該メモリの読出し出力をアナログに変換する
D/A変換器30を設ける。36はメモリ28のアクセ
スアドレスを出力するアドレスカウンタ、34はA/D
変換器26にクロックを供給するアンドゲートである。
FIG. 1 shows an embodiment of the invention. The same parts as in FIG. 4 are given the same reference numerals. In the present invention, the detection coil 14.1
An A/D converter 26 that samples and digitizes the differential output (analog) of 6, a memory 28 that stores the output of the converter, and a D/A converter 30 that converts the read output of the memory into analog. establish. 36 is an address counter that outputs the access address of the memory 28, and 34 is an A/D.
It is an AND gate that clocks converter 26.

クロック発生器20は1024K Hzのクロックを発
生し、これは分周器22でI K Hzのトリガパルス
となり、これがパルス発生器24に入力してコイル12
の励磁パルス電流を発生させるが、1021IK Hz
のクロックはアドレスカウンタ36にも入力し、またメ
モリ指令スイッチ4oが押下されてスタート論理回路3
2がHレヘル出力を生じるとき、アンドゲート34を通
ってA/D変換器26に入力する。IKHzのl・リガ
信号は遅延回路51〜5nに入力して遅延タイミングt
 l % t nを発生する基準信号になり、またアド
レスカウンタ36及びスタート論理回路32に入力して
リセット信号になる。
The clock generator 20 generates a 1024 KHz clock, which becomes an I KHz trigger pulse in the frequency divider 22, which is input to the pulse generator 24 and outputs the coil 12.
It generates an excitation pulse current of 1021IK Hz.
The clock is also input to the address counter 36, and when the memory command switch 4o is pressed, the start logic circuit 3
2 produces an H level output, it is input to the A/D converter 26 through the AND gate 34. The IKHz l/rega signal is input to delay circuits 51 to 5n and the delay timing t is
It becomes a reference signal for generating l % t n, and also inputs to the address counter 36 and start logic circuit 32 and becomes a reset signal.

パルス発生器24は第2図に示すように、直流電源7B
、チョークコイル72、サイリスク74、パルストラン
ス76、及びLC分布定数回路からなる。直流電源78
からチョークコイル72、LC回路を通して励磁コイル
12に電流が流れており、この状態でトランス76に分
周器22からのIKHzパルスが加わるとサイリスタ7
4はオンになり、電源回路を短絡する。この結果コイル
12に流れる電流は急減し、被検体励磁磁界に変化を生
じる。こうして発生するパルスの幅はE下とLC回路の
段数Nにより定まり、パルス振幅は電源78の電圧■に
より定まる。なお百7Σ〒−が励磁コイルのインピーダ
ンスに等しくなるようにLとCの値を定めると、効率よ
くかつ滑らかな波形の電流パルスを発生することができ
る。
As shown in FIG. 2, the pulse generator 24 is connected to a DC power source 7B.
, a choke coil 72, a cyrisk 74, a pulse transformer 76, and an LC distributed constant circuit. DC power supply 78
Current flows from the choke coil 72 to the excitation coil 12 through the LC circuit, and in this state, when an IKHz pulse from the frequency divider 22 is applied to the transformer 76, the thyristor 7
4 turns on and shorts the power supply circuit. As a result, the current flowing through the coil 12 suddenly decreases, causing a change in the subject excitation magnetic field. The width of the pulse thus generated is determined by E and the number of stages N of the LC circuit, and the pulse amplitude is determined by the voltage of the power supply 78. Note that if the values of L and C are determined so that 17Σ〒- is equal to the impedance of the excitation coil, a current pulse with an efficient and smooth waveform can be generated.

第1図の動作を説明すると、最初は欠陥がない(コイル
が被ヰ★体と対向していない、又は対向していても被検
体は正常、無欠陥)状態とし、スイッチ42.44は1
側に閉じ、メモリ指令スイ/チ40を閉じる。この状態
では検出コイル14゜16の差動出力がA/D変換器2
6に加わり、該変換器は1024K Hzのクロックが
入力する毎にサンブリ、ング及びそのサンプルのA/D
変換を行ない、これらをメモリ28に書込む。各サンプ
ルは本例では10ビツトで表わされ、この10ビツトの
各サンプルはメモリ28のカウンタ36が出力するアド
レスに格納される。IKHzの周波数で発生する検出コ
イル差電圧を1024K HzでA/D変換すれば各回
毎に1024個のサンプルが得られ、これをメモリ28
に記憶し、それを読出して変換器30でD/A変換すれ
cy上記検出コイル差電圧を高精度に再現できる。
To explain the operation in Fig. 1, initially there is no defect (the coil is not facing the object, or even if it is facing the object, the object is normal and has no defects), and the switches 42 and 44 are set to 1.
side and close the memory command switch 40. In this state, the differential output of the detection coil 14°16 is output to the A/D converter 2.
6, the converter performs sampling and A/D processing of the sample every time a 1024KHz clock is input.
Perform the conversions and write them to memory 28. Each sample is represented by 10 bits in this example, and each 10-bit sample is stored in memory 28 at an address output by counter 36. If the detection coil difference voltage generated at a frequency of IKHz is A/D converted at 1024KHz, 1024 samples are obtained each time, and these are stored in the memory 28.
By storing the data in the data, reading it out, and performing D/A conversion using the converter 30, the above detection coil difference voltage can be reproduced with high precision.

メモリ28に格納する1024個のサンプルは、IKH
zの特定の1周期の間におけるそれである。
The 1024 samples stored in the memory 28 are IKH
It is that during one particular period of z.

スタート論理回路32はこの目的のもので、メモリ指令
スイッチ40が押下されてから例えば2回目のIKHz
パルスでアンドゲート34を開き、3回目のパルスでこ
れを閉じる。
The start logic circuit 32 is for this purpose, for example, the second IKHz signal after the memory command switch 40 is pressed.
A pulse opens AND gate 34, and a third pulse closes it.

アドレスカウンタ36もIKHzのトリガ信号でリセッ
トされるので、計数値はO〜1023を繰り返す。A/
D変換器26の出力を書込むときメモIJ28は書込み
モードにされ(ライトイネーブル信号はA/D変換器2
6などに出力させる)、その後は読出しモードになり、
従ってD/A変換器30は上記検出コイル差電圧に近似
の電圧を繰り返し出力する。
Since the address counter 36 is also reset by the IKHz trigger signal, the count value repeats 0 to 1023. A/
When writing the output of the D converter 26, the memo IJ 28 is placed in write mode (the write enable signal is
6, etc.), and then goes into read mode.
Therefore, the D/A converter 30 repeatedly outputs a voltage approximate to the detection coil difference voltage.

メモリ28への検出コイル差電圧の格納が終了したら本
装置は準備完了で、次は実際の(欠陥があるかも知れな
い)被検体10の検査に移る。このときスイッチ42.
44は2側へ切換える。検出コイル14.16の差電圧
は差動増幅器38の一方の入力端に加わり、またD/A
変換器30が出力する電圧は該差動増幅器の他方の入力
端に加わり、両者の差が求められる。この差は、被検体
10が無欠陥であればは\0であり、欠陥があればその
欠陥により定まる差電圧になることが期待でき、S/N
は大幅に向上する。大振幅雑音電圧に微小信号電圧がの
った形ではないので、高利得の増幅が可能である。
When the storage of the detection coil difference voltage in the memory 28 is completed, the present apparatus is ready, and the next step is to inspect the actual object 10 (which may have a defect). At this time, switch 42.
44 switches to the 2 side. The voltage difference between the detection coils 14 and 16 is applied to one input of the differential amplifier 38, and also to the D/A
The voltage output by converter 30 is applied to the other input of the differential amplifier, and the difference between the two is determined. This difference is \0 if the test object 10 has no defects, and if there is a defect, it can be expected that the voltage difference will be determined by the defect, and the S/N
will be significantly improved. Since the small signal voltage is not superimposed on the large amplitude noise voltage, high gain amplification is possible.

増幅器38の出力電圧は第4図と同様にサンプルホール
ドされ、出力UI”Unが作られる。遅延回路51〜5
nはワンショットマルチなどで簡単に構成できる。
The output voltage of the amplifier 38 is sampled and held as in FIG. 4, and an output UI"Un is produced. Delay circuits 51 to 5
n can be easily configured using one-shot multicasting or the like.

コイル配置は第1図では第3図(a)相当のものとした
が、これは同図(bl、 (C1でもよい。第3図(C
1の場合、メモリ28へのサンプル採取は両コイル組と
も基準材に対向させて行なう。
The coil arrangement in Fig. 1 is equivalent to Fig. 3 (a), but it may also be the same as Fig. 3 (C1).
In the case of 1, sampling to the memory 28 is performed with both coil sets facing the reference material.

サンプルホールドするタイミングtl−1nは、A/D
変換器26のサンプリングタイミングと同じではない。
The sample and hold timing tl-1n is the A/D
It is not the same as the sampling timing of converter 26.

これは同じにし、実測時の検出コイル差電圧をデジタル
化してメモリ28の読出し出力と差を求める(デジタル
的に)ことも考えられるが、この方法だと検出コイル差
電圧をディスプレイに表示し、目視して直観的、物理的
に考察するのに難があり(第1図なら増幅器38の出力
をディスプレイに入力すればよい)、また演算速度の高
いCPUを必要とし、かつアナログ増幅手段を利用でき
ないので高分解能のA/D変換器(例えば10ビツトの
代りに16ビツト)を必要とする。
It is also possible to keep this the same and digitize the detection coil difference voltage during actual measurement and find the difference with the readout output of the memory 28 (digitally), but with this method, the detection coil difference voltage is displayed on the display, It is difficult to examine visually, intuitively, and physically (in the case of Figure 1, the output of the amplifier 38 can be input to the display), it requires a CPU with high calculation speed, and it uses analog amplification means. This requires a high resolution A/D converter (eg 16 bits instead of 10 bits).

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば無欠陥時の検出コ
イル出力を記憶しておき、これと実際の検査時の検出コ
イル出力との差をとり、該差を増幅するようにしたので
、S/Nの良好な増幅ができ、波形歪の少ない良質の検
出出力が得られる。
As explained above, according to the present invention, the detection coil output when there is no defect is stored, the difference between this and the detection coil output during actual inspection is taken, and this difference is amplified. Amplification with good S/N ratio can be achieved, and high quality detection output with little waveform distortion can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示すブロック図、第2図はパ
ルス発生器の回路図、第3図は励磁コイルと検出コイル
の配置図、第4図は従来例を示すブロック図、第5図は
動作説明用の波形図である。 図面で12は励磁コイル、14.16は検出コイル、I
Oは被検体、28はメモリ、38は増幅器である。 出 願 人  住友金属工業株式会社 出 願 人  原電子測器株式会社 代理人弁理士  青  柳   稔 パルス jI2図 祇携体10        禮液体10第3図 第4図 第5図
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a circuit diagram of a pulse generator, FIG. 3 is a layout diagram of an excitation coil and a detection coil, and FIG. 4 is a block diagram showing a conventional example. FIG. 5 is a waveform diagram for explaining the operation. In the drawing, 12 is an excitation coil, 14.16 is a detection coil, and I
0 is a subject, 28 is a memory, and 38 is an amplifier. Applicant: Sumitomo Metal Industries Co., Ltd. Applicant: Hara Denshi Sokki Co., Ltd. Representative Patent Attorney Minoru Aoyagi

Claims (1)

【特許請求の範囲】 励磁コイルと検出コイルとを用い、励磁コイルに一定周
期で繰り返すパルス電流を供給して被検体にパルス磁場
を作用させ、被検体に生じた渦流により発生する検出コ
イルの電圧を増幅器で増幅し、その増幅出力を小間隔で
サンプルホールドし、その複数のサンプルホールド出力
により被検体の性状を検査するパルス渦流検査法におい
て、無欠陥時の検出コイル出力を前記パルス電流と同期
させて小間隔でサンプリングし、デジタル化してメモリ
に記憶し、 検査に当っては、該メモリを前記パルス電流と同期して
読出し、その読出し出力をアナログ化し、これと検出コ
イル出力との差を求め、該差を前記増幅器で増幅するこ
とを特徴としたパルス渦流検査法。
[Claims] Using an excitation coil and a detection coil, a pulsed current is supplied to the excitation coil repeatedly at a constant cycle to apply a pulsed magnetic field to the subject, and the voltage of the detection coil is generated by the eddy current generated in the subject. In the pulsed eddy current inspection method, in which the amplified output is amplified by an amplifier, the amplified output is sampled and held at small intervals, and the properties of the specimen are inspected using the multiple sampled and held outputs, the detection coil output when there are no defects is synchronized with the pulsed current. The pulse current is sampled at small intervals, digitized, and stored in a memory. During inspection, the memory is read in synchronization with the pulse current, the read output is converted into an analog, and the difference between this and the detection coil output is calculated. A pulsed eddy current inspection method characterized in that the difference is amplified by the amplifier.
JP60211600A 1985-09-25 1985-09-25 Method for inspecting pulse body current Pending JPS6270753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60211600A JPS6270753A (en) 1985-09-25 1985-09-25 Method for inspecting pulse body current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60211600A JPS6270753A (en) 1985-09-25 1985-09-25 Method for inspecting pulse body current

Publications (1)

Publication Number Publication Date
JPS6270753A true JPS6270753A (en) 1987-04-01

Family

ID=16608446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60211600A Pending JPS6270753A (en) 1985-09-25 1985-09-25 Method for inspecting pulse body current

Country Status (1)

Country Link
JP (1) JPS6270753A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145137A (en) * 2006-12-06 2008-06-26 Hitachi Ltd Eddy current flaw detection probe, flaw detector, and flaw detection method
JP2010085298A (en) * 2008-10-01 2010-04-15 Hitachi Ltd Pulse excitation type eddy current flaw detection method and device
JP2021107837A (en) * 2019-03-06 2021-07-29 サガワ産業株式会社 Nondestructive inspection system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145137A (en) * 2006-12-06 2008-06-26 Hitachi Ltd Eddy current flaw detection probe, flaw detector, and flaw detection method
JP2010085298A (en) * 2008-10-01 2010-04-15 Hitachi Ltd Pulse excitation type eddy current flaw detection method and device
JP2021107837A (en) * 2019-03-06 2021-07-29 サガワ産業株式会社 Nondestructive inspection system
JP2023009219A (en) * 2019-03-06 2023-01-19 サガワ産業株式会社 Nondestructive inspection system

Similar Documents

Publication Publication Date Title
Yang et al. Pulsed eddy-current based giant magnetoresistive system for the inspection of aircraft structures
JPH0854375A (en) Electromagnetic induction-type inspecting apparatus
JP2006189347A (en) Flaw detection probe and flaw detector
He et al. Evaluation of 3D-Printed titanium alloy using eddy current testing with high-sensitivity magnetic sensor
Chady et al. Natural crack recognition using inverse neural model and multi-frequency eddy current method
JPS6314905B2 (en)
JP6551885B2 (en) Nondestructive inspection device and nondestructive inspection method
JPS6270753A (en) Method for inspecting pulse body current
JPS62273447A (en) Method and apparatus for measuring deterioration degree of material
Ye et al. Magnetoresistive sensor with magnetic balance measurement for inspection of defects under magnetically permeable fasteners
JP2666301B2 (en) Magnetic flaw detection
JPH0772122A (en) Leak flux flaw detection method and apparatus for internal defect of magnetic material
US2844787A (en) Means for detecting flaws
Porto et al. Design and analysis of a GMR eddy current probe for NDT
US2817060A (en) Non-destructive flaw detection apparatus
JP2617571B2 (en) Magnetic measuring device
JP3307220B2 (en) Method and apparatus for flaw detection of magnetic metal body
Postolache et al. Induction defectoscope based on uniform eddy current probe with GMRs
KR101173760B1 (en) Detection method of eddy current signal of small amplitude
Guo et al. Detection of Metal Surface and Back Surface by Rectangular Wave Eddy Current Testing with Magneto Resistive Sensor
Munoz et al. Design of a lock-in amplifier integrated with a coil system for eddy-current non-destructive inspection
Kacprzak et al. Inspection of printed-circuit board by ECT probe with solenoid pickup coil
Zhao et al. A new research method for corrosion defect in metal pipeline by using pulsed eddy current
US20030062892A1 (en) Use of eddy current to non-destructively measure crack depth
JPH04551B2 (en)