JPS6269168A - Ship speed measuring instrument - Google Patents

Ship speed measuring instrument

Info

Publication number
JPS6269168A
JPS6269168A JP21066285A JP21066285A JPS6269168A JP S6269168 A JPS6269168 A JP S6269168A JP 21066285 A JP21066285 A JP 21066285A JP 21066285 A JP21066285 A JP 21066285A JP S6269168 A JPS6269168 A JP S6269168A
Authority
JP
Japan
Prior art keywords
speed
ship
ship speed
backup
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21066285A
Other languages
Japanese (ja)
Inventor
Mamoru Kuwata
守 桑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP21066285A priority Critical patent/JPS6269168A/en
Publication of JPS6269168A publication Critical patent/JPS6269168A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To navigate a marine vessel with high reliability by detecting the driving force of the marine vessel instead of a ship speed signal by a sensor, and obtaining ship speed for backup, when a suspended matter collides with the sensor and it has become faulty. CONSTITUTION:Based on the detection value of a ship speed sensor 2 provided on the marine vessel, the speed and a ship passage are calculated by a speed/ ship passage oscillator 4 and a speed value (log sailing speed) (v) is transmitted. On the other hand, the rotational number N of a screw is detected by a detector 7 for rotational number being a driving force detecting part, and this detection output and the ship speed (v) are led to an adjustment arithmetic part 9 and a proportional constant (k) is determined. By using this proportional constant (k), the detection output N of the detector 7 is converted and adjusted by a ship speed converting part 10, and the ship speed for backup is obtained. Therefore, even in case the sensor 2 is damaged, the navigation of the marine vessel can be executed with the high reliability by switching to the backup ship speed value by a switching element 6, and outputting it to a display part 5.

Description

【発明の詳細な説明】[Detailed description of the invention]

〈産業−ヒの利用分野〉 本発明は、船速測定装置に係り、特に通常船速を測定し
ている船速測定装置に故障が発生して船速測定値が検出
できないような場合に、この船速測定値に代わって船舶
の推進力を検出してバックアップ用船速を17で、この
埴をボ1記船速測定装置に代って利用Tることで信頼性
の高い船速Mfをj艷することが可能な船速測定装置に
関する。 〈従来の技術〉 以下第6図の従来の船速測定A置のブ
<Field of Application in Industry> The present invention relates to a ship speed measuring device, and is particularly useful when a ship speed measuring device that normally measures ship speed fails and the ship speed measurement value cannot be detected. By detecting the propulsion force of the ship in place of this ship speed measurement value and setting the backup ship speed to 17, this clay can be used in place of the ship speed measuring device described in Item 1 to obtain a highly reliable ship speed Mf. This invention relates to a ship speed measuring device that can be used to sail. <Prior art> Below is the conventional ship speed measurement block at position A shown in Figure 6.

【コック線図によ
り従来の技術を説明する。 第6図において、船舶1にはでの船底に海中に突出した
形で例えば電隘ログの船速セン+j(双子「センサ」と
略称する)2が設けられており、このセンサ2で検出さ
れた船速相当のは号である検出IIは増幅器3で増幅さ
れた後に速力・QA VN fl仏器4でJr線形補t
i 、ゼロ・スパン調整、フィルタリング処理が施され
た後に表示部である例えば指示計5にて船速指示される
。 〈発明が解決しようとづる問題点〉 しかし、この従来の船速測定装置において(よ、センt
す2が?hi巾に突出しているために浮’?fti勿等
に雨突して破膿するケースが度々ある。この場合、予(
Itiのセンサを持っていればこれど交換して直に再使
用できるが、この予備セン(Lが無い(q合は船速を知
る手段が無いままに船IM+を運転しなければならない
という問題がある。 本発明は、この従来技術の問題点に鑑みてなされたもの
(−あって、センサに例えば上記したような浮局物が衝
突して故障が発生した場合にこのセンサーによってit
Iられる船速(3号に代って船舶の1ff進力を検出し
てバックアップ用船速をI7で、このバックアップ用I
G)速を表示することでセン+1の故障に1.6 Wl
害を最小限にくい止めて、信頼性の高い操舵性を1!7
ることが可能な船速測定装置をIre Ilt・;るこ
とを目的とする。 く問題点を解決するだめのf段ン・ 十i)Bの[1的を達成1するための本発明の船速測定
「1.L、船l111 !、:設番)られた船速センサ
の検出値を基に速tノ、航程を速力・航程発信器?″演
専てRイaし、−1j11;(舶のIff進力合方if
進力検力検出部出し、この検出出力と1)1記船速とを
調整演鋒部に導いC比例定数を決定し7だ後に、この比
例定数を用いC11Q記11F進力検出部の検出出力を
船速変換部で変換・調整[)てバックアップ用船速を得
、前記船速と前記バックラフツブ用船速のい7rれかの
fff+を切替要素で1昌えて表示部(、〜出)圧・[
ることU−4;0:信性の高い船速伯を常に表;j;、
−ifイ・ことを特徴とケるものである。 〈実施例7・ 以r本光明の実施例を図面に駐づさ詳細に説明する。尚
、以下の図面においC第6図とΦmする部分は同一番′
;コをイ」シてその説明は省略覆る。 第1図は本発明の船速測定に置の具体的実施例の機能ブ
ロック線図であ、にン。 第1図にJメいて、船舶1に設けられた船速セン+J2
で検出された船速相当の信号である検出値は、増幅器3
で増幅され速力・航程介(a :!!: ’で速力11
n(以下「【二)グ船速」という)1ヒなつCN 01
で/13八〇K  リPの接点を右する切呂閥木GのN
otで側に導かれ、通常はこの切Pf要素がNotで側
に切酔わ−)でいるのrセンサ2の検出値かに承部であ
る例えば指示計57゛船速指示されている。尚、この構
成は切P1要卓6を除いては従来の機能構成のままて−
ある。 一方、1特要素6のBA CK  U P側に導かれろ
バックアップ信号を(9る機能構成は、船舶の+U進合
方なっている例えばスクリュウ回転数Nを検出−づ−る
llf進力検力検出部る例えば回転数検出器7(この検
出器はパルス式やタニ]ジ1ネレータ式等を用いること
ができる)と、ログ船速Vとスクリュウ回転数Nとを入
力し設定指令部8の指令信号に基づいて比例定数疋を決
定・調整演鐸する調整ij’i n部でjうる例えばロ
グ船速′回転数調整洟σ部9と、決定された比例定数k
に基づいてスクリコパ2回・l’/l 1(Nを変換・
調整してバックアップ用船速を得る船速変換部ひある例
えば回転数−船速変換部10と、この回転数−船速変換
部10の出力を例えば指数i17滑颯埋(演n式はv−
α?Jt −+ 4 (1−α)υLで表すずことがて
゛さる。イロしαは指数平滑係数で値はO〈α< 1 
”r−あり、又?Jt−+は前回の41、υ乞は今回の
I+Qを表わす”)等の処理をするフィルタリング部1
1と/〕目ら成っている。尚、このフィルタリング部1
1は回転数−船速g、換部内に設i′JTもよい。切替
要素6は、ログ船速Vとバックアップ用船速とを切替え
C’ k r+<部−C1ある指示ijt りに出7J
する。 このような構成の本発明の動作を1ス下に詳細に説明す
る。 (調整設定L−ド) 通常電磁1−】グが船舶に装備された場合は、最初にキ
↑Iリブレイシ:1ンが(jなわれろ。第2図は本発明
の、説明に供する図である。 第2図においで、陸地10の2地魚11.12間に表示
板11Δ、11B及び12△、 +21−38設定・1
ろ。白土においては地点11の2役の表・六へ11△と
1113が小な−)で見える地点を八とし、地点12の
2枚の表示板12Aと12 BI′fiil’iイに−
)で見える地点を8どし、この両地点Δ、B間の距ml
<例えば1ンイル(1852m))を予め測定しておく
。その十で電磁ログが装備された船舶1を両地点A、1
3間にH
[The conventional technology will be explained using a Cock diagram. In Fig. 6, a ship 1 is provided with a ship speed sensor 2 (abbreviated as twin "sensor") 2, for example, an electric log, which is protruded into the sea on the bottom of the ship. The detection II corresponding to the ship speed is amplified by the amplifier 3, and then the speed/QA VN fl is Jr linear complemented by the vessel 4.
After zero/span adjustment and filtering processing are performed, the boat speed is indicated on a display unit, for example, an indicator 5. <Problems that the invention seeks to solve> However, in this conventional ship speed measuring device (Yo, cent.
Su2? Is it floating because it protrudes so wide? There are many cases where fti gets hit by rain and becomes infected. In this case, pre(
If you have the Iti sensor, you can replace it and reuse it directly, but there is no spare sensor (L) (in the case of q, the problem is that you have to operate the ship IM+ without a way to know the ship speed. The present invention has been made in view of the problems of the prior art (-).In the event that a sensor malfunctions due to a collision with a floating object such as the one described above, the sensor will
(Instead of No. 3, the ship's 1ff advance is detected and the backup ship speed is set to I7, and this backup I
G) By displaying the speed, 1.6 Wl is reduced for failure of Sen+1.
Minimize damage and achieve highly reliable steering performance 1!7
The purpose is to create a ship speed measuring device that can be used to measure ship speed. Ship speed sensor of the present invention for achieving the objective 1 of B. Based on the detected value of the speed t and the route, the speed and range transmitter?
Propulsion detecting force is output, and this detection output and 1) 1) Vessel speed are led to the adjusting pilot unit to determine the C proportionality constant. After 7, this proportional constant is used to detect C11Q and 11F proceeding force detecting unit. Convert and adjust the output in the ship speed converter [) to obtain the backup ship speed, and change either of the ship speed and the ship speed for the backluff tube (fff+) with the switching element to display the ship speed (, ~ out). Pressure・[
U-4; 0: Always list the ship's speed with high reliability; j;,
-If it is a characteristic. Embodiment 7 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In addition, in the drawings below, the part Φm with that in Figure C6 is the same number 1'.
;The explanation will be omitted. FIG. 1 is a functional block diagram of a specific embodiment of the present invention for measuring ship speed. Ship speed sensor + J2 installed on ship 1, marked J in Figure 1
The detected value, which is a signal equivalent to the ship speed detected at
It is amplified by speed and distance (a:!!:' and the speed is 11
n (hereinafter referred to as "[2]g ship speed") 1 Hinatsu CN 01
At/1380K
Normally, the ship speed is indicated by the detected value of the R sensor 2, for example, the indicator 57, when the Pf element is guided to the side at OT. In addition, this configuration remains the same as the conventional functional configuration except for the cutout P1 main desk 6.
be. On the other hand, the functional configuration of the backup signal (9), which is guided to the BACKUP side of the first characteristic element 6, is to detect the +U advance of the ship, for example, to detect the screw rotation speed N. The detection unit, for example, the rotation speed detector 7 (this detector can be of a pulse type, a tandem generator type, etc.), the log ship speed V and the screw rotation speed N are input to the setting command unit 8. An adjustment unit 9 determines and adjusts a proportional constant based on a command signal, and the determined proportional constant k
Based on Skrikopa 2 times・l'/l 1(Convert N・
There is a ship speed converter, for example, a rotational speed-ship speed converter 10, which adjusts to obtain a backup ship speed, and the output of this rotational speed-ship speed converter 10 is converted into, for example, an index i17. −
α? Jt −+ 4 (1−α)υL can be expressed as follows. α is an exponential smoothing coefficient whose value is O〈α<1
Filtering unit 1 that processes things like "r- is there? Jt-+ is 41 from the previous time, υ is I+Q this time")
It consists of 1 and /] eyes. Note that this filtering section 1
1 is the number of revolutions minus the ship speed g, and i'JT may also be installed in the exchange section. The switching element 6 switches between the log ship speed V and the backup ship speed.
do. The operation of the present invention having such a configuration will be explained in detail one step below. (Adjustment setting L-do) Normally, when an electromagnetic 1-] is installed on a ship, the key ↑I librage:1 is first turned off. In Figure 2, the display boards 11Δ, 11B and 12Δ, +21-38 setting・1 between the two land fish 11 and 12 of the land 10.
reactor. In white clay, the point where 11△ and 1113 can be seen with a small -) on the two-way table 6 at point 11 is 8, and the two display boards 12A and 12 BI'fiil'i at point 12 are -
) is 8, and the distance ml between both points Δ and B is
<For example, 1 inch (1852 m)) is measured in advance. In Part 10, ship 1 equipped with electromagnetic logs is located at both points A and 1.
H between 3

【進機関の出力馬力を1/4.2.’4.3/
4,4.・4と順次変更してif i(Jさせる。ΔB
間の移動に要した115間を基準時S」で各々上記各出
力馬力(1/’ 4 。 2、/4,3.・’4.4.−’4)に駐づい(測定し
、この所用時間と予め判っている距離αから実際の船速
を求め、この値を基準に電磁ログをキャリブレイション
する(以Fr標柱間走t−r Jという)。尚この標柱
間走行は、潮流や風の影響を除くために11復した値を
平均して調整する。このキャリブレイションされたログ
船速Vは、ログ船速/回転数調整演惇部9にイの都度出
力される。一方標柱間走行中に同時にスクリュウ回転数
Nも回転検出器7で検出されてログ船速7回転数5!整
演蓮部9に絶えづ゛入力されている。f、tって、1l
alコクの個々の出力馬力に応じたキャリブレイション
が完了する時点においてその都度設定指令部8の指令信
号に基づいてログ船速/回転数調整演p部9で(J[船
速]−[スクリュウ回転82]の関係から各推進機関の
出力17/4〜4/4ごとの1コグ110速υ工とスク
リュウ回転数N1間の比例2E札を、υi ”’Aj、
’NL           ・・・(1)の関係から
決定し記憶する。但し、lは各Iftft間の出力1/
4〜4/4とする。 (バックアップモード) 例えばセンサ2が故障した場合や8葭に応じてセン号出
力のi+Tf L:をしたい場合は、切替要素64手動
又は自動でN OFりfil!lからf3AcK  L
IP側tこ切問える。バックアップモードでは[コグ船
速/回転数調整im G>部って決定された比例定Eれ
が回転数−船速変換部10に出力されているので、回転
数検出器7ぐ検出されたスクリ」つ回転数NLはこの回
転数−船速変換部10で比例定数1L’;uづいCバッ
クアップ用’Ii速に変)柴・調整され、フrルタリン
グ部11で滑かにされて切替要素6の13 ACKtJ
Pffllに導かれ、切替要素6を介して指示計5で指
示される。 このようにしてtごンリ2が例えば破1(1シてしスク
リュウ回転数を利用して船速指示の機能をベックアップ
することができる。 ところで第1図の構成を例えばマイクロブ1]L−ツサ
で構成することも1号能であり、第3図はこの場合のハ
ードウェア構成の一1シjを示した図である。 第3図にJ′3いて、13は入力されたデータを非線形
補(a、ぜ口・スパン調整、)、イルタリング速理等演
q処理する洟?3機能(CPtJ)、14番、未リード
オンリメモリ(ROM)、15はランダムアクセスメモ
リ(RAM)、16はセンサ2の検出値を増幅部3で増
幅した電圧信号(アナログ値)をデジタル値に変換して
CP U 13の内部に取込むアナログデジタル変換器
(ADC>、17はCPu13で演算処理された船速く
デジタル値〉をアナログ&ffに変換して指示N15に
出力するデジタルアノ゛ログ変換器(DAC)、18は
回転数検出器77’)IIらのスクリュウ回転数NLを
入力する回転数受信インターフェイス、19は設定指令
部8からの設定指令(,4号や例えば切替要素機能を切
替動作さUるため切替指令部GOからの切FJ指令信号
を入力す゛る指令信号入力インター7丁イス、20は例
えば外部菰首21に船速データを出力する出力インター
フエ(スである。 第4図は以−に詳細に説明した本発明第1図の一実施例
の全体的な処理を示したフローチャー1・である。 くその池の実施例〉 本発明におけるバックアップ機能部分は第1図。 第3図の構成に限定されるものではない。例えば、可変
ビッヂブ11べう船に本発明を利用するQ合1ユ、第5
図の本発明のその池の実施例に示す図のように構成する
ことしできる。 可変ピッチプロペラ船に(よほとんどの111合軸馬力
計が装備されでいる。この軸馬力計と船速の関係は[軸
馬力]oc[船速]3にあるので、第1図の+tt進力
検力検出部る回転数検出器7に代ってこの軸馬り計22
を用いればよい。即t5、第55図に、t3いてバック
アップ部分の構成例は、1】グ鎗速υ4と軸馬力計22
からの軸馬力とを入力し−C[軸馬力1−1[船速1コ
の関係かlう、?2定1旨令部8のm合に入↓づいて比
例定数に7をン大”INJ:定のイ1乃は上記したのど
同様)する調整病0部てJ’+る例えば1]グf4:)
速/′軸馬力調整演0部23と、このログ船速・′軸馬
力調整演算部23で決定された比例定数に44人力し軸
馬力、1t22からの軸馬力を、船速−(軸馬力ykL
>”コ     ・・・(2)に基づいて変換してバッ
ク?ツブ用船迷をi!l 6船速変換部である例えば軸
馬力−船速変換部10と、この軸馬力−船速変換部10
の出力をフィルタリングするフィルタリング部11とか
ら戊−)ている。 このようにしても第1図と同様の結果を1!することが
できる。 ご発明の効果二・ 数十、実施例と共に1休的に本発明を説明したように本
発明の船速測定装置によれば、セン+7が破損したIJ
I合でも電磁ログのキャリプレイシコン時のi!’、)
 ;′!i ol:プロペラ回転数(又は軸馬力)の関
1系を利用して(りたバックアップ船速値に直ちに切替
えることがCさ・るので、信頼性の高い船舶運航がて゛
きシ)。又、バックアップ船速値と電磁ログの船速11
0とを必要に応じて切M要素を適宜切替λて比較r−さ
るのて゛、これt9の関係を監視することで例えば船舶
に何首りる例えば貝等の増加による同−回転数等によろ
船速低下が判るので、船体h1除秀の目安となる等バッ
クアップという本来の用途に」、る効果以外の効果もあ
る。
[The output horsepower of the engine is 1/4.2. '4.3/
4,4.・Sequentially change 4 and make if i (J. ΔB
The 115 hours required to move between the two were parked (measured) at each of the above output horsepower (1/'4.2, /4,3.・'4.4.-'4) at the standard time The actual ship speed is determined from the travel time and the distance α known in advance, and the electromagnetic log is calibrated based on this value (hereinafter referred to as Fr mark-to-post travel t-r J). In order to eliminate the influence of wind, the 11 values are averaged and adjusted.This calibrated log ship speed V is output to the log ship speed/rotation speed adjustment section 9 each time. At the same time, the screw rotation speed N is also detected by the rotation detector 7 during running, and is constantly input to the adjustment section 9.
At the time when the calibration corresponding to the individual output horsepower of the alcove is completed, the log boat speed/rotation speed adjustment section 9 calculates (J [ship speed] - [screw speed] Rotation 82] From the relationship of output 17/4 to 4/4 of each propulsion engine, the proportional 2E tag between 1 cog 110 speed υ and screw rotation speed N1 is determined as υi '''Aj,
'NL...determined from the relationship in (1) and stored. However, l is the output 1/between each Ifft.
4 to 4/4. (Backup mode) For example, if the sensor 2 fails or if you want to output the sensor signal i+Tf L: according to the 8th signal, switch the switching element 64 manually or automatically. l to f3AcK L
You can ask the following questions on the IP side. In the backup mode, the proportional constant E determined by [cog ship speed/rotation speed adjustment im G>] is output to the rotation speed - ship speed converter 10, so the screen detected by the rotation speed detector 7 The rotational speed NL is adjusted by the rotational speed-vessel speed converter 10 to a proportional constant 1L' (changed to speed Ii for backup), and is smoothed by the filtering section 11 and converted to the switching element. 6 no 13 ACKtJ
Pffll, and is instructed by the indicator 5 via the switching element 6. In this way, it is possible for the boat 2, for example, to back up the ship speed instruction function using the number of screw revolutions. By the way, the configuration shown in FIG. It is also possible to configure it with a sleeve, and Fig. 3 is a diagram showing one example of the hardware configuration in this case. 3 functions (CPtJ) that process non-linear compensation (a, gap/span adjustment, etc.), filtering, etc., No. 14, unread only memory (ROM), No. 15, random access memory (RAM), No. 16 is an analog-to-digital converter (ADC) which converts the voltage signal (analog value) obtained by amplifying the detected value of the sensor 2 by the amplifier 3 into a digital value and inputs it into the CPU 13. 18 is a rotation speed receiving interface that inputs the screw rotation speed NL of the rotation speed detector 77') II etc. , 19 is a command signal input interface 7 chair for inputting a setting command from the setting command unit 8 (No. 4 or, for example, a switching FJ command signal from the switching command unit GO to switch the switching element function); For example, it is an output interface that outputs ship speed data to the external fork 21. FIG. 4 is a flowchart showing the overall processing of the embodiment of the present invention shown in FIG. 1, which will be explained in detail below. 1. Embodiment of Shit Pond> The backup function part of the present invention is shown in Fig. 1. It is not limited to the configuration shown in Fig. 3. For example, the present invention may be applied to a boat with variable bits of 11. Q Go 1 Yu, 5th
It can be configured as shown in the embodiment of the present invention in the figure. Most variable pitch propeller ships are equipped with a 111 combined shaft horsepower meter.The relationship between this shaft horsepower meter and ship speed is [shaft horsepower] oc [ship speed] 3, so the +tt progression in Figure 1 is This shaft horse meter 22 replaces the rotation speed detector 7 in the force detection unit.
You can use In other words, at t5, in Fig. 55, an example of the configuration of the backup part at t3 is as follows: 1] The spear speed υ4 and the shaft horsepower meter 22
Input the shaft horsepower from -C [Shaft horsepower 1-1 [Ship speed 1]? Entering the m of the 2 constant 1 effect, ↓ and then adding 7 to the proportional constant. f4:)
Speed/'-shaft horsepower adjustment section 0 23 and the proportional constant determined by this log ship speed/'-axis horsepower adjustment calculation section 23, 44 manpower shaft horsepower, shaft horsepower from 1t22, ship speed - (shaft horsepower ykL
>"K...convert based on (2) and convert back? Part 10
It includes a filtering section 11 that filters the output of the filter. Even if you do this, you will get the same result as in Figure 1! can do. Effects of the Invention 2. As described in detail in conjunction with dozens of examples, the ship speed measuring device of the present invention can be used to detect damaged IJS.
I even when the electromagnetic log is calipulated! ',)
;′! iol: Since it is possible to immediately switch to the backup ship speed value using the propeller rotation speed (or shaft horsepower) system, highly reliable ship operation is possible. Also, backup ship speed value and electromagnetic log ship speed 11
By monitoring the relationship between 0 and 0 as necessary, switching the M element appropriately and comparing λ with λ, we can determine, for example, how many shells are on the ship, for example, depending on the number of rotations, etc. Since you can see the decrease in ship speed, it can be used as a guide for clearing the hull H1, and has other effects other than its original purpose as a backup.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(、L本発明の船速測定装置の具体的実施例の機
能ブ]ニー】ツク線図、第2図は本発明の説明に供する
図、第S3図は第1図のバートウーU 77構成の一例
を示した図、第4図はフII −’111−1・、第5
図は本発明のその他の実施例を示す図、第6図は従来の
船速測定装置のf IIラック図である。 1・・・船舶、2・・・船速センサ、3・・・増幅器、
4・・・速力・航程発信器、゛)・・・表示部、6・・
・切tキ要木、7・・・回転数検出器、9・・・ログ船
速5/回転教調整演算部、10・・・回転数−船速変換
部、11・・・フィルタリング部、22・・・軸馬力、
=;1,23・・・1コグ船速/′軸馬り調整演仁)部
、24・・・軸馬力−船速・φ換部。 オシ l  広j 4)2  図 第3図 /と(11籾解り/F)
FIG. 1 is a functional diagram of a specific embodiment of the ship speed measuring device of the present invention, FIG. 2 is a diagram for explaining the present invention, and FIG. A diagram showing an example of the 77 configuration, FIG.
The figure shows another embodiment of the present invention, and FIG. 6 is an f II rack diagram of a conventional ship speed measuring device. 1... Ship, 2... Ship speed sensor, 3... Amplifier,
4...Speed/range transmitter, ゛)...Display section, 6...
・Cut key tree, 7... Rotation speed detector, 9... Log boat speed 5/rotation instruction adjustment calculation section, 10... Rotation speed - boat speed conversion section, 11... Filtering section, 22...shaft horsepower,
=; 1, 23...1 cog ship speed/'shaft horse power adjustment function) part, 24...shaft horsepower - ship speed/φ conversion part. Oshi l wide j 4) 2 Figure 3/ and (11 rice cracking/F)

Claims (1)

【特許請求の範囲】[Claims]  船舶に設けられた船速センサと、該船速センサの検出
値を基に速力、航程を演算して発信する速力・航程発信
器と、前記船舶の推進力を検出する推進力検出部と、前
記船速と前記推進力検出部からの検出出力とを入力し比
例定数を決定する調整演算部と、前記比例定数に基づい
て前記検出出力を変換・調整してバックアップ用船速を
得る船速変換部と、前記船速と前記バックアップ用船速
とのいずれかの値を切替えて出力する切替要素とを具備
して成ることを特徴とする船速測定装置。
A ship speed sensor provided on a ship, a speed/range transmitter that calculates and transmits speed and range based on the detected value of the ship speed sensor, and a propulsive force detection unit that detects the propulsive force of the ship; an adjustment calculation unit that inputs the ship speed and the detection output from the propulsive force detection unit and determines a proportionality constant; and a ship speed that converts and adjusts the detection output based on the proportionality constant to obtain a backup ship speed. A ship speed measuring device comprising: a converter; and a switching element that switches and outputs either the ship speed or the backup ship speed.
JP21066285A 1985-09-24 1985-09-24 Ship speed measuring instrument Pending JPS6269168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21066285A JPS6269168A (en) 1985-09-24 1985-09-24 Ship speed measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21066285A JPS6269168A (en) 1985-09-24 1985-09-24 Ship speed measuring instrument

Publications (1)

Publication Number Publication Date
JPS6269168A true JPS6269168A (en) 1987-03-30

Family

ID=16593025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21066285A Pending JPS6269168A (en) 1985-09-24 1985-09-24 Ship speed measuring instrument

Country Status (1)

Country Link
JP (1) JPS6269168A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01102369A (en) * 1987-10-16 1989-04-20 Sanshin Ind Co Ltd Ship speed detector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60127413A (en) * 1983-12-14 1985-07-08 Yokogawa Hokushin Electric Corp Navigation apparatus
JPS60166819A (en) * 1984-02-09 1985-08-30 Mitsubishi Electric Corp Speed estimating apparatus for vessel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60127413A (en) * 1983-12-14 1985-07-08 Yokogawa Hokushin Electric Corp Navigation apparatus
JPS60166819A (en) * 1984-02-09 1985-08-30 Mitsubishi Electric Corp Speed estimating apparatus for vessel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01102369A (en) * 1987-10-16 1989-04-20 Sanshin Ind Co Ltd Ship speed detector

Similar Documents

Publication Publication Date Title
US6308649B1 (en) Sailboat and crew performance optimization system
NO148124B (en) SYSTEM FOR DETERMINING THE POSITION OF A CABLE TOWED BY A VESSEL.
CN109163709A (en) A kind of measurement method of unmanned boat integration underwater topography
JPS6269168A (en) Ship speed measuring instrument
US3157148A (en) Driving force indicator for sailboats
KR20120063958A (en) The navigation information measurement system for the optimal path judgment of the test run vessel
US4566336A (en) Navigational aid alerting system
US4406242A (en) Oceanographic sensor system
US4914946A (en) Vessel speed detecting device
EP0136828A2 (en) Powered boat performance analyser
NO143183B (en) PROCEDURE AND DEVICE FOR DETERMINING THE MOVEMENT OF A SHIP
US3296863A (en) Ship draft gage
US4958581A (en) Sailboard apparatus
JPH0332995A (en) Automatic pilot device of yacht
US4616423A (en) Tactical dinghy compass
JPH0954055A (en) Measuring method for distribution of underwater potential difference at submerged portion of ship
JPH0414287B2 (en)
JP2500234B2 (en) Rough weather navigation aid
KR200491409Y1 (en) Rudder Angle Indicator
GB2171208A (en) Apparatus for analysing sailboat performance
US5166906A (en) Towed underwater acoustic speed sensor
JPH0325094A (en) Alongside-pier method of marine vessel
JPS6132200A (en) Cource minitor for ship
JPH0526512Y2 (en)
RU2116929C1 (en) System for determination of parameters of trim of damaged submersible vehicle in surface position under swell conditions