JPS58170078A - Semiconductor photodetector - Google Patents

Semiconductor photodetector

Info

Publication number
JPS58170078A
JPS58170078A JP57053120A JP5312082A JPS58170078A JP S58170078 A JPS58170078 A JP S58170078A JP 57053120 A JP57053120 A JP 57053120A JP 5312082 A JP5312082 A JP 5312082A JP S58170078 A JPS58170078 A JP S58170078A
Authority
JP
Japan
Prior art keywords
layer
time
apd
type
type layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57053120A
Other languages
Japanese (ja)
Other versions
JPS6259906B2 (en
Inventor
Takashi Mikawa
孝 三川
Takao Kaneda
隆夫 金田
Shuzo Kagawa
修三 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57053120A priority Critical patent/JPS58170078A/en
Publication of JPS58170078A publication Critical patent/JPS58170078A/en
Publication of JPS6259906B2 publication Critical patent/JPS6259906B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier working in avalanche mode, e.g. avalanche photodiode

Abstract

PURPOSE:To form an avalanche photodiode (APD) which exhibits preferable frequency characteristics with low amplification factor by setting the density of a pi layer of an active region of a hyper abrupt junction structure to a specific value, ion implanting the dosage of a P type layer in a specific value, and setting the width of the P type layer to the specific value, thereby decreasing the amplification factor MRT of reach-through to the vicinity of 1. CONSTITUTION:An Si-APD is selected in impurity density of a P<-> type epitaxial layer to 1X10<14>cm<-3> to 5X10<14>cm<-3> with a P<+> type substrate 1 as a pi layer 2, thereby forming an oxidized film 3 of 1,000Angstrom thick. Then, a resist 4 is coated through a mask, a window 5 is opened at the light absorbing layer part of the APD part, and boron ions are implanted by ion implantation to the layer to form a P type layer 6. The accelerating voltage of the B<+> ions at this time is 300keV and the implantation amount of 2.13X10<12>cm<-2>, and this value is actually preferred in the range of 2-5X10<12>cm<-2>. Then, it is heat treated at 1,200 deg.C. The time at this time relates to the amplification factor and the excess noise coefficient. The implanted boron is doped in the pi layer in response to the gauss distribution. The width of the P type layer at this time is preferably 7-9mum. An oxidized film 3a is formed on the P type layer at this time.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明はAPD (アバランシェホトダイオード)に係
り、特に低増倍率においてAPDO高周波特性並びに増
倍雑音を改善した半導体受光装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to an APD (avalanche photodiode), and more particularly to a semiconductor light receiving device in which the high frequency characteristics and multiplication noise of the APDO are improved at a low multiplication factor.

(2)技術の背景 近時、長距離無線中継伝送用に受光素子としてAPDを
適用して高感度化をAtりたい要求等がある。アナログ
伝送等ではデジタル伝送に比べて高いS/Nが要求され
るためにAPDの増倍率Mが10以下の低増倍率領域で
素子が使用されるようになった。しかし、このような低
増倍率APDでは周波数特性が著しく劣化し、受信感度
が低下するので周波数特性の帯域低下を伴わずに理想的
には増倍率が1に近い所から良好な動作特性を示すAP
 L)の出現が要望されていた。
(2) Background of the technology Recently, there has been a demand for high sensitivity by applying APD as a light receiving element for long-distance wireless relay transmission. Since analog transmission requires a higher S/N than digital transmission, APD elements are now used in a low multiplication factor region where the multiplication factor M is 10 or less. However, with such a low multiplication factor APD, the frequency characteristics deteriorate significantly and the receiving sensitivity decreases, so ideally it should exhibit good operating characteristics from a multiplication factor close to 1 without a decrease in the band of frequency characteristics. AP
The appearance of L) was desired.

(3)従来技術と問題点 第1図fan、 (blはN”PπP+構造APD(7
)従来の模式図と不純物濃度の関係を示すものであるが
P層をエピタキシャル成長で6.8μmとし不純物の濃
度を3 X 10”cm−’程度としたものが知られて
いる。
(3) Prior art and problems Figure 1 fan, (bl is N”PπP+ structure APD (7
) This shows a conventional schematic diagram and the relationship between impurity concentrations. It is known that the P layer is epitaxially grown to a thickness of 6.8 .mu.m and the impurity concentration is approximately 3.times.10"cm.sup.-".

このような構造のAPDではP、π層が能動領域であり
、この領域で生じたキャリヤが出力光電流に寄与する。
In an APD with such a structure, the P and π layers are active regions, and carriers generated in these regions contribute to the output photocurrent.

ト述の如き不純物の濃度を有するAPDに逆パイアスを
加えたとき内部電界分布はリーチスルー(Reach 
Through )以後の状態で全能動領域は空乏層化
する。逆バイアス電圧が低い状態ではリーチスルーに達
せずP層は空乏層化していないため光励起キャリヤは高
速変調に追随しないという欠点があった。
When a reverse bias is applied to an APD having an impurity concentration as described above, the internal electric field distribution becomes reach-through (Reach-through).
Through ), the entire active region becomes a depletion layer. When the reverse bias voltage is low, reach-through is not reached and the P layer is not depleted, so the optically excited carriers cannot follow high-speed modulation.

(4)発明の目的 本発明は上記従来の欠点に鑑み、N”PπP+型のシリ
コン(Si)APDのP層へのイオン注入濃度の選択及
び拡散(ドライブ)条件を選定することでリーチスルー
の増倍率MRTを1近傍と低くし、低増倍率で良好な周
波数特性を示すAPDを形成することを目的とするもの
である。
(4) Purpose of the Invention In view of the above-mentioned conventional drawbacks, the present invention provides reach-through by selecting the ion implantation concentration and diffusion (drive) conditions into the P layer of an N''PπP+ type silicon (Si) APD. The purpose of this invention is to lower the multiplication factor MRT to around 1 and form an APD that exhibits good frequency characteristics at a low multiplication factor.

(5)発明の構成 本発明の特徴とするところは、超階段接合構造を有する
アバランシェホトダイオードにおいて、上記超階段接合
の構造の能動領域のπ層濃度を5×to13乃至5×1
0′LAem−3とし、P層のドーズ量を2乃至5XI
Q”cm−乙   ン注入し2層幅を7〜でざ第 1       9μmとした光半導体受光装置を提供
することである。
(5) Structure of the Invention The present invention is characterized in that, in an avalanche photodiode having a hyperstep junction structure, the π layer concentration in the active region of the hyperstep junction structure is set to 5×to13 to 5×1.
0'LAem-3, and the dose of the P layer is 2 to 5XI.
It is an object of the present invention to provide an optical semiconductor light-receiving device in which the width of the second layer is 7 to 19 μm by implantation of Q'' cm.

(6)発明の実施例 以下、本発明の一実施例を第2図(al〜(J)に示す
製作工程図について説明する。
(6) Embodiment of the Invention Hereinafter, an embodiment of the present invention will be described with reference to the manufacturing process diagrams shown in FIGS.

第2図+8)において、本発明の5t−APDはP+基
板1にπ層2としてP−のエピタキシャル層を不純物濃
度をI X 10″′ローう(5X 10”乃至5×1
01φcm”に選択できる)に選択し酸化膜3を100
0人厚形成する。
In Fig. 2+8), the 5t-APD of the present invention has a P- epitaxial layer as a π layer 2 on a P+ substrate 1 with an impurity concentration of I x 10'' low (5 x 10'' to 5 x 1
01φcm”) and the oxide film 3 is
0 person thickness is formed.

次に第2図〜)に示すようにレジスト4をマスクを介し
て塗布しAPD部分の光吸収層部分を窓開け5した後に
イオン注入によってボロン(B+)をπ層に注入して2
層6を形成する。このときのB+イオンの加速電圧は3
00K eν、 2.13X 10”’cm−”の注入
量であり、実際にはこの値は2〜5×1012□d2の
範囲が好ましい。
Next, as shown in Fig. 2~), a resist 4 is applied through a mask to open a window 5 in the light absorption layer portion of the APD portion, and then boron (B+) is injected into the π layer by ion implantation.
Form layer 6. At this time, the accelerating voltage of B+ ions is 3
00 K eν, 2.13×10″cm−”, and in practice this value is preferably in the range of 2 to 5×10 12 □d2.

次に第2図(C1に示すように1200℃で熱処理(ド
ライブイン)する。このときの時間は熱処理時間に応じ
て後述するように増倍率や過剰雑音係数に関係する。イ
オン注入されたボロンは同じく後述するガウス分布に応
じてπ層内にドープされて行く。そしてこのときの2層
幅は7〜9μmが好ましい。このときP層上には酸化1
13aが形成される。
Next, heat treatment (drive-in) is performed at 1200°C as shown in Figure 2 (C1).The time at this time is related to the multiplication factor and excess noise coefficient as described later depending on the heat treatment time.Ion-implanted boron is doped into the π layer according to the Gaussian distribution described later.The width of the two layers at this time is preferably 7 to 9 μm.At this time, oxidized 1
13a is formed.

次に第2図+dlに示すように暗電流を減少させるため
のチャンネルストッパー8としての窓開け77を酸化膜
3に行いB+をイオン注入する。
Next, as shown in FIG. 2 +dl, a window 77 is formed in the oxide film 3 to serve as a channel stopper 8 for reducing dark current, and B+ ions are implanted.

次に第2図(e)に示すように熱処理(ドライブイン)
することで窓開け7.7部にイオン注入したボロンはπ
層内に入り込みP+領域を形成してチャンネルストッパ
ー8が構成される。このときチャンネルストッパー上に
は新たな酸化1113b。
Next, heat treatment (drive-in) is performed as shown in Figure 2(e).
As a result, the boron ion implanted in the window opening 7.7 becomes π
The channel stopper 8 is formed by penetrating into the layer and forming a P+ region. At this time, new oxide 1113b is formed on the channel stopper.

3bが形成される。3b is formed.

次に第2図(「)に示すようにガートリング用の窓開け
9,9を行って燐を拡散しN領域を形成し、第2図(g
)の如くドライブインすることで窓開け9゜9部に酸化
膜3C,3cを形成させガードリング10、10を形成
する。
Next, as shown in Fig. 2(g), windows 9 and 9 for the gartling are made to diffuse phosphorus and form an N region.
), the oxide films 3C, 3c are formed at the 9° 9 part of the window opening, and the guard rings 10, 10 are formed.

次に受光部のN4″の接合部用の窓開けを酸化膜3につ
いて行うために第2図(h)に示すように窓開け11を
なし、第2図(ilの如く燐を拡散してN+屓12を0
.2〜0.3μ!n厚に形成する。
Next, in order to open a window for the N4'' junction of the light receiving part on the oxide film 3, a window 11 is made as shown in Figure 2 (h), and phosphorus is diffused as shown in Figure 2 (il). N + 12 to 0
.. 2~0.3μ! Form to n thickness.

最後に第2図(J)に示すように SiO2/S i 
3 N a / S i O2のパッシベーション13
及びS i 3 N aの無反射コーティング14の後
にアルミニウムの電極15.15を形成したものである
Finally, as shown in Figure 2 (J), SiO2/S i
3 N a / S i O2 passivation 13
And an aluminum electrode 15.15 is formed after a non-reflective coating 14 of S i 3 Na.

上述の如く構成した場合の第2図(b)において、B+
をイオン注入した後に第4図(C)に示すように熱処理
を行ったときの第1図(a)、 (b)と同様のN+P
πP4″構造のAPDの不純物濃度分布は第3図+a)
、 tb)に示す如くP層領域の不純物濃度分布はガウ
ス曲線16で与えられる。その測定結果を第4図に示す
。第4図で横軸はP層領域の距離を、縦軸に不純物濃度
をとったもので曲線17a 、 18aはドーズ115
XIQcsn  としてB+を拡散させ、曲線17aは
7時間、  1200℃ドライブインさせ、曲線1)(
dは同し温度で15時間ドライブインさせた場合である
In FIG. 2(b) when configured as described above, B+
After ion implantation, heat treatment was performed as shown in FIG. 4(C), resulting in an N+P structure similar to that shown in FIGS.
The impurity concentration distribution of APD with πP4″ structure is shown in Figure 3+a)
, tb), the impurity concentration distribution in the P layer region is given by a Gaussian curve 16. The measurement results are shown in FIG. In FIG. 4, the horizontal axis represents the distance of the P layer region, and the vertical axis represents the impurity concentration. Curves 17a and 18a represent the dose 115.
B+ was diffused as XIQcsn, curve 17a was driven in at 1200°C for 7 hours,
d is the case where the product was driven in for 15 hours at the same temperature.

また、曲線18b、17bはドーズ量I X IQPa
m−”としてB+を拡散させたもので曲線17bは12
00℃で7時間、曲IQ18bは15時間ドライブイン
させたものであり、曲線20.21.22.23はB+
を300KeVでイオン注入しドーズ量を2.13X 
10”cm−よとした場合のもので曲線20は1200
℃でドライブイン(熱処理)時間を5時間、曲線21は
同じく7時間、曲線22は10時間、曲線23は15時
間に選択した場合を示す。
Moreover, curves 18b and 17b represent the dose amount I
curve 17b is 12
00℃ for 7 hours, song IQ18b was driven in for 15 hours, curve 20.21.22.23 is B+
ion implantation at 300KeV with a dose of 2.13X
Curve 20 is 1200 when it is 10" cm
℃, the drive-in (heat treatment) time was selected to be 5 hours, curve 21 was 7 hours, curve 22 was 10 hours, and curve 23 was 15 hours.

第5図はボロン(B+)を300K eV、熱処理温度
1200°C,ド−ズil 2.13X 10=CIl
−”とした場合の空乏層幅L(μm)を横軸に、増倍率
Mを縦軸にとった場合の関係を示し曲線24はドライブ
イン時間を7時間9油線25は10時間9曲線26は1
5時間にとった場合である。
Figure 5 shows boron (B+) at 300K eV, heat treatment temperature 1200°C, dose il 2.13X 10=CIl
-'', the horizontal axis is the depletion layer width L (μm), and the vertical axis is the multiplication factor M. Curve 24 shows the drive-in time of 7 hours 9 Oil line 25 shows the 10 hours 9 curve 26 is 1
This is the case when it is taken for 5 hours.

さらに第6図に示すものは横軸に増倍率Mを縦軸に過剰
雑音係数Fをとったものでイオン打ち込み条件は第5図
の場合と同一であり、曲線27.28゜29はそれぞれ
ドライブ時間を7時間、10時間、 15時間とした場
合である。
Furthermore, what is shown in Fig. 6 shows the multiplication factor M on the horizontal axis and the excess noise coefficient F on the vertical axis.The ion implantation conditions are the same as in Fig. 5, and the curves 27.28°29 are the drive This is when the time is set to 7 hours, 10 hours, and 15 hours.

上記第4図乃至第6図に示すようにN”PπP+型5i
APDのB+イオン注入後の2層6の熱処理時間が短す
ぎると表面濃度が増大し電界が大きくなるために過剰雑
音係数Fが増加する。ま1      た熱処理時間が
長すぎるとM’RT (リーチスルーでの増倍率)が増
加し低増幅率(バイアス電圧)における周波数特性が劣
化する。
As shown in FIGS. 4 to 6 above, N"PπP+ type 5i
If the heat treatment time of the two layers 6 after the APD B+ ion implantation is too short, the surface concentration will increase and the electric field will become larger, resulting in an increase in the excess noise factor F. Furthermore, if the heat treatment time is too long, M'RT (multiplication factor in reach-through) increases and frequency characteristics at low amplification factors (bias voltage) deteriorate.

本発明では2層6へのイオン注入量と熱処理時間を適当
に選択すれば増幅倍率1近傍で第5図に示すように極め
て原点に近いところでリーチスルーRTに達するためバ
イアス電圧も極めて低い電圧で(従来80V前後であっ
たものが本発明では60V近くで)リーチスルーRTに
達する。すなわち本発明では21w幅を7〜9μmに選
択すればよい。
In the present invention, if the amount of ion implantation into the second layer 6 and the heat treatment time are appropriately selected, reach-through RT is reached at an amplification factor close to 1 and extremely close to the origin as shown in FIG. 5, so the bias voltage is also extremely low. (The reach-through RT is reached at nearly 60 V in the present invention, which was conventionally around 80 V). That is, in the present invention, the width of 21w may be selected to be 7 to 9 μm.

また第6図から2層6へのB+イオン注入後のドライブ
時゛間が長ければ過剰雑音係数Fが大幅に減少すること
が解る。さらに第4図に示すようにイオン注入ドーズ量
を一定に定めた後にドライブ時間を選択ずれば2層6へ
のガウス分布曲線16も比較的容易にコントロールでき
ることが解る。
Furthermore, it can be seen from FIG. 6 that if the drive time after B+ ion implantation into the second layer 6 is longer, the excess noise factor F is significantly reduced. Further, as shown in FIG. 4, it can be seen that the Gaussian distribution curve 16 for the second layer 6 can be controlled relatively easily by selecting the drive time after setting the ion implantation dose constant.

ずなわら本発明においては、低濃度で比較的長さの短い
(7〜9μm)P層を形成することで低い増倍率におい
て良好な高周波特性を示すAPDが形成できる。上記実
施例ではN”PπP4型A l) Dについて述べたが
P側から光を入射廿るP+π■)N+型等に、右本発明
が適用できることは明らかである。
However, in the present invention, by forming a P layer with a low concentration and a relatively short length (7 to 9 μm), an APD exhibiting good high frequency characteristics at a low multiplication factor can be formed. In the above embodiment, the N''PπP4 type Al)D was described, but it is clear that the present invention can be applied to the P+π■)N+ type etc. in which light is incident from the P side.

(7)発明の効果 本発明は上記従来の欠点に鑑み、N”P7CP”のPF
it濃度を低濃度に選択し、比較的長さの短いP層を選
択し、イオン注入とドライブインによっ7M12Tを約
1に近い低い値に選べるので低い増倍率で高周波特性が
改善され、低雑音APDが容易に得られるといった効果
を有する。
(7) Effects of the invention In view of the above-mentioned conventional drawbacks, the present invention provides a PF of N"P7CP".
By selecting a low IT concentration, selecting a relatively short P layer, and selecting a low value of 7M12T close to approximately 1 through ion implantation and drive-in, the high frequency characteristics are improved with a low multiplication factor. This has the effect that noise APD can be easily obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(al、 (blは従来のN”PπP+構造のA
PDの模式図と不純物濃度分布を示すものであり、第2
図(al乃至(jlは本発明のN”PπP+構造のAP
Dの製造コニ程図、第3図(a)、 (b)は本発明の
N+■)πP+構造のAPDの模式構造と不純物濃度分
布を示す曲線、第4図は本発明の不純物濃度とP層の距
離との関係を示す曲線、第5図は本発明の増倍率Mと能
動領域の空乏間隔を示す曲線、第6図は過剰雑音係数と
増倍率との関係を示す曲線である。 l・・・基板、 2・・・π層、 3・・・酸化膜、 
 4・・・レジスト、  5.7,9.11・・・窓開
け、 6・・・P層、 8・・・チャンネルストッパー
、10・・・ガードリング。 第7図 託難→ JI2因
Figure 1 (al, (bl is A of the conventional N''PπP+ structure)
This is a schematic diagram of PD and impurity concentration distribution.
Figures (al to (jl) are APs of the N''PπP+ structure of the present invention.
Figures 3(a) and 3(b) are curves showing the schematic structure and impurity concentration distribution of the N+■)πP+ structure APD of the present invention, and Figure 4 shows the impurity concentration and P of the present invention. FIG. 5 is a curve showing the relationship between the layer distance, FIG. 5 is a curve showing the multiplication factor M of the present invention and the active region depletion interval, and FIG. 6 is a curve showing the relationship between the excess noise coefficient and the multiplication factor. l...substrate, 2...π layer, 3... oxide film,
4...Resist, 5.7,9.11...Window opening, 6...P layer, 8...Channel stopper, 10...Guard ring. Figure 7 Trust → JI 2nd cause

Claims (2)

【特許請求の範囲】[Claims] (1)B階段接合構造を有するアバランシェホトダイオ
ードにおいて、上記超階段接合構造の能動領域のπ層濃
度を5 X 10”乃至5 X 10″′ロー′とし、
P層のドーズ置を2乃至5X10cm  でイオン注入
しP層幅を7〜9μmとしたことを特徴とする光半導体
受光装置。
(1) In an avalanche photodiode having a B-step junction structure, the π layer concentration of the active region of the hyper-step junction structure is set to 5×10” to 5×10″’low’;
1. An optical semiconductor light-receiving device characterized in that the P layer is ion-implanted at a dose of 2 to 5×10 cm to have a P layer width of 7 to 9 μm.
(2)超階段接合構造はN”PπP4型のシリコンアバ
ランシェホトダイオードであることを特徴とする特許請
求の範囲第1項記載の光半導体受光装置。
(2) The optical semiconductor light-receiving device according to claim 1, wherein the hyper-step junction structure is an N''PπP4 type silicon avalanche photodiode.
JP57053120A 1982-03-31 1982-03-31 Semiconductor photodetector Granted JPS58170078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57053120A JPS58170078A (en) 1982-03-31 1982-03-31 Semiconductor photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57053120A JPS58170078A (en) 1982-03-31 1982-03-31 Semiconductor photodetector

Publications (2)

Publication Number Publication Date
JPS58170078A true JPS58170078A (en) 1983-10-06
JPS6259906B2 JPS6259906B2 (en) 1987-12-14

Family

ID=12933937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57053120A Granted JPS58170078A (en) 1982-03-31 1982-03-31 Semiconductor photodetector

Country Status (1)

Country Link
JP (1) JPS58170078A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122856A3 (en) * 2010-03-30 2011-12-29 이화여자대학교 산학협력단 Silicon photomultiplier
CN105097964A (en) * 2015-07-21 2015-11-25 中国电子科技集团公司第三十八研究所 Active-region Gaussian doped p-pi-n ultraviolet detector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69033657T2 (en) * 1989-08-04 2001-05-03 Canon Kk PHOTOELECTRIC CONVERTER

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122856A3 (en) * 2010-03-30 2011-12-29 이화여자대학교 산학협력단 Silicon photomultiplier
CN105097964A (en) * 2015-07-21 2015-11-25 中国电子科技集团公司第三十八研究所 Active-region Gaussian doped p-pi-n ultraviolet detector

Also Published As

Publication number Publication date
JPS6259906B2 (en) 1987-12-14

Similar Documents

Publication Publication Date Title
US4127932A (en) Method of fabricating silicon photodiodes
US4142200A (en) Semiconductor photodiodes
CA1259530A (en) Silicon oxynitride passivated semiconductor device and method of making same
US4434318A (en) Solar cells and method
US5233209A (en) Guard ring structure with graded be implantation
JPH02216874A (en) Silicon crystalline solar cell
JPS58170078A (en) Semiconductor photodetector
US4044372A (en) Photovoltaic cell having controllable spectral response
CA1078948A (en) Method of fabricating silicon photodiodes
US4415370A (en) Method of beryllium implantation in germanium substrate
JPS6222546B2 (en)
JPH01164075A (en) Avalanche photodetector
JPS6262564A (en) Semiconductor photodetector
JPS633448B2 (en)
Melchior et al. Epitaxial silicon n+-p-π-p+ avalanche photodiodes for optical fiber communications at 800 to 900 nanometers
US4057822A (en) Channel type photo-electric energy transducer
JPS5861682A (en) Semiconductor photodetecting element
JPS6025280A (en) Avalanche photo diode type light-receiving element
Wolffenbuttel Flexible spectral-response shaping of silicon photodiodes
JPS61292973A (en) Semiconductor light-receiving element
JPS6146076B2 (en)
JPS5943834B2 (en) Manufacturing method of semiconductor photodetector
JPS6156468A (en) Semiconductor photo detector
JPS6281780A (en) Manufacture of light receiving element
JPS60173880A (en) Semiconductor photodetector and manufacture thereof