JPS6269688A - Semiconductor photodetector - Google Patents

Semiconductor photodetector

Info

Publication number
JPS6269688A
JPS6269688A JP60208808A JP20880885A JPS6269688A JP S6269688 A JPS6269688 A JP S6269688A JP 60208808 A JP60208808 A JP 60208808A JP 20880885 A JP20880885 A JP 20880885A JP S6269688 A JPS6269688 A JP S6269688A
Authority
JP
Japan
Prior art keywords
carrier concentration
region
conductivity type
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60208808A
Other languages
Japanese (ja)
Inventor
Nobuo Suzuki
信夫 鈴木
Fumihiko Kuroda
黒田 文彦
Tetsuo Sadamasa
定政 哲雄
Masaru Nakamura
優 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60208808A priority Critical patent/JPS6269688A/en
Priority to EP86306984A priority patent/EP0216572B1/en
Priority to DE3650287T priority patent/DE3650287T2/en
Publication of JPS6269688A publication Critical patent/JPS6269688A/en
Priority to US07/240,345 priority patent/US4949144A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a P-I-N photodiode with excellent controllability and mass- producibility and providing cost reduction by eliminating special consideration for an epitaxial growth furnace which is used for obtaining a high purity layer. CONSTITUTION:First, an N<+> type InP buffer layer 2 with carrier concentration of 1X10<18>cm<-3> and an In0.53Ga0.47As layer 3 with carrier concentration of 2.5X10<16>cm<-3> are made to grow to the thickness of 3mum by hydride vapor phase epitaxial growth. If carrier concentration is this measure, special consideration for a growth furnace is not necessary. Mg ions are selectively implanted into the surface of the epitaxial substrate and annealing is performed after a PSG protecting film is applied. At that time, a P<+> type region 4 is formed near the surface and a P-I-N type carrier profile can be obtained. The photodetector is completed by providing a protecting and reflection preventing film 6, positive side electrodes 7 and a negative side electrode 8 on the surface of the device, on the P<+> type region 5 and on the backside of the substrate 1 respectively.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、化合物半導体受光素子に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a compound semiconductor light receiving element.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

高感度で高速応答する半導体受光素子として、p”−p
−n+形、またはp+、−−n十形のキャリア濃度分布
を有するフォトダイオードが知られている。
As a semiconductor photodetector with high sensitivity and high speed response, p”-p
Photodiodes having carrier concentration distributions of -n+ type, p+, and -n+ type are known.

前記p−形の高抵抗光吸収領域は、化合物半導体のの場
合は正確には1ntrinsic領域ではないが、ここ
では慣例に従うてi領域と総称することにする。前記1
領域のキャリア濃度は空乏層を十分に伸ばし高速応答性
を得るために、通常20℃において(以下特にことわら
ガい限シ温度け20Cであるものとする)IXlocm
  以下に選ばれる。
Although the p-type high-resistance light-absorbing region is not exactly a 1-ntrinsic region in the case of a compound semiconductor, it will be generically referred to as an i-region here according to convention. Said 1
In order to sufficiently extend the depletion layer and obtain high-speed response, the carrier concentration in the region is usually set at 20°C (hereinafter, it is assumed that the temperature is 20°C).
The following are selected.

従来、前記1領域は気相または液相エピタキシャル成長
によシ形成されていた。以下、第2図に示したp”−1
−n+形フtトダイ・オードの一例を用いて従来の製造
方法とその問題点を説明する。まずn十形1nP基板2
 i K n形InPバy7y層22゜nl(キャリア
濃度的5 X 10’ ”an ” ) In□、53
0a0.47A5光吸収層(厚さ3〜5μm)23を順
次エピタキシャル成長する。次に適当なマスクを表面に
付けて光吸収層23の一部にOdの選択拡散を行ない、
p十領域24を形成する。これにプラスOVD法による
8iNxパツジベージ曹ン膜兼用の反射防止膜26、p
側電極27、n側電極28を付することKよシ第2図の
フォトダイオードが形成される。
Conventionally, the one region has been formed by vapor phase or liquid phase epitaxial growth. Below, p''-1 shown in Figure 2
A conventional manufacturing method and its problems will be explained using an example of a -n+ type foot diode. First, n-type 1nP substrate 2
i K n-type InP by7y layer 22゜nl (carrier concentration 5 x 10'"an") In□, 53
A 0a0.47A5 light absorption layer (3 to 5 μm thick) 23 is epitaxially grown in sequence. Next, a suitable mask is attached to the surface and Od is selectively diffused into a part of the light absorption layer 23.
A p10 region 24 is formed. In addition to this, an anti-reflection coating 26, which also serves as an 8iNx Patzibaige carbon film, is made using the OVD method.
By adding a side electrode 27 and an n-side electrode 28, the photodiode shown in FIG. 2 is formed.

然るに、キャリア濃度1×1016cIL−3以下の高
純度層をエピタキシャル成長するためには、気相、液相
Kかかわらず、長時間にわたる成長炉のベーキングが必
要であった。また、材料も余分に購入して純度の高いも
のを選択したり、純化して使ったりしなければならず、
生産コストの上昇の原因となっていた。さらにs p”
−?n+の高濃度層のエピタキシャル成長に使用した炉
では、炉内の残留不純物のため1層を制御性良く成長す
ることが困難に力るため、高純度層と高濃度層を同一の
炉内で連続成長するのは困難である。このことは、光電
子集積回路(OEIO)などの複合化光半導体素子を作
るうえでも障害となる。以上のように、キャリア濃度l
Xl0”cm’以下の高純度層をエピタキシャル成長で
形成する従来の方法は、生産性・量産性・価格−7レキ
シビリテイの点で問題があった。
However, in order to epitaxially grow a high-purity layer with a carrier concentration of 1.times.10.sup.16 cIL.sup.3 or less, baking in a growth furnace for a long time is required regardless of whether the layer is in the gas phase or the liquid phase. In addition, it is necessary to purchase extra materials and select ones with high purity, or to use them after purification.
This caused an increase in production costs. Further sp”
−? In the furnace used for epitaxial growth of the high concentration layer of n+, residual impurities in the furnace make it difficult to grow one layer with good control, so the high purity layer and the high concentration layer are continuously grown in the same furnace. Growing up is difficult. This also becomes an obstacle in producing composite optical semiconductor devices such as opto-electronic integrated circuits (OEIO). As mentioned above, the carrier concentration l
The conventional method of forming a high-purity layer of Xl0"cm' or less by epitaxial growth has problems in terms of productivity, mass production, and price-7 flexibility.

〔発明の目的〕[Purpose of the invention]

この発明は上述の問題点に鑑みなされたもので、高純度
層を得るためのエピタキシャル成長炉に対する特別な配
慮を不要にして、制御性・量産性に優れ、低価格化のは
かれるpin形フォトダイオードと、その製造方法を提
供することを目的とする。
This invention was made in view of the above-mentioned problems, and it is a pin-type photodiode that eliminates the need for special consideration for an epitaxial growth furnace to obtain a high-purity layer, has excellent controllability and mass production, and is low-cost. , the purpose is to provide a manufacturing method thereof.

〔発明の概要〕[Summary of the invention]

t−V族化合物半導体にある種の不純物をイオン注入し
、適切な条件で熱処理を行なうと、2段形の濃度プロフ
ァイルが得られることが知られている。第3図に、In
P K 250KeVで10117のMgイオン注入を
行ない、 5INx膜を付けて750℃で30分間キャ
ップアニール(熱処理)した試料の、Mgに対する2次
イオン質量分析(SIMS)の結果を示す。(J、D、
0berstarほか。Journalof Elec
trochemical 5ociety Vol、1
29 No、 6(1982) pm)、1320−1
325 )2つの段の中間に厚さ約IIImの濃度平担
部ができている。イオン注入で導入された不純物は、熱
処理を行なっても100チ活性化されるとは限らないが
、発明者らはC−■測定や耐圧の測定から、前記濃度平
担部のMgはほとんど活性化してアクセプタとなってい
ることを見出した。また、熱処理の条件によシ、前記濃
度平担部の厚さもlllxrL以上にできることを見出
した。前記狗濃度平担部の鳩アクセプタ濃度NAとイオ
ン注入前のバックグラウンド濃度Nr1がほぼ等しくな
るようにすると、その領域では補償効果によシ正味のキ
ャリア濃度はINム−Nlllの低い値になる。もちろ
んsMg濃度が完全く平担にならない場合、当該領域の
一部がn−領域、他の一部がp−領域となることもある
It is known that when a certain type of impurity is ion-implanted into a t-V group compound semiconductor and heat treated under appropriate conditions, a two-step concentration profile can be obtained. In Figure 3, In
The results of secondary ion mass spectrometry (SIMS) for Mg are shown for a sample in which 10117 Mg ions were implanted at a P K of 250 KeV, a 5INx film was attached, and cap annealed (heat treated) at 750° C. for 30 minutes. (J, D,
0berstar et al. Journal of Elec
Trochemical 5ociety Vol.1
29 No. 6 (1982) pm), 1320-1
325) A concentration plateau with a thickness of about IIIm is formed between the two stages. Impurities introduced by ion implantation are not necessarily activated by 100% even if heat treatment is performed, but the inventors found that most of the Mg in the flat concentration area was activated from C-■ measurements and withstand voltage measurements. It was found that it became an acceptor. Furthermore, it has been found that depending on the heat treatment conditions, the thickness of the flat concentration portion can be made to be llxrL or more. If the pigeon acceptor concentration NA in the dog concentration flat part and the background concentration Nr1 before ion implantation are made to be approximately equal, the net carrier concentration in that region will be a low value of INmu-Nllll due to the compensation effect. . Of course, if the sMg concentration is not completely flat, part of the region may become an n-region and the other part may become a p-region.

本発明は、上述の効果をpin形キャリア濃度プロファ
イルをもつ化合物半導体受光素子に応用し九もので、第
一導電性を示す化合物半導体基板、ないしエピタキシャ
ル成長層を有する化合物半導体基板に第二導電形の不純
物をイオン注入し、熱処理による拡散・活性化を行なう
ことにょシ、表面の近傍に第二導電形領域と、またその
奥に厚さ0.8μm以上にわたって前記不純物の濃度が
ほとんど変化しない濃度平担部を形成し、その平担部の
少なくとも一部厚さ0.8μm以上の領域で、活性化さ
れた不純物濃度Nム(又はNl) )とバックグラウン
ド不純物濃度ND (又はNム)とを±50%の許容範
囲で一致させるととによシ、正味のキャリア濃度をイオ
ン注入前のキャリア濃度の50チ以下でかつlXl0 
 cm  以下に低減せしめたことを特徴とする、pi
n形キャリア濃度プC17アイルをもつ半導体受光素子
である。
The present invention applies the above-mentioned effects to a compound semiconductor light-receiving element having a pin-type carrier concentration profile. By implanting impurity ions and diffusing and activating them by heat treatment, a second conductivity type region is formed near the surface, and a concentration flat region in which the impurity concentration hardly changes over a thickness of 0.8 μm or more is formed in the depths of the second conductivity type region. A flat part is formed, and an activated impurity concentration N (or Nl) and a background impurity concentration ND (or N) are set in at least a part of the flat part with a thickness of 0.8 μm or more. If they match within a tolerance of ±50%, the net carrier concentration must be 50 degrees or less of the carrier concentration before ion implantation, and lXl0
cm or less, pi
This is a semiconductor light-receiving element having an n-type carrier concentration group C17 isle.

〔発明の効果〕〔Effect of the invention〕

本発明の素子は、高純度層のエピタキシャル成長を行な
わないですむために、従来の素子では必要であったエピ
タキシャル成長炉の高温長時間べ一ギングが不要になシ
、生産性が従来形素子に比べて大幅に向上する。また、
材料の選択や純化を行なわないですむため、生産性の向
上とコストの低減がはかれる。さらに、pinフォトダ
イオードと他のp土層やn土層の成長を必要とする素子
、例えば半導体レーザ、発光ダイオード、ヘテロバイポ
ーラトランジスタなどとの複合集積化も、p+/n+層
とi層の連続成長が無く々るので容易になる。
Since the device of the present invention does not require epitaxial growth of a high-purity layer, it eliminates the need for high-temperature, long-term baking in an epitaxial growth furnace, which was necessary for conventional devices, and the productivity is significantly higher than that of conventional devices. improve. Also,
Since there is no need to select or purify materials, productivity can be improved and costs can be reduced. Furthermore, complex integration of pin photodiodes and other elements that require the growth of p-soil layers or n-soil layers, such as semiconductor lasers, light emitting diodes, and hetero-bipolar transistors, is also possible due to the continuation of p+/n+ layers and i-layers. It becomes easier because there is no growth.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第1図により説明する。 Embodiments of the present invention will be described below with reference to FIG.

n+I nP基板1にまずキャリア濃度lXl018c
m″のn+−1nPバッファ層2とキャリア濃度2.5
X1016α のI n o、s a G a 0.4
7 A 8層3を厚さ3μm、ハイドライド気相エピタ
キシャル成長法によシ成長する。この程度のキャリア濃
度であれば、成長炉に対する特別な配慮は不要である。
First, the carrier concentration lXl018c is applied to the n+I nP substrate 1.
m'' n+-1nP buffer layer 2 and carrier concentration 2.5
X1016α I no, s a G a 0.4
7 A 8 layers 3 are grown to a thickness of 3 μm by hydride vapor phase epitaxial growth. If the carrier concentration is at this level, no special consideration is required for the growth reactor.

このエピタキシャル成長基板に表面から選択的にMgイ
オンを、加速電圧的240 keVでドーズ量2X10
”♂程度注入する。次にPSG保護膜をつけて750℃
で15分間アニールを行なう。このとき、表面近傍は1
〜2×1018cIrL−3の鱈領域4になるが、前述
のMg平担部5は導入されるアクセプタ濃度が約2. 
OX 10crrL  となるので、補償によシキャリ
ア濃度はn形のままで5.0X10  crILK減少
し、第4図のようなpfn形キャリアプロファイルが得
られる。
Mg ions were selectively applied to this epitaxial growth substrate from the surface at a dose of 2×10 at an acceleration voltage of 240 keV.
Inject about ♂. Next, apply a PSG protective film and heat to 750℃.
Anneal for 15 minutes. At this time, the area near the surface is 1
The cod region 4 has a concentration of ~2×10 18 cIrL−3, but the Mg flat portion 5 has an acceptor concentration of approximately 2.
Since OX 10 crrL is obtained, the compensation carrier concentration remains n-type and decreases by 5.0×10 crILK, resulting in a pfn-type carrier profile as shown in FIG. 4.

この素子の表面に、保護膜兼反射防止膜5、p+領域5
の上にp側電極7、基板1の下側にn1lIli[極8
を形成するととによシ、第1図の素子が完成する。
A protective film/antireflection film 5 and a p+ region 5 are provided on the surface of this element.
The p-side electrode 7 is on the top, and the n1lIli [pole 8
By forming this, the device shown in FIG. 1 is completed.

本方法によれば、エピタキシャル成長層のキャリア濃度
は2.5X10  cm  と通常の成長炉の使用条件
で十分達成できる値なので、高温長時間のベーキング、
材料の純化等の特別な配慮が不要にな 夛、生産性を大
幅に向上させ、また価格も低減することができる。
According to this method, the carrier concentration of the epitaxially grown layer is 2.5×10 cm, a value that can be sufficiently achieved under the conditions of normal growth furnace use.
This eliminates the need for special considerations such as material purification, greatly improving productivity and reducing costs.

本実施例では、イオン注入する不純物としてMgを例に
挙げたが、特許請求の範囲に記載された主旨に合するも
のであれば、Mgに限定されるものではない。
In this embodiment, Mg is used as an example of the impurity to be ion-implanted, but the impurity is not limited to Mg as long as it meets the spirit set forth in the claims.

また、I−V族化合物半導体の種類もInP やIn 
o、53Ga0.47ASK限られるものではない。
In addition, the types of IV group compound semiconductors include InP and In
o, 53Ga0.47ASK, but not limited to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の断面図、第2図は従来例の断
面図、第3図はMgをイオン注入、熱処理したInP中
の鳩濃度プロファイルを示す図、第4図は本発明の実施
例の深さ方向キャリア濃度プロファイルを示す図である
。 1および21・・・n”InP基板、2および22・・
・n+InPバッファ層、3・・・n InGaAs層
(キャリア濃度2.5X10 ”cm ”)、4・・・
Mgイオン注入ニヨルp+領域、5・・・Mgイオン注
入によるn−光吸収領域、23−n InGaAs光吸
収層(キャリア濃度5 X 10”cWL”)、24 
・Od拡散によるp十領域、6および26・・・保護膜
兼反射防止膜、7および27・・・p電極、8および2
8・・・n電極。
Fig. 1 is a cross-sectional view of an embodiment of the present invention, Fig. 2 is a cross-sectional view of a conventional example, Fig. 3 is a diagram showing a concentration profile in InP that has been ion-implanted with Mg and heat treated, and Fig. 4 is a cross-sectional view of an embodiment of the present invention. It is a figure which shows the depth direction carrier concentration profile of Example. 1 and 21...n"InP substrate, 2 and 22...
・n+InP buffer layer, 3...n InGaAs layer (carrier concentration 2.5X10 "cm"), 4...
Mg ion implantation n+ region, 5... n- light absorption region by Mg ion implantation, 23-n InGaAs light absorption layer (carrier concentration 5 x 10"cWL"), 24
・P region by Od diffusion, 6 and 26...protective film and antireflection film, 7 and 27...p electrode, 8 and 2
8...n electrode.

Claims (3)

【特許請求の範囲】[Claims] (1)III−V族化合物半導基体の第一導電形を有する
領域に、第二導電形不純物のイオン注入とそれに続く熱
処理工程により、表面西傍に第二導電形領域と、その奥
に厚さ0.8μm以上にわたってその導電形の如何にか
かわらず、キャリア濃度がイオン注入前のキャリア濃度
の50%以下で、かつ1×10^1^6cm^−^3以
下である高抵抗領域とを形成し、前記高抵抗領域を主た
る光吸収領域としたことを特徴とする半導体受光素子。
(1) Ion implantation of second conductivity type impurities into the first conductivity type region of the III-V compound semiconductor substrate followed by a subsequent heat treatment process creates a second conductivity type region near the west side of the surface and a second conductivity type region deep therein. A high resistance region having a thickness of 0.8 μm or more and having a carrier concentration of 50% or less of the carrier concentration before ion implantation and 1×10^1^6 cm^-^3 or less regardless of its conductivity type. What is claimed is: 1. A semiconductor light-receiving element characterized in that the high-resistance region is formed as a main light-absorbing region.
(2)前記第一導電形がn形であり、第二導電形不純物
がマグネシウムであることを特徴とする特許請求の範囲
第1項記載の半導体受光素子。
(2) The semiconductor light-receiving device according to claim 1, wherein the first conductivity type is n-type and the second conductivity type impurity is magnesium.
(3)前記III−V族化合物半導体基体が、InP基板
上にエピタキシャル成長されたInP、ないしはIII−
V族化合物半導体混晶であることを特徴とする特許請求
の範囲第1項記載の半導体受光素子。
(3) The III-V compound semiconductor substrate is InP epitaxially grown on an InP substrate, or III-V compound semiconductor substrate epitaxially grown on an InP substrate.
The semiconductor light-receiving device according to claim 1, characterized in that it is a group V compound semiconductor mixed crystal.
JP60208808A 1985-09-24 1985-09-24 Semiconductor photodetector Pending JPS6269688A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60208808A JPS6269688A (en) 1985-09-24 1985-09-24 Semiconductor photodetector
EP86306984A EP0216572B1 (en) 1985-09-24 1986-09-10 Semiconductor photo-detector having a two-stepped impurity profile
DE3650287T DE3650287T2 (en) 1985-09-24 1986-09-10 Semiconductor photodetector with a two-stage contamination profile.
US07/240,345 US4949144A (en) 1985-09-24 1988-09-01 Semiconductor photo-detector having a two-stepped impurity profile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60208808A JPS6269688A (en) 1985-09-24 1985-09-24 Semiconductor photodetector

Publications (1)

Publication Number Publication Date
JPS6269688A true JPS6269688A (en) 1987-03-30

Family

ID=16562462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60208808A Pending JPS6269688A (en) 1985-09-24 1985-09-24 Semiconductor photodetector

Country Status (1)

Country Link
JP (1) JPS6269688A (en)

Similar Documents

Publication Publication Date Title
US4949144A (en) Semiconductor photo-detector having a two-stepped impurity profile
US5157473A (en) Avalanche photodiode having guard ring
Law et al. The GaAlAsSb quaternary and GaAlSb ternary alloys and their application to infrared detectors
AU630705B2 (en) Guard ring structure
CN108110081B (en) Heterojunction avalanche photodiode
Matsushima et al. Zn‐diffused In0. 53Ga0. 47As/InP avalanche photodetector
US4009058A (en) Method of fabricating large area, high voltage PIN photodiode devices
US3874952A (en) Method of doping during epitaxy
JPH04256376A (en) Avalanche photodiode and its manufacture
Lee et al. Zn‐diffused back‐illuminated p‐i‐n photodiodes in InGaAs/InP grown by molecular‐beam epitaxy
JPS6269688A (en) Semiconductor photodetector
US20100001358A1 (en) Photodetector and method for manufacturing photodetector
JP2697904B2 (en) Method for manufacturing photoelectric device
JPH06340499A (en) Formation of cadmium mercury telluride crystal and production of infrared detector
JPS61116823A (en) Crystal growth method
Boissy et al. Zinc ion implantation as a predeposition process in gallium arsenide
JP2937342B2 (en) Manufacturing method of avalanche light receiving element
CA1073558A (en) Method of fabricating large area, high voltage pin photodiode devices
JPH0621503A (en) Semiconductor photodetector and manufacture thereof
JPS61267376A (en) Semiconductor device
JPS6373676A (en) Semiconductor photodetector
JPS58170078A (en) Semiconductor photodetector
JPH04246867A (en) Semiconductor photodetector
KR101429478B1 (en) manufacturing method of solar cell with compensated dopping layer and solar cell thereby
Kachare et al. Annealing results on low‐energy proton‐irradiated GaAs solar cells